

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	196
Number of Logic Elements/Cells	466
Total RAM Bits	6272
Number of I/O	112
Number of Gates	10000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcs10-3tq144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan and Spartan-XL devices provide system clock rates exceeding 80 MHz and internal performance in excess of 150 MHz. In addition to the conventional benefit of high volume programmable logic solutions, Spartan series FPGAs also offer on-chip edge-triggered single-port and dual-port RAM, clock enables on all flip-flops, fast carry logic, and many other features.

The Spartan/XL families leverage the highly successful XC4000 architecture with many of that family's features and benefits. Technology advancements have been derived from the XC4000XLA process developments.

Logic Functional Description

The Spartan series uses a standard FPGA structure as shown in Figure 1, page 2. The FPGA consists of an array of configurable logic blocks (CLBs) placed in a matrix of routing channels. The input and output of signals is achieved through a set of input/output blocks (IOBs) forming a ring around the CLBs and routing channels.

- CLBs provide the functional elements for implementing the user's logic.
- IOBs provide the interface between the package pins and internal signal lines.
- Routing channels provide paths to interconnect the inputs and outputs of the CLBs and IOBs.

The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA.

Configurable Logic Blocks (CLBs)

The CLBs are used to implement most of the logic in an FPGA. The principal CLB elements are shown in the simplified block diagram in Figure 2. There are three look-up tables (LUT) which are used as logic function generators, two flip-flops and two groups of signal steering multiplexers. There are also some more advanced features provided by the CLB which will be covered in the **Advanced Features Description**, page 13.

Function Generators

Two 16 x 1 memory look-up tables (F-LUT and G-LUT) are used to implement 4-input function generators, each offering unrestricted logic implementation of any Boolean function of up to four independent input signals (F1 to F4 or G1 to G4). Using memory look-up tables the propagation delay is independent of the function implemented.

A third 3-input function generator (H-LUT) can implement any Boolean function of its three inputs. Two of these inputs are controlled by programmable multiplexers (see box "A" of Figure 2). These inputs can come from the F-LUT or G-LUT outputs or from CLB inputs. The third input always comes from a CLB input. The CLB can, therefore, implement certain functions of up to nine inputs, like parity checking. The three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of five inputs.

Table 4: Supported Sources for Spartan/XL Inputs

	-	artan outs	Spartan-XL Inputs
Source	5V, TTL	5V, CMOS	3.3V CMOS
Any device, V _{CC} = 3.3V, CMOS outputs	V	Unreli- able	V
Spartan family, V _{CC} = 5V, TTL outputs	√	Data	V
Any device, $V_{CC} = 5V$, TTL outputs $(V_{OH} \le 3.7V)$	√		V
Any device, V _{CC} = 5V, CMOS outputs	√	V	√ (default mode)

Spartan-XL Family V_{CC} Clamping

Spartan-XL FPGAs have an optional clamping diode connected from each I/O to V_{CC} . When enabled they clampringing transients back to the 3.3V supply rail. This clamping action is required in 3.3V PCI applications. V_{CC} clamping is a global option affecting all I/O pins.

Spartan-XL devices are fully 5V TTL I/O compatible if V_{CC} clamping is not enabled. With V_{CC} clamping enabled, the Spartan-XL devices will begin to clamp input voltages to one diode voltage drop above V_{CC} . If enabled, TTL I/O compatibility is maintained but full 5V I/O tolerance is sacrificed. The user may select either 5V tolerance (default) or 3.3V PCI compatibility. In both cases negative voltage is clamped to one diode voltage drop below ground.

Spartan-XL devices are compatible with TTL, LVTTL, PCI 3V, PCI 5V and LVCMOS signalling. The various standards are illustrated in Table 5.

Table 5: I/O Standards Supported by Spartan-XL FPGAs

Signaling Standard	VCC Clamping	Output Drive	V _{IH MAX}	V _{IH MIN}	V _{IL MAX}	V _{OH MIN}	V _{OL MAX}
TTL	Not allowed	12/24 mA	5.5	2.0	0.8	2.4	0.4
LVTTL	OK	12/24 mA	3.6	2.0	0.8	2.4	0.4
PCI5V	Not allowed	24 mA	5.5	2.0	0.8	2.4	0.4
PCI3V	Required	12 mA	3.6	50% of V _{CC}	30% of V _{CC}	90% of V _{CC}	10% of V _{CC}
LVCMOS 3V	OK	12/24 mA	3.6	50% of V _{CC}	30% of V _{CC}	90% of V _{CC}	10% of V _{CC}

Additional Fast Capture Input Latch (Spartan-XL Family Only)

The Spartan-XL family OB has an additional optional latch on the input. This latch is clocked by the clock used for the output flip-flop rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch.

To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active High input flip-flop. ILFLX is a transparent Low Fast Capture latch followed by a transparent High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB.

IOB Output Signal Path

Output signals can be optionally inverted within the IOB, and can pass directly to the output buffer or be stored in an edge-triggered flip-flop and then to the output buffer. The functionality of this flip-flop is shown in Table 6.

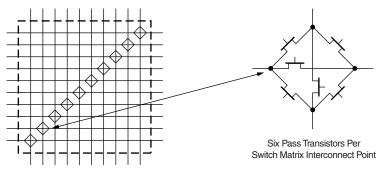
Table 6: Output Flip-Flop Functionality

Mode	Clock	Clock Enable	Т	D	Q
Power-Up or GSR	Х	Х	0*	Х	SR
Flip-Flop	Х	0	0*	Х	Q
		1*	0*	D	D
	Х	Х	1	Х	Z
	0	Х	0*	Х	Q

Legend:

V	Don't care

___ Rising edge (clock not inverted).


SR Set or Reset value. Reset is default.

