Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 196 | | Number of Logic Elements/Cells | 466 | | Total RAM Bits | 6272 | | Number of I/O | 112 | | Number of Gates | 10000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs10-4tq144c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Spartan and Spartan-XL devices provide system clock rates exceeding 80 MHz and internal performance in excess of 150 MHz. In addition to the conventional benefit of high volume programmable logic solutions, Spartan series FPGAs also offer on-chip edge-triggered single-port and dual-port RAM, clock enables on all flip-flops, fast carry logic, and many other features. The Spartan/XL families leverage the highly successful XC4000 architecture with many of that family's features and benefits. Technology advancements have been derived from the XC4000XLA process developments. ## **Logic Functional Description** The Spartan series uses a standard FPGA structure as shown in Figure 1, page 2. The FPGA consists of an array of configurable logic blocks (CLBs) placed in a matrix of routing channels. The input and output of signals is achieved through a set of input/output blocks (IOBs) forming a ring around the CLBs and routing channels. - CLBs provide the functional elements for implementing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. - Routing channels provide paths to interconnect the inputs and outputs of the CLBs and IOBs. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. ## **Configurable Logic Blocks (CLBs)** The CLBs are used to implement most of the logic in an FPGA. The principal CLB elements are shown in the simplified block diagram in Figure 2. There are three look-up tables (LUT) which are used as logic function generators, two flip-flops and two groups of signal steering multiplexers. There are also some more advanced features provided by the CLB which will be covered in the **Advanced Features Description**, page 13. #### **Function Generators** Two 16 x 1 memory look-up tables (F-LUT and G-LUT) are used to implement 4-input function generators, each offering unrestricted logic implementation of any Boolean function of up to four independent input signals (F1 to F4 or G1 to G4). Using memory look-up tables the propagation delay is independent of the function implemented. A third 3-input function generator (H-LUT) can implement any Boolean function of its three inputs. Two of these inputs are controlled by programmable multiplexers (see box "A" of Figure 2). These inputs can come from the F-LUT or G-LUT outputs or from CLB inputs. The third input always comes from a CLB input. The CLB can, therefore, implement certain functions of up to nine inputs, like parity checking. The three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of five inputs. Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown) A CLB can implement any of the following functions: Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables **Note:** When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. - Any single function of five variables - Any function of four variables together with some functions of six variables - · Some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ## Flip-Flops Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay. The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20. ## Latches (Spartan-XL Family Only) The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2. Figure 4: CLB Control Signal Interface The four internal control signals are: - EC: Enable Clock - SR: Asynchronous Set/Reset or H function generator Input 0 - DIN: Direct In or H function generator Input 2 - H1: H function generator Input 1. ## Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 6 shows a simplified functional block diagram of the Spartan/XL FPGA IOB. Figure 5: IOB Flip-Flop/Latch Functional Block Diagram ## IOB Input Signal Path The input signal to the IOB can be configured to either go directly to the routing channels (via I1 and I2 in Figure 6) or to the input register. The input register can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The functionality of this register is shown in Table 3, and a simplified block diagram of the register can be seen in Figure 5. Table 3: Input Register Functionality | Mode | CK | EC | D | Q | |--------------------|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Х | 0 | Х | Q | #### Legend: | X | Don't care. | |----|--| | ^ | | | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | DS060_10_081100 Figure 10: Programmable Switch Matrix ## **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. ## Longlines 12 Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19. ## I/O Routing Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines. #### **Global Nets and Buffers** The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect. Figure 16: Fast Carry Logic in Spartan/XL CLB Figure 17: Detail of Spartan/XL Dedicated Carry Logic ## **3-State Long Line Drivers** A pair of 3-state buffers is associated with each CLB in the array. These 3-state buffers (BUFT) can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal long-lines, saving logic resources. There is a weak keeper at each end of these two horizontal longlines. This circuit prevents undefined floating levels. However, it is overridden by any driver. The buffer enable is an active High 3-state (i.e., an active Low enable), as shown in Table 11. ## Three-State Buffer Example Figure 18 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active High 3-state (T) is identical to an active Low output enable, as shown in Table 11. Table 11: Three-State Buffer Functionality | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 18: 3-state Buffers Implement a Multiplexer Table 12: Boundary Scan Instructions | Ins | structi | on | Test | TDO | I/O Data | |-----|---------|----|--------------------------------|--------------------|------------| | 12 | l1 | 10 | Selected | Source | Source | | 0 | 0 | 0 | EXTEST | DR | DR | | 0 | 0 | 1 | SAMPLE/
PRELOAD | DR | Pin/Logic | | 0 | 1 | 0 | USER 1 | BSCAN.
