Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 196 | | Number of Logic Elements/Cells | 466 | | Total RAM Bits | 6272 | | Number of I/O | 112 | | Number of Gates | 10000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-TFBGA, CSPBGA | | Supplier Device Package | 144-LCSBGA (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs10xl-5cs144c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### **General Overview** Spartan series FPGAs are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources (routing channels), and surrounded by a perimeter of programmable Input/Output Blocks (IOBs), as seen in Figure 1. They have generous routing resources to accommodate the most complex interconnect patterns. The devices are customized by loading configuration data into internal static memory cells. Re-programming is possible an unlimited number of times. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. The FPGA can either actively read its configuration data from an external serial PROM (Master Serial mode), or the configuration data can be written into the FPGA from an external device (Slave Serial mode). Spartan series FPGAs can be used where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 50,000 systems per month. ---- Figure 1: Basic FPGA Block Diagram Spartan and Spartan-XL devices provide system clock rates exceeding 80 MHz and internal performance in excess of 150 MHz. In addition to the conventional benefit of high volume programmable logic solutions, Spartan series FPGAs also offer on-chip edge-triggered single-port and dual-port RAM, clock enables on all flip-flops, fast carry logic, and many other features. The Spartan/XL families leverage the highly successful XC4000 architecture with many of that family's features and benefits. Technology advancements have been derived from the XC4000XLA process developments. # **Logic Functional Description** The Spartan series uses a standard FPGA structure as shown in Figure 1, page 2. The FPGA consists of an array of configurable logic blocks (CLBs) placed in a matrix of routing channels. The input and output of signals is achieved through a set of input/output blocks (IOBs) forming a ring around the CLBs and routing channels. - CLBs provide the functional elements for implementing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. - Routing channels provide paths to interconnect the inputs and outputs of the CLBs and IOBs. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. # **Configurable Logic Blocks (CLBs)** The CLBs are used to implement most of the logic in an FPGA. The principal CLB elements are shown in the simplified block diagram in Figure 2. There are three look-up tables (LUT) which are used as logic function generators, two flip-flops and two groups of signal steering multiplexers. There are also some more advanced features provided by the CLB which will be covered in the **Advanced Features Description**, page 13. #### **Function Generators** Two 16 x 1 memory look-up tables (F-LUT and G-LUT) are used to implement 4-input function generators, each offering unrestricted logic implementation of any Boolean function of up to four independent input signals (F1 to F4 or G1 to G4). Using memory look-up tables the propagation delay is independent of the function implemented. A third 3-input function generator (H-LUT) can implement any Boolean function of its three inputs. Two of these inputs are controlled by programmable multiplexers (see box "A" of Figure 2). These inputs can come from the F-LUT or G-LUT outputs or from CLB inputs. The third input always comes from a CLB input. The CLB can, therefore, implement certain functions of up to nine inputs, like parity checking. The three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of five inputs. This high value makes them unsuitable as wired-AND pull-up resistors. **Table 7:** Supported Destinations for Spartan/XL Outputs | | Spartan-XL
Outputs | | rtan
puts | |--|-----------------------|------------|---------------------| | Destination | 3.3V, CMOS | 5V,
TTL | 5V,
CMOS | | Any device,
V _{CC} = 3.3V,
CMOS-threshold
inputs | V | V | Some ⁽¹⁾ | | Any device,
V _{CC} = 5V,
TTL-threshold inputs | V | V | √ | | Any device,
V _{CC} = 5V,
CMOS-threshold
inputs | Unreliable
Data | | 1 | #### Notes: 1. Only if destination device has 5V tolerant inputs. After configuration, voltage levels of unused pads, bonded or unbonded, must be valid logic levels, to reduce noise sensitivity and avoid excess current. Therefore, by default, unused pads are configured with the internal pull-up resistor active. Alternatively, they can be individually configured with the pull-down resistor, or as a driven output, or to be driven by an external source. To activate the internal pull-up, attach the PULLUP library component to the net attached to the pad. To activate the internal pull-down, attach the PULL-DOWN library component to the net attached to the pad. #### Set/Reset As with the CLB registers, the GSR signal can be used to set or clear the input and output registers, depending on the value of the INIT attribute or property. The two flip-flops can be individually configured to set or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops (Figure 5). The choice of set or reset applies to both the initial state of the flip-flop