0* Input is Low or unconnected (default value)

1* Input is High or unconnected (default value)

Z 3-state

DS060_10_081100

Figure 10: Programmable Switch Matrix

Double-Length Lines

The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8).

There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility.

Longlines

12

Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances.

Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array.

Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19.

I/O Routing

Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines.

Global Nets and Buffers

The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew.

Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect.

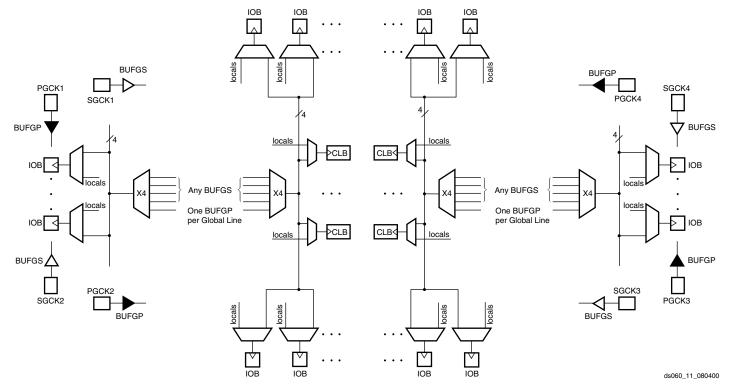


Figure 11: 5V Spartan Family Global Net Distribution

The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility.

The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets.

Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code.

Advanced Features Description

Distributed RAM

Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM).

Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA.

Memory Configuration Overview

There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB.

Table 8: CLB Memory Configurations

Mode	16 x 1	(16 x 1) x 2	32 x 1
Single-Port	√	√	V
Dual-Port	√	_	_

and Spartan-XL families, speeding up arithmetic and counting functions.

The carry chain in 5V Spartan devices can run either up or down. At the top and bottom of the columns where there are no CLBs above and below, the carry is propagated to the right. The default is always to propagate up the column, as shown in the figures. The carry chain in Spartan-XL devices can only run up the column, providing even higher speed.

Figure 16, page 18 shows a Spartan/XL FPGA CLB with dedicated fast carry logic. The carry logic shares operand

and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums.

Figure 17, page 19 shows the details of the Spartan/XL FPGA carry logic. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 16.

The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols.

On-Chip Oscillator

Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with process, $V_{\rm CC}$, and temperature. The output frequency falls between 4 MHz and 10 MHz.

The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8-MHz clock, plus any two of 500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies can vary by as much as -50% or +25%.

These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code. The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design.

Global Signals: GSR and GTS

Global Set/Reset

A separate Global Set/Reset line, as shown in Figure 3, page 5 for the CLB and Figure 5, page 6 for the IOB, sets or clears each flip-flop during power-up, reconfiguration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, if in reset mode, it is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 19.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the GSR signal. Alternatively, GSR can be driven from any internal node.

Global 3-State

A separate Global 3-state line (GTS) as shown in Figure 6, page 7 forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. GTS does not compete with other routing resources; it uses a dedicated distribution network.

GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. This is similar to what is shown in Figure 19 for GSR except the IBUF would be

connected to GTS. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-state signal. Alternatively, GTS can be driven from any internal node.

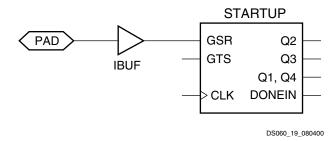


Figure 19: Symbols for Global Set/Reset

Boundary Scan

The "bed of nails" has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can embed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan compatible device. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two.

The Spartan and Spartan-XL families implement IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section.

By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in the Spartan/XL devices.

The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note: "Boundary Scan in FPGA Devices."

figuration are shown in Table 14 and Table 15.

Table 14: Pin Functions During Configuration (Spartan Family Only)

Configuration Mo		
Slave Serial (High)	Master Serial (Low)	User Operation
MODE (I)	MODE (I)	MODE
HDC (High)	HDC (High)	I/O
LDC (Low)	LDC (Low)	I/O
ĪNIT	ĪNIT	I/O
DONE	DONE	DONE
PROGRAM (I)	PROGRAM (I)	PROGRAM
CCLK (I)	CCLK (O)	CCLK (I)
DIN (I)	DIN (I)	I/O
DOUT	DOUT	SGCK4-I/O
TDI	TDI	TDI-I/O
TCK	TCK	TCK-I/O
TMS	TMS	TMS-I/O
TDO	TDO	TDO-(O)
		ALL OTHERS

Notes:

- A shaded table cell represents the internal pull-up used before and during configuration.
- (I) represents an input; (O) represents an output.
- INIT is an open-drain output during configuration.

Table 15: Pin Functions During Configuration (Spartan-XL Family Only)

CONFIGU	JRATION MODE	<m1:m0></m1:m0>	
Slave Serial [1:1]	Master Serial [1:0]	Express [0:X]	User Operation
M1 (High) (I)	M1 (High) (I)	M1(Low) (I)	M1
M0 (High) (I)	M0 (Low) (I)	M0 (I)	MO
HDC (High)	HDC (High)	HDC (High)	I/O
LDC (Low)	LDC (Low)	LDC (Low)	I/O
ĪNIT	ĪNIT	ĪNIT	I/O
DONE	DONE	DONE	DONE
PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM
CCLK (I)	CCLK (O)	CCLK (I)	CCLK (I)
		DATA 7 (I)	I/O
		DATA 6 (I)	I/O
		DATA 5 (I)	I/O
		DATA 4 (I)	I/O
		DATA 3 (I)	I/O
		DATA 2 (I)	I/O
		DATA 1 (I)	I/O
DIN (I)	DIN (I)	DATA 0 (I)	I/O
DOUT	DOUT	DOUT	GCK6-I/O
TDI	TDI	TDI	TDI-I/O
TCK	TCK	TCK	TCK-I/O
TMS	TMS	TMS	TMS-I/O
TDO	TDO	TDO	TDO-(O)
		CS1	I/O
			ALL OTHERS

Notes:

- A shaded table cell represents the internal pull-up used before and during configuration.
- (I) represents an input; (O) represents an output. INIT is an open-drain output during configuration.

Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration.

Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, is passed through

and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames.

After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received.

The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration.

Note:

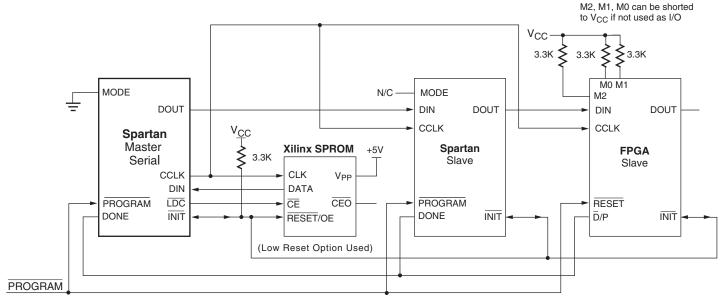


Figure 25: Master/Slave Serial Mode Circuit Diagram

DS060_25_061301

Table 17: Spartan/XL Program Data

Device	XC	CS05	XC	S10	XCS20		XCS30		XC	S40		
Max System Gates	5,	000	10	,000	20,000		20,000		30,000		40	,000
CLBs (Row x Col.)	100 (10 x 10)				576 (24 x 24)		-	'84 x 28)				
IOBs		80	1	12	160		1	92	20)5 ⁽⁴⁾		
Part Number	XCS05	XCS05XL	XCS10	XCS10XL	XCS20	XCS20XL	XCS30	XCS30XL	XCS40	XCS40XL		
Supply Voltage	5V	3.3V	5V	3.3V	5V	3.3V	5V	3.3V	5V	3.3V		
Bits per Frame	126	127	166	167	226	227	266	267	306	307		
Frames	428	429	572	573	788	789	932	933	1,076	1,077		
Program Data	53,936	54,491	94,960	95,699	178,096	179,111	247,920	249,119	329,264	330,647		
PROM Size (bits)	53,984	54,544	95,008	95,752	178,144	179,160	247,968	249,168	329,312	330,696		
Express Mode PROM Size (bits)	-	79,072	-	128,488	-	221,056	-	298,696	-	387,856		

Notes:

- Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device)
 Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device)
 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
 PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte
- 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header.
- 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits.
- 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01.

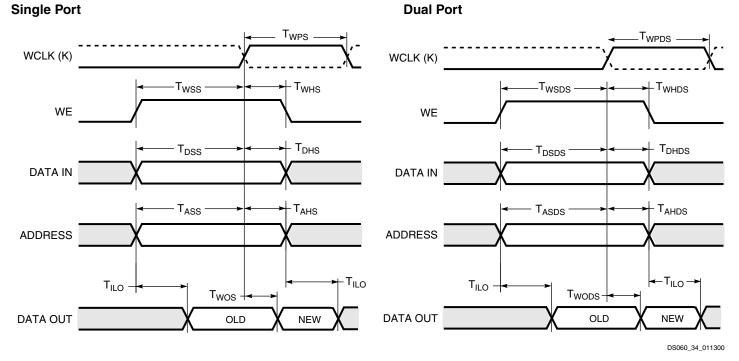
During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback

data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged.

Statistically, one error out of 2048 might go undetected.

Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (continued)

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE


in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted.

Dual-Port RAM Synchronous (Edge-Triggered) Write Operation Characteristics

			-4 -3		3		
Symbol	Dual Port RAM	Size ⁽¹⁾	Min	Max	Min	Max	Units
Write Operati	ion						
T _{WCDS}	Address write cycle time (clock K period)	16x1	8.0	-	11.6	-	ns
T _{WPDS}	Clock K pulse width (active edge)	16x1	4.0	-	5.8	-	ns
T _{ASDS}	Address setup time before clock K	16x1	1.5	-	2.1	-	ns
T _{AHDS}	Address hold time after clock K	16x1	0	-	0	-	ns
T _{DSDS}	DIN setup time before clock K	16x1	1.5	-	1.6	-	ns
T _{DHDS}	DIN hold time after clock K	16x1	0	-	0	-	ns
T _{WSDS}	WE setup time before clock K	16x1	1.5	-	1.6	-	ns
T _{WHDS}	WE hold time after clock K	16x1	0	-	0	-	ns
T _{WODS}	Data valid after clock K	16x1	-	6.5	-	7.0	ns

Notes:

Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Timing

^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing

Spartan Family IOB Input Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

			-	4	-	3	
Symbol	Description	Device	Min	Max	Min	Max	Units
Setup Tin	nes - TTL Inputs ⁽¹⁾			•	•		
T _{ECIK}	Clock Enable (EC) to Clock (IK), no delay	All devices	1.6	-	2.1	-	ns
T _{PICK}	Pad to Clock (IK), no delay	All devices	1.5	-	2.0	-	ns
Hold Time	es	·					
T _{IKEC}	Clock Enable (EC) to Clock (IK), no delay	All devices	0.0	-	0.9	-	ns
	All Other Hold Times	All devices	0.0	-	0.0	-	ns
Propagat	ion Delays - TTL Inputs ⁽¹⁾	,					
T _{PID}	Pad to I1, I2	All devices	-	1.5	-	2.0	ns
T _{PLI}	Pad to I1, I2 via transparent input latch, no delay	All devices	-	2.8	-	3.6	ns
T _{IKRI}	Clock (IK) to I1, I2 (flip-flop)	All devices	-	2.7	-	2.8	ns
T _{IKLI}	Clock (IK) to I1, I2 (latch enable, active Low)	All devices	-	3.2	-	3.9	ns
Delay Ad	der for Input with Delay Option			I	I	II.	
T _{Delay}	$T_{\text{ECIKD}} = T_{\text{ECIK}} + T_{\text{Delay}}$	XCS05	3.6	-	4.0	-	ns
	$T_{PICKD} = T_{PICK} + T_{Delay}$	XCS10	3.7	-	4.1	-	ns
	$T_{PDLI} = T_{PLI} + T_{Delay}$	XCS20	3.8	-	4.2	-	ns
		XCS30	4.5	-	5.0	-	ns
		XCS40	5.5	-	5.5	-	ns
Global Se	et/Reset			I	I	II.	
T_{MRW}	Minimum GSR pulse width	All devices	11.5	-	13.5	-	ns
T _{RRI}	Delay from GSR input to any Q	XCS05	-	9.0	-	11.3	ns
		XCS10	-	9.5	-	11.9	ns
		XCS20	-	10.0	-	12.5	ns
		XCS30	-	10.5	-	13.1	ns
		XCS40	-	11.0	-	13.8	ns

Notes:

- 1. Delay adder for CMOS Inputs option: for -3 speed grade, add 0.4 ns; for -4 speed grade, add 0.2 ns.
- 2. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table.
- 3. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

Spartan-XL Family DC Characteristics Over Operating Conditions

Symbol	Description		Min	Тур.	Max	Units
V _{OH}	High-level output voltage @ $I_{OH} = -4.0 \text{ mA}, V_{C}$	_C min (LVTTL)	2.4	-	-	V
	High-level output voltage @ $I_{OH} = -500 \mu A$, (LV	(CMOS)	90% V _{CC}	-	-	V
V _{OL}	Low-level output voltage @ I _{OL} = 12.0 mA, V _{CO}	; min (LVTTL) ⁽¹⁾	-	-	0.4	V
	Low-level output voltage @ I _{OL} = 24.0 mA, V _{CO}	; min (LVTTL) ⁽²⁾	-	-	0.4	V
	Low-level output voltage @ I _{OL} = 1500 μA, (LV	CMOS)	-	-	10% V _{CC}	V
V _{DR}	Data retention supply voltage (below which cormay be lost)	Data retention supply voltage (below which configuration data may be lost)			-	V
I _{CCO}	Quiescent FPGA supply current ^(3,4)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
I _{CCPD}	Power Down FPGA supply current ^(3,5)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
IL	Input or output leakage current	1	-10	-	10	μΑ
C _{IN}	Input capacitance (sample tested)		-	-	10	pF
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V (samp	le tested)	0.02	-	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 3.3V (s	sample tested)	0.02	-	-	mA

Notes:

- With up to 64 pins simultaneously sinking 12 mA (default mode).
- 2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected).
- 3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option.
- With no output current loads, no active input resistors, and all package pins at V_{CC} or GND.
- 5. With PWRDWN active.

Supply Current Requirements During Power-On

Spartan-XL FPGAs require that a minimum supply current I_{CCPO} be provided to the V_{CC} lines for a successful power on. If more current is available, the FPGA can consume more than I_{CCPO} min., though this cannot adversely affect reliability.

A maximum limit for I_{CCPO} is not specified. Be careful when using foldback/crowbar supplies and fuses. It is possible to control the magnitude of I_{CCPO} by limiting the supply current available to the FPGA. A current limit below the trip level will avoid inadvertently activating over-current protection circuits.

Symbol	Description	Min	Max	Units
I _{CCPO}	Total V _{CC} supply current required during power-on	100	-	mA
T _{CCPO}	V _{CC} ramp time ^(2,3)	-	50	ms

Notes:

- 1. The I_{CCPO} requirement applies for a brief time (commonly only a few milliseconds) when V_{CC} ramps from 0 to 3.3V.
- 2. The ramp time is measured from GND to V_{CC} max on a fully loaded board.
- V_{CC} must not dip in the negative direction during power on.

Spartan-XL Family Global Buffer Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For

more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

			Spee		
			-5	-4	
Symbol	Description	Device	Max	Max	Units
T _{GLS}	From pad through buffer, to any clock K	XCS05XL	1.4	1.5	ns
		XCS10XL	1.7	1.8	ns
		XCS20XL	2.0	2.1	ns
		XCS30XL	2.3	2.5	ns
		XCS40XL	2.6	2.8	ns