TDO1 | User Logic | | 0 | 1 | 1 | USER 2 | BSCAN.
TDO2 | User Logic | | 1 | 0 | 0 | READBACK | Readback
Data | Pin/Logic | | 1 | 0 | 1 | CONFIGURE | DOUT | Disabled | | 1 | 1 | 0 | IDCODE
(Spartan-XL
only) | IDCODE
Register | - | | 1 | 1 | 1 | BYPASS | Bypass
Register | - | #### Bit Sequence The bit sequence within each IOB is: In, Out, 3-state. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in the FPGA Editor), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 21. The device-specific pinout tables for the Spartan/XL devices include the boundary scan locations for each IOB pin. DS060 21 080400 Figure 21: Boundary Scan Bit Sequence BSDL (Boundary Scan Description Language) files for Spartan/XL devices are available on the Xilinx website in the File Download area. Note that the 5V Spartan devices and 3V Spartan-XL devices have different BSDL files. ## Including Boundary Scan in a Design If boundary scan is only to be used during configuration, no special elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 22. Figure 22: Boundary Scan Example figuration are shown in Table 14 and Table 15. Table 14: Pin Functions During Configuration (Spartan Family Only) | Configuration Mo | ode (MODE Pin) | | |------------------------|------------------------|-------------------| | Slave Serial
(High) | Master Serial
(Low) | User
Operation | | MODE (I) | MODE (I) | MODE | | HDC (High) | HDC (High) | I/O | | LDC (Low) | LDC (Low) | I/O | | ĪNIT | ĪNIT | I/O | | DONE | DONE | DONE | | PROGRAM (I) | PROGRAM (I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | | DIN (I) | DIN (I) | I/O | | DOUT | DOUT | SGCK4-I/O | | TDI | TDI | TDI-I/O | | TCK | TCK | TCK-I/O | | TMS | TMS | TMS-I/O | | TDO | TDO | TDO-(O) | | | | ALL OTHERS | #### Notes: - A shaded table cell represents the internal pull-up used before and during configuration. - (I) represents an input; (O) represents an output. - INIT is an open-drain output during configuration. Table 15: Pin Functions During Configuration (Spartan-XL Family Only) | CONFIGURATION MODE <m1:m0></m1:m0> | | | | |------------------------------------|---------------------------|------------------|-------------------| | Slave
Serial
[1:1] | Master
Serial
[1:0] | Express
[0:X] | User
Operation | | M1 (High) (I) | M1 (High) (I) | M1(Low) (I) | M1 | | M0 (High) (I) | M0 (Low) (I) | M0 (I) | MO | | HDC (High) | HDC (High) | HDC (High) | I/O | | LDC (Low) | LDC (Low) | LDC (Low) | I/O | | ĪNIT | ĪNIT | ĪNIT | I/O | | DONE | DONE | DONE | DONE | | PROGRAM
(I) | PROGRAM
(I) | PROGRAM
(I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (I) | | | | DATA 7 (I) | I/O | | | | DATA 6 (I) | I/O | | | | DATA 5 (I) | I/O | | | | DATA 4 (I) | I/O | | | | DATA 3 (I) | I/O | | | | DATA 2 (I) | I/O | | | | DATA 1 (I) | I/O | | DIN (I) | DIN (I) | DATA 0 (I) | I/O | | DOUT | DOUT | DOUT | GCK6-I/O | | TDI | TDI | TDI | TDI-I/O | | TCK | TCK | TCK | TCK-I/O | | TMS | TMS | TMS | TMS-I/O | | TDO | TDO | TDO | TDO-(O) | | | | CS1 | I/O | | | | | ALL
OTHERS | #### Notes: - A shaded table cell represents the internal pull-up used before and during configuration. - (I) represents an input; (O) represents an output. INIT is an open-drain output during configuration. DS060_28_080400 | Symbol | | Description | Min | Max | Units | |------------------|------|------------------------|-----|-----|-------| | T _{IC} | | INIT (High) setup time | 5 | - | μs | | T _{DC} | - | D0-D7 setup time | 20 | - | ns | | T _{CD} | CCLK | D0-D7 hold time | 0 | - | ns | | T _{CCH} | COLK | CCLK High time | 45 | - | ns | | T _{CCL} | | CCLK Low time | 45 | - | ns | | F _{CC} | | CCLK Frequency | - | 10 | MHz | #### Notes: Figure 28: Express Mode Programming Switching Characteristics ## **Setting CCLK Frequency** In Master mode, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for Spartan/XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for Spartan/XL