and the response to the GSR pulse. #### **Independent Clocks** Separate clock signals are provided for the input (IK) and output (OK) flip-flops. The clock can be independently inverted for each flip-flop within the IOB, generating either falling-edge or rising-edge triggered flip-flops. The clock inputs for each IOB are independent. #### **Common Clock Enables** The input and output flip-flops in each IOB have a common clock enable input (see EC signal in Figure 5), which through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC signal on the Spartan/XL FPGA CLB. It cannot be inverted within the IOB. # **Routing Channel Description** All internal routing channels are composed of metal segments with programmable switching points and switching matrices to implement the desired routing. A structured, hierarchical matrix of routing channels is provided to achieve efficient automated routing. This section describes the routing channels available in Spartan/XL devices. Figure 8 shows a general block diagram of the CLB routing channels. The implementation software automatically assigns the appropriate resources based on the density and timing requirements of the design. The following description of the routing channels is for information only and is simplified with some minor details omitted. For an exact interconnect description the designer should open a design in the FPGA Editor and review the actual connections in this tool. The routing channels will be discussed as follows; - CLB routing channels which run along each row and column of the CLB array. - IOB routing channels which form a ring (called a VersaRing) around the outside of the CLB array. It connects the I/O with the CLB routing channels. - Global routing consists of dedicated networks primarily designed to distribute clocks throughout the device with minimum delay and skew. Global routing can also be used for other high-fanout signals. ### **CLB Routing Channels** The routing channels around the CLB are derived from three types of interconnects; single-length, double-length, and longlines. At the intersection of each vertical and horizontal routing channel is a signal steering matrix called a Programmable Switch Matrix (PSM). Figure 8 shows the basic routing channel configuration showing single-length lines, double-length lines and longlines as well as the CLBs and PSMs. The CLB to routing channel interface is shown as well as how the PSMs interface at the channel intersections. Figure 11: 5V Spartan Family Global Net Distribution The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB
inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility. The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets. Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code. # **Advanced Features Description** #### **Distributed RAM** Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM). Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA. ### **Memory Configuration Overview** There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB. Table 8: CLB Memory Configurations | Mode | 16 x 1 | (16 x 1) x 2 | 32 x 1 | |-------------|--------|--------------|--------| | Single-Port | √ | √ | V | | Dual-Port | √ | _ | _ | CLB signals from which they are originally derived are shown in Table 10. Table 10: Dual-Port RAM Signals | RAM Signal | Function | CLB Signal | |------------|--|------------------| | D | Data In | DIN | | A[3:0] | Read Address for
Single-Port. | F[4:1] | | | Write Address for
Single-Port and
Dual-Port. | | | DPRA[3:0] | Read Address for
Dual-Port | G[4:1] | | WE | Write Enable | SR | | WCLK | Clock | К | | SPO | Single Port Out (addressed by A[3:0]) | F _{OUT} | | DPO | Dual Port Out
(addressed by
DPRA[3:0]) | G _{OUT} | The RAM16X1D primitive used to instantiate the dual-port RAM consists of an upper and a lower 16 x 1 memory array. The address port labeled A[3:0] supplies both the read and write addresses for the lower memory array, which behaves the same as the 16 x 1 single-port RAM array described previously. Single Port Out (SPO) serves as the data output for the lower memory. Therefore, SPO reflects the data at address A[3:0]. The other address port, labeled DPRA[3:0] for Dual Port Read Address, supplies the read address for the upper memory. The write address for this memory, however, comes from the address A[3:0]. Dual Port Out (DPO) serves as the data output for the upper memory. Therefore, DPO reflects the data at address DPRA[3:0]. By using A[3:0] for the write address and DPRA[3:0] for the read address, and reading only the DPO output, a FIFO that can read and write simultaneously is easily generated. The simultaneous read/write capability possible with the dual-port RAM can provide twice the effective data throughput of a single-port RAM alternating read and write operations. The timing relationships for the dual-port RAM mode are shown in Figure 13. Note that write operations to RAM are synchronous (edge-triggered); however, data access is asynchronous. ### **Initializing RAM at FPGA Configuration** Both RAM and ROM implementations in the Spartan/XL families are initialized during device configuration. The initial contents are defined via an INIT attribute or property attached to the RAM or ROM symbol, as described in the library guide. If not defined, all