Spartan-XL Family IOB Input Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

			Speed Grade				
			-5		-4		
Symbol	Description	Device	Min	Max	Min	Max	Units
Setup Tim	es						
T _{ECIK}	Clock Enable (EC) to Clock (IK)	All devices	0.0	-	0.0	-	ns
T _{PICK}	Pad to Clock (IK), no delay	All devices	1.0	-	1.2	-	ns
T _{POCK}	Pad to Fast Capture Latch Enable (OK), no delay	All devices	0.7	-	0.8	-	ns
Hold Time	es				•		
	All Hold Times	All devices	0.0	-	0.0	-	ns
Propagati	on Delays				•		
T _{PID}	Pad to I1, I2	All devices	-	0.9	-	1.1	ns
T _{PLI}	Pad to I1, I2 via transparent input latch, no delay	All devices	-	2.1	-	2.5	ns
T _{IKRI}	Clock (IK) to I1, I2 (flip-flop)	All devices	-	1.0	-	1.1	ns
T _{IKLI}	Clock (IK) to I1, I2 (latch enable, active Low)	All devices	-	1.1	-	1.2	ns
Delay Add	ler for Input with Full Delay Option				•		
T _{Delay}	$T_{PICKD} = T_{PICK} + T_{Delay}$	XCS05XL	4.0	-	4.7	-	ns
	$T_{PDLI} = T_{PLI} + T_{Delay}$	XCS10XL	4.8	-	5.6	-	ns
		XCS20XL	5.0	-	5.9	-	ns
		XCS30XL	5.5	-	6.5	-	ns
		XCS40XL	6.5	-	7.6	-	ns
Global Se	t/Reset	"		ı	1	ı	i.
T _{MRW}	Minimum GSR pulse width	All devices	10.5	-	11.5	-	ns
T _{RRI}	Delay from GSR input to any Q	XCS05XL	-	9.0	-	10.5	ns
		XCS10XL	-	9.5	-	11.0	ns
		XCS20XL	-	10.0	-	11.5	ns
		XCS30XL	-	11.0	-	12.5	ns
		XCS40XL	-	12.0	-	13.5	ns

Notes:

- 1. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table.
- 2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

XCS05 and XCS05XL Device Pinouts

XCS05/XL			Bndry
Pad Name	PC84 ⁽⁴⁾	VQ100	Scan
I/O	P70	P71	238 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P71	P72	241 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P72	P73	244 ⁽³⁾
CCLK	P73	P74	-
VCC	P74	P75	-
O, TDO	P75	P76	0
GND	P76	P77	-
I/O	P77	P78	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P78	P79	5
I/O (CS1 ⁽²⁾)	P79	P80	8
I/O	P80	P81	11
I/O	P81	P82	14
I/O	P82	P83	17
I/O	-	P84	20
I/O	-	P85	23
I/O	P83	P86	26
I/O	P84	P87	29
GND	P1	P88	-

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- 3. The "PWRDWN" on the XCS05XL is not part of the Boundary Scan chain. For the XCS05XL, subtract 1 from all Boundary Scan numbers from GCK3 on (127 and higher).
- 4. PC84 package discontinued by PDN2004-01

XCS10 and XCS10XL Device Pinouts

XCS10/XL Pad Name	PC84 ⁽⁴⁾	VQ100	CS144 ^(2,4)	TQ144	Bndry Scan
VCC	P2	P89	D7	P128	-
I/O	P3	P90	A6	P129	44
I/O	P4	P91	В6	P130	47
I/O	-	P92	C6	P131	50
I/O	-	P93	D6	P132	53
I/O	P5	P94	A5	P133	56
I/O	P6	P95	B5	P134	59
I/O	-	-	C5	P135	62
I/O	-	-	D5	P136	65
GND	-	-	A4	P137	-
I/O	P7	P96	B4	P138	68
I/O	P8	P97	C4	P139	71
I/O	-	-	A3	P140	74
I/O	-	-	В3	P141	77
I/O	P9	P98	C3	P142	80

XCS10 and XCS10XL Device Pinouts

			vice Pino		D
XCS10/XL Pad Name	PC84 ⁽⁴⁾	VQ100	CS144 ^(2,4)	TQ144	Bndry Scan
I/O,	P10	P99	A2	P143	83
SGCK1 ⁽¹⁾					
GCK8 ⁽²⁾					
VCC	P11	P100	B2	P144	-
GND	P12	P1	A1	P1	-
I/O,	P13	P2	B1	P2	86
PGCK1 ⁽¹⁾					
GCK1 ⁽²⁾					
I/O	P14	P3	C2	P3	89
I/O	-	-	C1	P4	92
I/O	-	-	D4	P5	95
I/O, TDI	P15	P4	D3	P6	98
I/O, TCK	P16	P5	D2	P7	101
GND	-	-	D1	P8	ı
I/O	-	_	E4	P9	104
I/O	-	-	E3	P10	107
I/O, TMS	P17	P6	E2	P11	110
I/O	P18	P7	E1	P12	113
I/O	-	-	F4	P13	116
I/O	-	P8	F3	P14	119
I/O	P19	P9	F2	P15	122
I/O	P20	P10	F1	P16	125
GND	P21	P11	G2	P17	-
VCC	P22	P12	G1	P18	-
I/O	P23	P13	G3	P19	128
I/O	P24	P14	G4	P20	131
I/O	-	P15	H1	P21	134
I/O	-	-	H2	P22	137
I/O	P25	P16	H3	P23	140
I/O	P26	P17	H4	P24	143
I/O	-	-	J1	P25	146
I/O	-	-	J2	P26	149
GND	-	-	J3	P27	-
I/O	P27	P18	J4	P28	152
I/O	-	P19	K1	P29	155
I/O	_	-	K2	P30	158
I/O	_	_	K3	P31	161
I/O	P28	P20	L1	P32	164
I/O,	P29	P21	L2	P33	167
SGCK2 ⁽¹⁾	1 23	1 - 1	L	. 00	107
GCK2 ⁽²⁾					
Not	P30	P22	L3	P34	170
Connect-					
ed ⁽¹⁾					
M1 ⁽²⁾					
GND	P31	P23	M1	P35	-
$MODE^{(1)}$,	P32	P24	M2	P36	173
M0 ⁽²⁾					