devices. The frequency is changed to fast by an option when running the bitstream generation software. ## **Data Stream Format** The data stream ("bitstream") format is identical for both serial configuration modes, but different for the Spartan-XL family Express mode. In Express mode, the device becomes active when DONE goes High, therefore no length count is required. Additionally, CRC error checking is not supported in Express mode. The data stream format is shown in Table 16. Bit-serial data is read from left to right. Express mode data is shown with D0 at the left and D7 at the right. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones (or 24 fill bits, in Spartan-XL family Express mode). This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 17). Each frame begins with a start field and ends with an error check. In serial modes, a postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional start-up bytes to shift the last data through the chain. All start-up bytes are "don't cares". If not driven by the preceding DOUT, CS1 must remain High until the device is fully configured. Table 16: Spartan/XL Data Stream Formats | Data Type | Serial Modes
(D0) | Express Mode
(D0-D7)
(Spartan-XL only) | |--------------------------------|------------------------|--| | Fill Byte | 11111111b | FFFFh | | Preamble Code | 0010b | 11110010b | | Length Count | COUNT[23:0] | COUNT[23:0] ⁽¹⁾ | | Fill Bits | 1111b | - | | Field Check
Code | - | 11010010b | | Start Field | 0b | 11111110b ⁽²⁾ | | Data Frame | DATA[n-1:0] | DATA[n-1:0] | | CRC or Constant
Field Check | xxxx (CRC)
or 0110b | 11010010b | | Extend Write
Cycle | - | FFD2FFFFFh | | Postamble | 01111111b | - | | Start-Up Bytes ⁽³⁾ | FFh | FFFFFFFFFF | ## Legend: | Unshaded | Once per bitstream | |----------|---------------------| | Light | Once per data frame | | Dark | Once per device | #### Notes: - 1. Not used by configuration logic. - 2. 111111111b for XCS40XL only. - 3. Development system may add more start-up bytes. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The Spartan-XL family Express mode only supports non-CRC error checking. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading before DONE goes High, and the pulling down of the $\overline{\text{INIT}}$ pin. In Master serial mode, CCLK continues to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling V_{CC} . # Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 16. If a frame data error is detected during the loading of the FPGA, the configuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the INIT pin Low and goes into a Wait state. DS060_39_082801 Figure 31: Start-up Timing ## **Configuration Through the Boundary Scan Pins** Spartan/XL devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input. - Wait for INIT to go High. - Sequence the boundary scan Test Access Port to the SHIFT-DR state. - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note, "Boundary Scan in FPGA Devices." This application note applies to Spartan and Spartan-XL devices. ## **Spartan Family Detailed Specifications** ## **Definition of Terms** In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows: **Advance:** Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values are subject to change. Use as estimates, not for production. Preliminary: Based on preliminary characterization. Further changes are not expected. Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final. Notwithstanding the definition of the above terms, all specifications are subject to change without notice. Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. ## Spartan Family Absolute Maximum Ratings(1) | Symbol | Description | Value | Units | | |------------------|--|------------------|------------------------------|----| | V _{CC} | Supply voltage relative to GND | -0.5 to +7.0 | V | | | V _{IN} | Input voltage relative to GND ^(2,3) | | -0.5 to V _{CC} +0.5 | V | | V _{TS} | Voltage applied to 3-state output ^(2,3) | | -0.5 to V _{CC} +0.5 | V | | T _{STG} | Storage temperature (ambient) | | -65 to +150 | °C | | T _J | Junction temperature | Plastic packages | +125 | °C | ### Notes: - Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability. - 2. Maximum DC overshoot (above V_{CC}) or undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve. - 3. Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to +7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA. - 4. For soldering guidelines, see the Package Information on the Xilinx website. ## **Spartan Family Recommended Operating Conditions** | Symbol | Description | Min | Max | Units | | |-----------------|---|-------------|------|----------|----------| | V _{CC} | Supply voltage relative to GND, T _J = 0°C to +85°C | Commercial | 4.75 | 5.25 | V | | | Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}^{(1)}$ | Industrial | 4.5 | 5.5 | V | | V _{IH} | High-level input voltage ⁽²⁾ | TTL inputs | 2.0 | V_{CC} | V | | | | CMOS inputs | 70% | 100% | V_{CC} | | V _{IL} | Low-level input voltage ⁽²⁾ | TTL inputs | 0 | 8.0 | V | | | | CMOS inputs | 0 | 20% | V_{CC} | | T _{IN} | Input signal transition time | 1 | - | 250 | ns | #### Notes: - At junction temperatures above those listed as Recommended Operating Conditions, all delay parameters increase by 0.35% per °C. - 2. Input and output measurement thresholds are: 1.5V for TTL and 2.5V for CMOS. # Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (continued) All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted. ## **Dual-Port RAM Synchronous (Edge-Triggered) Write Operation Characteristics** | | | | - | 4 | 1 | 3 | | |-------------------|---|---------------------|-----|-----|------|-----|-------| | Symbol | Dual Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Operation | | | | | | | | | T _{WCDS} | Address write cycle time (clock K period) | 16x1 | 8.0 | - | 11.6 | - | ns | | T _{WPDS} | Clock K pulse width (active edge) | 16x1 | 4.0 | - | 5.8 | - | ns | | T _{ASDS} | Address setup time before clock K | 16x1 | 1.5 | - | 2.1 | - | ns | | T _{AHDS} | Address hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{DSDS} | DIN setup time before clock K | 16x1 | 1.5 | - | 1.6 | - | ns | | T _{DHDS} | DIN hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WSDS} | WE setup time before clock K | 16x1 | 1.5 | - | 1.6 | - | ns | | T _{WHDS} | WE hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WODS} | Data valid after clock K | 16x1 | - | 6.5 | - | 7.0 | ns | #### Notes: ## Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Timing ^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing ## Spartan-XL Family Global Buffer Switching Characteristic Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | Spee | | | | |------------------|---|---------|------|-----|-------|--| | | | | -5 | -4 | | | | Symbol | Description | Device | Max | Max | Units | | | T _{GLS} | From pad through buffer, to any clock K | XCS05XL | 1.4 | 1.5 | ns | | | | | XCS10XL | 1.7 | 1.8 | ns | | | | | XCS20XL | 2.0 | 2.1 | ns | | | | | XCS30XL | 2.3 | 2.5 | ns | | | | | XCS40XL | 2.6 | 2.8 | ns | | ## Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (cont.) All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted. | | | | - | 5 | - | 4 | | |--------------------------------|---|------|-----|-----|-----|-----|-------| | Symbol | Dual Port RAM | Size | Min | Max | Min | Max | Units | | Write Operation ⁽¹⁾ | | | | | | | | | T _{WCDS} | Address write cycle time (clock K period) | 16x1 | 7.7 | - | 8.4 | - | ns | | T _{WPDS} | Clock K pulse width (active edge) | 16x1 | 3.1 | - | 3.6 | - | ns | | T _{ASDS} | Address setup time before clock K | 16x1 | 1.3 | - | 1.5 | - | ns | | T _{DSDS} | DIN setup time before clock K | 16x1 | 1.7 | - | 2.0 | - | ns | | T _{WSDS} | WE setup time before clock K | 16x1 | 1.4 | - | 