RAM contents are initialized to zeros, by default. RAM initialization occurs only during device configuration. The RAM content is not affected by GSR. ### More Information on Using RAM Inside CLBs Three application notes are available from Xilinx that discuss synchronous (edge-triggered) RAM: "Xilinx Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in Xilinx RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both the Spartan and the Spartan-XL families. # **Fast Carry Logic** Each CLB F-LUT and G-LUT contains dedicated arithmetic logic for the fast generation of carry and borrow signals. This extra output is passed on to the function generator in the adjacent CLB. The carry chain is independent of normal routing resources. (See Figure 15.) Dedicated fast carry logic greatly increases the efficiency and performance of adders, subtractors, accumulators, comparators and counters. It also opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast enough or too inefficient. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications. The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. This fast carry logic is one of the more significant features of the Spartan Figure 15: Available Spartan/XL Carry Propagation Paths and Spartan-XL families, speeding up arithmetic and counting functions. The carry chain in 5V Spartan devices can run either up or down. At the top and bottom of the columns where there are no CLBs above and below, the carry is propagated to the right. The default is always to propagate up the column, as shown in the figures. The carry chain in Spartan-XL devices can only run up the column, providing even higher speed. Figure 16, page 18 shows a Spartan/XL FPGA CLB with dedicated fast carry logic. The carry logic shares operand and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums. Figure 17, page 19 shows the details of the Spartan/XL FPGA carry logic. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 16. The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols. Figure 16: Fast Carry Logic in Spartan/XL CLB figuration are shown in Table 14 and Table 15. Table 14: Pin Functions During Configuration (Spartan Family Only) | Configuration Mo | ode (MODE Pin) | | |------------------------|------------------------|-------------------| | Slave Serial
(High) | Master Serial
(Low) | User
Operation | | MODE (I) | MODE (I) | MODE | | HDC (High) | HDC (High) | I/O | | LDC (Low) | LDC (Low) | I/O | | ĪNIT | ĪNIT | I/O | | DONE | DONE | DONE | | PROGRAM (I) | PROGRAM (I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | | DIN (I) | DIN (I) | I/O | | DOUT | DOUT | SGCK4-I/O | | TDI | TDI | TDI-I/O | | TCK | TCK | TCK-I/O | | TMS | TMS | TMS-I/O | | TDO | TDO | TDO-(O) | | | | ALL OTHERS | ### Notes: - A shaded table cell represents the internal pull-up used before and during configuration. - (I) represents an input; (O) represents an output. - INIT is an open-drain output during configuration. Table 15: Pin Functions During Configuration (Spartan-XL Family Only) | CONFIGU | <m1:m0></m1:m0> | | | |--------------------------|---------------------------|------------------|-------------------| | Slave
Serial
[1:1] | Master
Serial
[1:0] | Express
[0:X] | User
Operation | | M1 (High) (I) | M1 (High) (I) | M1(Low) (I) | M1 | | M0 (High) (I) | M0 (Low) (I) | M0 (I) | MO | | HDC (High) | HDC (High) | HDC (High) | I/O | | LDC (Low) | LDC (Low) | LDC (Low) | I/O | | ĪNIT | ĪNIT | ĪNIT | I/O | | DONE | DONE | DONE | DONE | | PROGRAM
(I) | PROGRAM
(I) | PROGRAM
(I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (I) | | | | DATA 7 (I) | I/O | | | | DATA 6 (I) | I/O | | | | DATA 5 (I) | I/O | | | | DATA 4 (I) | I/O | | | | DATA 3 (I) | I/O | | | | DATA 2 (I) | I/O | | | | DATA 1 (I) | I/O | | DIN (I) | DIN (I) | DATA 0 (I) | I/O | | DOUT | DOUT | DOUT | GCK6-I/O | | TDI | TDI | TDI | TDI-I/O | | TCK | TCK | TCK | TCK-I/O | | TMS | TMS | TMS | TMS-I/O | | TDO | TDO | TDO | TDO-(O) | | | | CS1 | I/O | | | | | ALL
OTHERS | - A shaded table cell represents the internal pull-up used before and during configuration. - (I) represents an input; (O) represents an output. INIT is an open-drain output during configuration. Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. ## **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming
from a single source. The header data, including the length count, is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration. Note: Figure 25: Master/Slave Serial Mode Circuit Diagram DS060_25_061301 to wait after completing the configuration memory clear operation. When \overline{INIT} is no longer held Low externally, the device determines its configuration mode by capturing the state of the Mode pins, and is ready to start the configuration process. A master device waits up to an additional 300 μs to make sure that any slaves in the optional daisy chain have seen that \overline{INIT} is High. For more details on Configuration, refer to the Xilinx Application Note "FPGA Configuration Guidelines" (XAPP090). ### Start-Up Start-up is the transition from the configuration process to the intended user operation. This transition involves a change from one clock source to another, and a change from interfacing parallel or serial configuration data where most outputs are 3-stated, to normal operation with