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	F4	P13	P21	170
I/O	P8	F3	P14	P22	173
I/O	P9	F2	P15	P23	176
I/O	P10	F1	P16	P24	179
GND	P11	G2	P17	P25	-
VCC	P12	G1	P18	P26	-
I/O	P13	G3	P19	P27	182
I/O	P14	G4	P20	P28	185
I/O	P15	H1	P21	P29	188
I/O	-	H2	P22	P30	191
I/O	-	-	-	P31	194
I/O	-	-	-	P32	197
VCC ⁽²⁾	-	-	-	P33	-
I/O	P16	H3	P23	P34	200
I/O	P17	H4	P24	P35	203
I/O	-	J1	P25	P36	206
I/O	-	J2	P26	P37	209
GND	-	J3	P27	P38	-
I/O	-	-	-	P40	212
I/O	-	-	-	P41	215
I/O	-	-	-	P42	218
I/O	-	-	-	P43	221
I/O	P18	J4	P28	P44	224
I/O	P19	K1	P29	P45	227
I/O	-	K2	P30	P46	230
I/O	-	K3	P31	P47	233
I/O	P20	L1	P32	P48	236
I/O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾	P21	L2	P33	P49	239
Not Connected ⁽¹⁾ M1 ⁽²⁾	P22	L3	P34	P50	242
GND	P23	M1	P35	P51	-
MODE ⁽¹⁾ , M0 ⁽²⁾	P24	M2	P36	P52	245
VCC	P25	N1	P37	P53	-
Not Connected ⁽¹⁾ PWRDWN ⁽²⁾	P26	N2	P38	P54	246 (1)
I/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾	P27	M3	P39	P55	247 (3)
I/O (HDC)	P28	N3	P40	P56	250 ⁽³⁾
I/O	-	K4	P41	P57	253 ⁽³⁾
I/O	-	L4	P42	P58	256 ⁽³⁾
I/O	P29	M4	P43	P59	259 ⁽³⁾

XCS20 and XCS20XL Device Pinouts

XCS20/XL		ONE DCV			Bndry
Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Scan
I/O (LDC)	P30	N4	P44	P60	262 ⁽³⁾
I/O	-	-	-	P61	265 ⁽³⁾
I/O	-	-	-	P62	268 ⁽³⁾
I/O	-	-	-	P63	271 ⁽³⁾
I/O	-	-	-	P64	274 ⁽³⁾
GND	-	K5	P45	P66	-
I/O	-	L5	P46	P67	277 (3)
I/O	-	M5	P47	P68	280 (3)
I/O	P31	N5	P48	P69	283 ⁽³⁾
I/O	P32	K6	P49	P70	286 ⁽³⁾
VCC ⁽²⁾	-	-	-	P71	-
I/O	-	-	-	P72	289 ⁽³⁾
I/O	-	-	-	P73	292 ⁽³⁾
I/O	P33	L6	P50	P74	295 ⁽³⁾
I/O	P34	M6	P51	P75	298 ⁽³⁾
I/O	P35	N6	P52	P76	301 ⁽³⁾
I/O (INIT)	P36	M7	P53	P77	304 ⁽³⁾
VCC	P37	N7	P54	P78	-
GND	P38	L7	P55	P79	-
I/O	P39	K7	P56	P80	307 ⁽³⁾
I/O	P40	N8	P57	P81	310 ⁽³⁾
I/O	P41	M8	P58	P82	313 ⁽³⁾
I/O	P42	L8	P59	P83	316 ⁽³⁾
I/O	-	-	-	P84	319 ⁽³⁾
I/O	-	-	-	P85	322 (3)
VCC ⁽²⁾	-	-	-	P86	-
I/O	P43	K8	P60	P87	325 ⁽³⁾
I/O	P44	N9	P61	P88	328 (3)
I/O	-	M9	P62	P89	331 ⁽³⁾
I/O	-	L9	P63	P90	334 ⁽³⁾
GND	-	K9	P64	P91	-
I/O	-	-	-	P93	337 ⁽³⁾
I/O	-	-	1	P94	340 ⁽³⁾
I/O	-	-	ı	P95	343 ⁽³⁾
I/O	-	-	ı	P96	346 ⁽³⁾
I/O	P45	N10	P65	P97	349 ⁽³⁾
I/O	P46	M10	P66	P98	352 ⁽³⁾
I/O	-	L10	P67	P99	355 ⁽³⁾
I/O	-	N11	P68	P100	358 ⁽³⁾
I/O	P47	M11	P69	P101	361 ⁽³⁾
I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾	P48	L11	P70	P102	364 (3)
GND	P49	N12	P71	P103	-
DONE	P50	M12	P72	P104	-
VCC	P51	N13	P73	P105	-