1.6 | - | ns | | | All hold times after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WODS} | Data valid after clock K | 16x1 | - | 5.2 | - | 6.1 | ns | **Dual Port** #### Notes: **Single Port** ## Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Timing ## WCLK (K) T_{WHS} T_{WSS} WE $\mathsf{T}_{\mathsf{DHS}}$ T_{DSS} DATA IN T_{ASS} TAHS **ADDRESS** TILO T_{ILO} $\mathsf{T}_{\mathsf{WOS}}$ **DATA OUT** OLD NEW DS060_34_011300 ^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing ## **Spartan-XL Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | | Speed | Grade | | | | |--------------------|---|-------------|---------|-------|-------|------|-------|--| | | | | - | 5 | - | 4 | | | | Symbol | Description | Device | Min Max | | Min | Max | Units | | | Setup Tim | es | | | | | | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK) | All devices | 0.0 | - | 0.0 | - | ns | | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.0 | - | 1.2 | - | ns | | | T _{POCK} | Pad to Fast Capture Latch Enable (OK), no delay | All devices | 0.7 | - | 0.8 | - | ns | | | Hold Time | es | | | | • | | | | | | All Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | | Propagati | on Delays | | | | • | | | | | T _{PID} | Pad to I1, I2 | All devices | - | 0.9 | - | 1.1 | ns | | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.1 | - | 2.5 | ns | | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 1.0 | - | 1.1 | ns | | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 1.1 | - | 1.2 | ns | | | Delay Add | ler for Input with Full Delay Option | | | | • | | | | | T _{Delay} | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS05XL | 4.0 | - | 4.7 | - | ns | | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS10XL | 4.8 | - | 5.6 | - | ns | | | | | XCS20XL | 5.0 | - | 5.9 | - | ns | | | | | XCS30XL | 5.5 | - | 6.5 | - | ns | | | | | XCS40XL | 6.5 | - | 7.6 | - | ns | | | Global Se | t/Reset | " | | ı | 1 | ı | i. | | | T _{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | | T _{RRI} | Delay from GSR input to any Q | XCS05XL | - | 9.0 | - | 10.5 | ns | | | | | XCS10XL | - | 9.5 | - | 11.0 | ns | | | | | XCS20XL | - | 10.0 | - | 11.5 | ns | | | | | XCS30XL | - | 11.0 | - | 12.5 | ns | | | | | XCS40XL | - | 12.0 | - | 13.5 | ns | | #### Notes: - 1. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. Table 18: Pin Descriptions (Continued) | Pin Name | I/O
During
Config. | I/O After
Config. | Pin Description | |-------------------------------|--------------------------|-----------------------|---| | PWRDWN | I | I | PWRDWN is an active Low input that forces the FPGA into the Power Down state and reduces power consumption. When PWRDWN is Low, the FPGA disables all I/O and initializes all flip-flops. All inputs are interpreted as Low independent of their actual level. VCC must be maintained, and the configuration data is maintained. PWRDWN halts configuration if asserted before or during configuration, and re-starts configuration when removed. When PWRDWN returns High, the FPGA becomes operational by first enabling the inputs and flip-flops and then enabling the outputs. PWRDWN has a default internal pull-up resistor. | | User I/O Pins | ı | ave Special | Functions | | TDO | Ο | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. | | | | | To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | | TDI, TCK,
TMS | I | I/O
or I
(JTAG) | If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed. | | | | | If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. In this case, they must be called out by special library elements. To use these pins, place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used. | | HDC | 0 | I/O | High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin. | | LDC | 0 | I/O | Low During Configuration (\overline{LDC}) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, \overline{LDC} is a user-programmable I/O pin. | | ĪNIT | I/O | I/O | Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω to 10 k Ω external pull-up resistor is recommended. | | | | | As an active Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High. | | | | | During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, \overline{INIT} is a user-programmable I/O pin. | | PGCK1 -
PGCK4
(Spartan) | Weak
Pull-up | I or I/O | Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O. | | | | | The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol is automatically placed on one of these pins. | ## XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |----------------------|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | I/O | - | - | - | P190 | B16 | A15 | 23 | | I/O | - | P117 | P166 | P191 | A16 | E14 | 26 | | I/O | - | - | P167 | P192 | C15 | C14 | 29 | | I/O | - | - | P168 | P193 | B15 | B14 | 32 | | I/O | - | - | P169 | P194 | A15 | D14 | 35 | | GND | - | P118 | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P119 | P171 | P197 | B14 | A14 | 38 | | I/O | - | P120 | P172 | P198 | A14 | C13 | 41 | | I/O | - | - | - | P199 | C13 | B13 | 44 | | I/O | - | - | - | P200 | B13 | A13 | 47 | | VCC | - | - | P173 | P201 | VCC ⁽⁴⁾ | D13 | - | | I/O | P82 | P121 | P174 | P202 | C12 | B12 | 50 | | I/O | P83 | P122 | P175 | P203 | B12 | D12 | 53 | | I/O | - | - | P176 | P205 | A12 | A11 | 56 | | I/O | - | - | P177 | P206 | B11 | B11 | 59 | | I/O | P84 | P123 | P178 | P207 | C11 | C11 | 62 | | I/O | P85 | P124 | P179 | P208 | A11 | D11 | 65 | | I/O | P86 | P125 | P180 | P209 | A10 | A10 | 68 | | I/O | P87 | P126 | P181 | P210 | B10 | B10 | 71 | | GND | P88 | P127 | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | ## Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS30XL is not part of the Boundary Scan chain. For the XCS30XL, subtract 1 from all Boundary Scan numbers from GCK3 on (295 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - 5. CS280 package, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 ## Additional XCS30/XL Package Pins #### **PQ240** | GND Pins | | | | | | | | | | | |----------|--------------------|-----|-----|------|------|--|--|--|--|--| | P22 | P37 | P83 | P98 | P143 | P158 | | | | | | | P204 | P219 | - | - | - | - | | | | | | | | Not Connected Pins | | | | | | | | | | | P195 | - | - | - | - | - | | | | | | | 2/1 | 2/98 | | |-----|------|--| | | | | ## **BG256** | | VCC Pins | | | | | | | | | | | |-----|----------|-----|-----|-----|-----|--|--|--|--|--|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | | | | | | E20 | F1 | F4 | F17 | G4 | G17 | | | | | | | | K4 | L17 | P4 | P17 | P19 | R2 | | | | | | | | R4 | R17 | U6 | U7 | U10 | U14 | | | | | | | | U15 | V7 | W20 | - | - | - | | | | | | | | | GND Pins | | | | | | | | | | | |-----|----------|-----------|------------|-----|-----|--|--|--|--|--|--| | A1 | B7 | D4 | D8 | D13 | D17 | | | | | | | | G20 | H4 | H17 | N3 | N4 | N17 | | | | | | | | U4 | U8 | U13 | U17 | W14 | - | | | | | | | | | l | Not Conne | ected Pins | 3 | | | | | | | | | A7 | A13 | C8 | D12 | H20 | J3 | | | | | | | | J4 | M4 | M19 | V9 | W9 | W13 | | | | | | | | Y13 | - | - | - | - | - | | | | | | | 6/4/97 ## **CS280** | | VCC Pins | | | | | | | | | | | |----|----------|-----|-----|-----|-----|--|--|--|--|--|--| | A1 | A7 | C10 | C17 | D13 | G1 | | | | | | | | G1 | G19 | K2 | K17 | M4 | N16 | | | | | | | | T7 | U3 | U10 | U17 | W13 | - | | | | | | | | | GND Pins | | | | | | | | | | | ## XCS40 and XCS40XL Device Pinouts | XCS40/XL | | | | 00000(2 F) | Bndry | |---|-------|-------|--------------------|------------------------|-------| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | O, TDO | P157 | P181 | A19 | B17 | 0 | | GND | P158 | P182 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P159 | P183 | B18 | A18 | 2 | | I/O,
PGCK4 ⁽¹⁾ ,