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	P5	P5	P5	D3	C1	155
I/O, TDI	P4	P6	P6	P6	E4	D4	158
I/O, TCK	P5	P7	P7	P7	C1	D3	161
I/O	-	-	P8	P8	D1	E2	164
I/O	-	-	P9	P9	E3	E4	167
I/O	-	-	P10	P10	E2	E1	170
I/O	-	-	P11	P11	E1	F5	173
I/O	-	-	P12	P12	F3	F3	176
I/O	-	-	-	P13	F2	F2	179
GND	-	P8	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P9	P14	P15	G3	F4	182
I/O	-	P10	P15	P16	G2	F1	185
I/O, TMS	P6	P11	P16	P17	G1	G3	188
I/O	P7	P12	P17	P18	НЗ	G2	191
VCC	-	-	P18	P19	VCC ⁽⁴⁾	G1	-
I/O	-	-	-	P20	H2	G4	194
I/O	-	-	-	P21	H1	H1	197
I/O	-	-	P19	P23	J2	H4	200
I/O	-	-	P20	P24	J1	J1	203
I/O	-	P13	P21	P25	K2	J2	206
I/O	P8	P14	P22	P26	K3	J3	209
I/O	P9	P15	P23	P27	K1	J4	212
I/O	P10	P16	P24	P28	L1	K1	215
GND	P11	P17	P25	P29	GND ⁽⁴⁾	GND ⁽⁴⁾	-
VCC	P12	P18	P26	P30	VCC ⁽⁴⁾	K2	-
I/O	P13	P19	P27	P31	L2	K3	218
I/O	P14	P20	P28	P32	L3	K4	221
I/O	P15	P21	P29	P33	L4	K5	224
I/O	-	P22	P30	P34	M1	L1	227
I/O	-	-	P31	P35	M2	L2	230
I/O	-	-	P32	P36	M3	L3	233
I/O	-	-	-	P38	N1	M2	236
I/O	-	-	-	P39	N2	M3	239
VCC	-	-	P33	P40	VCC ⁽⁴⁾	M4	-
I/O	P16	P23	P34	P41	P1	N1	242
I/O	P17	P24	P35	P42	P2	N2	245
I/O	-	P25	P36	P43	R1	N3	248
I/O	-	P26	P37	P44	P3	N4	251
GND	-	P27	P38	P45	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P46	T1	P1	254
I/O	-	-	P39	P47	R3	P2	257
I/O	-	-	P40	P48	T2	P3	260
I/O	-	-	P41	P49	U1	P4	263
I/O	-	_	P42	P50	T3	P5	266
I/O	-	_	P43	P51	U2	R1	269

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	-	P124	P144	M20	L19	493 ⁽³⁾
I/O	-	-	P125	P145	L19	L18	496 ⁽³⁾
I/O	P59	P86	P126	P146	L18	L17	499 (3)
I/O	P60	P87	P127	P147	L20	L16	502 ⁽³⁾
I/O (D4 ⁽²⁾)	P61	P88	P128	P148	K20	K19	505 ⁽³⁾
I/O	P62	P89	P129	P149	K19	K18	508 ⁽³⁾
VCC	P63	P90	P130	P150	VCC ⁽⁴⁾	K17	-
GND	P64	P91	P131	P151	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O (D3 ⁽²⁾)	P65	P92	P132	P152	K18	K16	511 ⁽³⁾
I/O	P66	P93	P133	P153	K17	K15	514 ⁽³⁾
I/O	P67	P94	P134	P154	J20	J19	517 ⁽³⁾
I/O	-	P95	P135	P155	J19	J18	520 ⁽³⁾
I/O	-	-	P136	P156	J18	J17	523 ⁽³⁾
I/O	-	-	P137	P157	J17	J16	526 ⁽³⁾
I/O (D2 ⁽²⁾)	P68	P96	P138	P159	H19	H17	529 ⁽³⁾
I/O	P69	P97	P139	P160	H18	H16	532 ⁽³⁾
VCC	-	-	P140	P161	VCC ⁽⁴⁾	G19	-
I/O	-	P98	P141	P162	G19	G18	535 ⁽³⁾
I/O	-	P99	P142	P163	F20	G17	538 ⁽³⁾
I/O	-	-	-	P164	G18	G16	541 ⁽³⁾
I/O	-	-	-	P165	F19	F19	544 ⁽³⁾
GND	-	P100	P143	P166	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P167	F18	F18	547 ⁽³⁾
I/O	-	-	P144	P168	E19	F17	550 ⁽³⁾
I/O	-	-	P145	P169	D20	F16	553 ⁽³⁾
I/O	-	-	P146	P170	E18	F15	556 ⁽³⁾
I/O	-	-	P147	P171	D19	E19	559 ⁽³⁾
I/O	-	-	P148	P172	C20	E17	562 ⁽³⁾
I/O (D1 ⁽²⁾)	P70	P101	P149	P173	E17	E16	565 ⁽³⁾
I/O	P71	P102	P150	P174	D18	D19	568 ⁽³⁾
I/O	-	P103	P151	P175	C19	C19	571 ⁽³⁾
I/O	-	P104	P152	P176	B20	B19	574 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P72	P105	P153	P177	C18	C18	577 ⁽³⁾
/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P73	P106	P154	P178	B19	B18	580 ⁽³⁾
CCLK	P74	P107	P155	P179	A20	A19	-
VCC	P75	P108	P156	P180	VCC ⁽⁴⁾	C17	-
O, TDO	P76	P109	P157	P181	A19	B17	0
GND	P77	P110	P158	P182	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P78	P111	P159	P183	B18	A18	2
/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P79	P112	P160	P184	B17	A17	5
I/O	-	P113	P161	P185	C17	D16	8
I/O	-	P114	P162	P186	D16	C16	11
I/O (CS1) ⁽²⁾	P80	P115	P163	P187	A18	B16	14
I/O	P81	P116	P164	P188	A17	A16	17
I/O	-	-	P165	P189	C16	D15	20