GCK7 ⁽²⁾ | P160 | P184 | B17 | A17 | 5 | | I/O | P161 | P185 | C17 | D16 | 8 | | I/O | P162 | P186 | D16 | C16 | 11 | | I/O (CS1 ⁽²⁾) | P163 | P187 | A18 | B16 | 14 | | I/O | P164 | P188 | A17 | A16 | 17 | | I/O | - | - | - | E15 | 20 | | I/O | - | - | - | C15 | 23 | | I/O | P165 | P189 | C16 | D15 | 26 | | I/O | - | P190 | B16 | A15 | 29 | | I/O | P166 | P191 | A16 | E14 | 32 | | I/O | P167 | P192 | C15 | C14 | 35 | | I/O | P168 | P193 | B15 | B14 | 38 | | I/O | P169 | P194 | A15 | D14 | 41 | | GND | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P171 | P197 | B14 | A14 | 44 | | I/O | P172 | P198 | A14 | C13 | 47 | | I/O | - | P199 | C13 | B13 | 50 | | I/O | - | P200 | B13 | A13 | 53 | | VCC | P173 | P201 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | - | A13 | A12 | 56 | | I/O | - | - | D12 | C12 | 59 | | I/O | P174 | P202 | C12 | B12 | 62 | | I/O | P175 | P203 | B12 | D12 | 65 | | I/O | P176 | P205 | A12 | A11 | 68 | | I/O | P177 | P206 | B11 | B11 | 71 | | I/O | P178 | P207 | C11 | C11 | 74 | | I/O | P179 | P208 | A11 | D11 | 77 | | I/O | P180 | P209 | A10 | A10 | 80 | | I/O | P181 | P210 | B10 | B10 | 83 | | GND | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | 2/8/00 | | | | | | ## Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS40XL is not part of the Boundary Scan chain. For the XCS40XL, subtract 1 from all Boundary Scan numbers from GCK3 on (343 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - CS280 package discontinued by <u>PDN2004-01</u> ## Additional XCS40/XL Package Pins #### **PQ240** | | GND Pins | | | | | |--------------------|----------|-----|-----|------|------| | P22 | P37 | P83 | P98 | P143 | P158 | | P204 | P219 | - | - | - | - | | Not Connected Pins | | | | | | | P195 | - | - | - | - | - | 2/12/98 #### **BG256** | VCC Pins | | | | | | |----------|----------|-----|-----|-----|-----| | C14 | D6 | D7 | D11 | D14 | D15 | | E20 | F1 | F4 | F17 | G4 | G17 | | K4 | L17 | P4 | P17 | P19 | R2 | | R4 | R17 | U6 | U7 | U10 | U14 | | U15 | V7 | W20 | - | - | - | | | GND Pins | | | | | | A1 | B7 | D4 | D8 | D13 | D17 | | G20 | H4 | H17 | N3 | N4 | N17 | | U4 | U8 | U13 | U17 | W14 | - | 6/17/97 ## **CS280** | VCC Pins | | | | | | |----------|-----|-----|-----|-----|-----| | A1 | A7 | B5 | B15 | C10 | C17 | | D13 | E3 | E18 | G1 | G19 | K2 | | K17 | M4 | N16 | R3 | R18 | T7 | | U3 | U10 | U17 | V5 | V15 | W13 | | GND Pins | | | | | | | E5 | E7 | E8 | E9 | E11 | E12 | | E13 | G5 | G15 | H5 | H15 | J5 | | J15 | L5 | L15 | M5 | M15 | N5 | | N15 | R7 | R8 | R9 | R11 | R12 | | R13 | - | - | - | - | - | 5/19/99 ## **Revision History** The following table shows the revision history for this document. | Date | Version | Description | |----------|---------|---| | 11/20/98 | 1.3 | Added Spartan-XL specs and Power Down. | | 01/06/99 | 1.4 | All Spartan-XL -4 specs designated Preliminary with no changes. | | 03/02/00 | 1.5 | Added CS package, updated Spartan-XL specs to Final. | | 09/19/01 | 1.6 | Reformatted, updated power specs, clarified configuration information. Removed T_{SOL} soldering information from Absolute Maximum Ratings table. Changed Figure 26: Slave Serial Mode Characteristics: T_{CCH} , T_{CCL} from 45 to 40 ns. Changed Master Mode Configuration Switching Characteristics: T_{CCLK} min. from 80 to 100 ns. Added Total Dist. RAM Bits to Table 1; added Start-Up, page 36 characteristics. | | 06/27/02 | 1.7 | Clarified Express Mode pseudo daisy chain. Added new Industrial options. Clarified XCS30XL CS280 V _{CC} pinout. | | 06/26/08 | 1.8 | Noted that PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, are discontinued by PDN2004-01. Extended description of recommended maximum delay of reconfiguration in Delaying Configuration After Power-Up, page 35. Added reference to Pb-free package options and provided link to Package Specifications, page 81. Updated links. | | 03/01/13 | 2.0 | The products listed in this data sheet are obsolete. See XCN11010 for further information. |