XCS40 and XCS40XL Device Pinouts

XCS40/XL **Bndry** CS280^(2,5) **Pad Name PQ208 PQ240 BG256** Scan GND GND⁽⁴⁾ GND⁽⁴⁾ P25 P29 VCC P26 P30 VCC⁽⁴⁾ VCC⁽⁴⁾ I/O P31 P27 L2 **K**3 254 I/O P28 P32 L3 K4 257 I/O P33 K5 P29 L4 260 I/O P30 P34 M1 L1 263 I/O P31 P35 M2 L2 266 I/O P32 P36 МЗ L3 269 I/O M4 L4 272 -I/O М1 275 I/O P38 N1 M2 278 I/O P39 N2 МЗ 281 VCC⁽⁴⁾ VCC⁽⁴⁾ VCC P33 P40 I/O P34 P41 Р1 N₁ 284 I/O P35 P42 P2 N2 287 I/O P36 P43 R1 N3 290 I/O P37 P44 Р3 N4 293 **GND** P38 P45 GND⁽⁴⁾ GND⁽⁴⁾ I/O P46 T1 P1 296 I/O P39 P47 R3 P2 299 I/O P40 P48 T2 Р3 302 I/O P41 P49 U1 P4 305 I/O P42 P50 T3 P5 308 I/O P43 P51 U2 R1 311 I/O R2 314 I/O R4 317 --I/O P44 P52 V1 T1 320 I/O P45 P53 T4 T2 323 P46 I/O U3 P54 Т3 326 I/O P47 P55 V2 U1 329 I/O P48 P56 W1 V1 332 I/O, P49 P57 V3 U2 335 SGCK2⁽¹⁾. GCK2 (2) Not P50 P58 W2 V2 338 Connected⁽¹⁾ $M1^{(2)}$ GND GND⁽⁴⁾ GND⁽⁴⁾ P51 P59 $MODE^{(1)}$. P52 P60 Υ1 W1 341 $M0^{(2)}$ VCC P53 P61 VCC(4) VCC⁽⁴⁾ 342(1) Not P54 P62 W3 V3 Connected⁽¹⁾ PWRDWN⁽²⁾ 343 (3) I/O, P55 P63 Y2 W2 PGCK2(1), GCK3⁽²⁾

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
I/O (HDC)	P56	P64	W4	W3	346 ⁽³⁾
I/O	P57	P65	V4	T4	349 ⁽³⁾
I/O	P58	P66	U5	U4	352 ⁽³⁾
I/O	P59	P67	Y3	V4	355 ⁽³⁾
I/O (LDC)	P60	P68	Y4	W4	358 ⁽³⁾
I/O	-	-	-	R5	361 ⁽³⁾
I/O	-	-	-	U5	364 ⁽³⁾
I/O	P61	P69	V5	T5	367 ⁽³⁾
I/O	P62	P70	W5	W5	370 ⁽³⁾
I/O	P63	P71	Y5	R6	373 ⁽³⁾
I/O	P64	P72	V6	U6	376 ⁽³⁾
I/O	P65	P73	W6	V6	379 ⁽³⁾
I/O	-	P74	Y6	T6	382 (3)
GND	P66	P75	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P67	P76	W7	W6	385 (3)
I/O	P68	P77	Y7	U7	388 (3)
I/O	P69	P78	V8	V7	391 ⁽³⁾
I/O	P70	P79	W8	W7	394 ⁽³⁾
VCC	P71	P80	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	P72	P81	Y8	W8	397 ⁽³⁾
I/O	P73	P82	U9	U8	400 (3)
I/O	-	-	V9	V8	403 ⁽³⁾
I/O	-	-	W9	T8	406 ⁽³⁾
I/O	-	P84	Y9	W9	409 (3)
I/O	-	P85	W10	V9	412 ⁽³⁾
I/O	P74	P86	V10	U9	415 ⁽³⁾
I/O	P75	P87	Y10	Т9	418 ⁽³⁾
I/O	P76	P88	Y11	W10	421 ⁽³⁾
I/O (INIT)	P77	P89	W11	V10	424 ⁽³⁾
VCC	P78	P90	VCC ⁽⁴⁾	VCC ⁽⁴⁾	VCC ⁽⁴⁾
GND	P79	P91	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P80	P92	V11	T10	427 ⁽³⁾
I/O	P81	P93	U11	R10	430 ⁽³⁾
I/O	P82	P94	Y12	W11	433 ⁽³⁾
I/O	P83	P95	W12	V11	436 ⁽³⁾
I/O	P84	P96	V12	U11	439 ⁽³⁾
I/O	P85	P97	U12	T11	442 ⁽³⁾
I/O	-	-	Y13	W12	445 ⁽³⁾
I/O	-	-	W13	V12	448 (3)
I/O	-	P99	V13	U12	451 ⁽³⁾
I/O	-	P100	Y14	T12	454 ⁽³⁾
VCC	P86	P101	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	P87	P102	Y15	V13	457 ⁽³⁾
I/O	P88	P103	V14	U13	460 ⁽³⁾
I/O	P89	P104	W15	T13	463 ⁽³⁾

Revision History

The following table shows the revision history for this document.

Date	Version	Description
11/20/98	1.3	Added Spartan-XL specs and Power Down.
01/06/99	1.4	All Spartan-XL -4 specs designated Preliminary with no changes.
03/02/00	1.5	Added CS package, updated Spartan-XL specs to Final.
09/19/01	1.6	Reformatted, updated power specs, clarified configuration information. Removed T_{SOL} soldering information from Absolute Maximum Ratings table. Changed Figure 26: Slave Serial Mode Characteristics: T_{CCH} , T_{CCL} from 45 to 40 ns. Changed Master Mode Configuration Switching Characteristics: T_{CCLK} min. from 80 to 100 ns. Added Total Dist. RAM Bits to Table 1; added Start-Up, page 36 characteristics.
06/27/02	1.7	Clarified Express Mode pseudo daisy chain. Added new Industrial options. Clarified XCS30XL CS280 V _{CC} pinout.
06/26/08	1.8	Noted that PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, are discontinued by PDN2004-01. Extended description of recommended maximum delay of reconfiguration in Delaying Configuration After Power-Up, page 35. Added reference to Pb-free package options and provided link to Package Specifications, page 81. Updated links.
03/01/13	2.0	The products listed in this data sheet are obsolete. See XCN11010 for further information.