I/O pins active in the user system. Start-up must make sure that the user logic 'wakes up' gracefully, that the outputs become active without causing contention with the configuration signals, and that the internal flip-flops are released from the Global Set/Reset (GSR) at the right time. ### **Start-Up Initiation** Two conditions have to be met in order for the start-up sequence to begin: - The chip's internal memory must be full, and - The configuration length count must be met, exactly. In all configuration modes except Express mode, Spartan/XL devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration. In Express mode, there is no length count. The start-up sequence for each device begins when the device has received its quota of configuration data. Wiring the DONE pins of several devices together delays start-up of all devices until all are fully configured. #### **Start-Up Events** The device can be programmed to control three start-up events. - The release of the open-drain DONE output - The termination of the Global Three-State and the change of configuration-related pins to the user function, activating all IOBs. - The termination of the Global Set/Reset initialization of all CLB and IOB storage elements. Figure 31 describes start-up timing in detail. The three events — DONE going High, the internal GSR being de-activated, and the user I/O going active — can all occur in any arbitrary sequence. This relative timing is selected by options in the bitstream generation software. Heavy lines in Figure 31 show the default timing. The thin lines indicate all other possible timing options. The start-up logic must be clocked until the "F" (Finished) state is reached. The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. GSR is then released another clock period later to make sure that user operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 31, but the designer can modify it to meet particular requirements. ### Start-Up Clock Normally, the start-up sequence is controlled by the internal device oscillator (CCLK), which is asynchronous to the system clock. As a configuration option, they can be triggered by an on-chip user net called UCLK. This user net can be accessed by placing the STARTUP library symbol, and the start-up modes are known as UCLK_NOSYNC or UCLK_SYNC. This allows the device to wake up in synchronism with the user system. ### **DONE Pin** Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software. The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to the start-up control logic. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK_SYNC or UCLK_SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. Express mode configuration always uses either CCLK_SYNC or UCLK_SYNC timing, while the other configuration modes can use any of the four timing sequences. When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active. DS060_39_082801 Figure 31: Start-up Timing # **Configuration Through the Boundary Scan Pins** Spartan/XL devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input. - Wait for INIT to go High. - Sequence the boundary scan Test Access Port to the SHIFT-DR state. - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note, "Boundary Scan in FPGA Devices." This application note applies to Spartan and Spartan-XL devices. # **Spartan Family Detailed Specifications** ### **Definition of Terms** In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows: **Advance:** Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values are subject to change. Use as estimates, not for production. Preliminary: Based on preliminary characterization. Further changes are not expected. Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final. Notwithstanding the definition of the above terms, all specifications are subject to change without notice. Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. # Spartan Family Absolute Maximum Ratings(1) | Symbol | Description | Value | Units | | |------------------|--|----------------------------|------------------------------|----| | V _{CC} | Supply voltage relative to GND | | -0.5 to +7.0 | V | | V _{IN} | Input voltage relative to GND ^(2,3) | | -0.5 to V _{CC} +0.5 | V | | V _{TS} | Voltage applied to 3-state output ^(2,3) | | -0.5 to V _{CC} +0.5 | V | | T _{STG} | Storage temperature (ambient) | rage temperature (ambient) | | °C | | T _J | Junction temperature | Plastic packages | +125 | °C | ### Notes: - Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability. - 2. Maximum DC overshoot (above V_{CC}) or undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve. - 3. Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to +7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA. - 4. For soldering guidelines, see the Package Information on the Xilinx website. # **Spartan Family Recommended Operating Conditions** | Symbol | Description | | Min | Max | Units | |-----------------|---|-------------|------|----------|----------| | V _{CC} | Supply voltage relative to GND, T _J = 0°C to +85°C | Commercial | 4.75 | 5.25 | V | | | Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}^{(1)}$ | Industrial | 4.5 | 5.5 | V | | V _{IH} | High-level input voltage ⁽²⁾ | TTL inputs | 2.0 | V_{CC} | V | | | | CMOS inputs | 70% | 100% | V_{CC} | | V _{IL} | Low-level input voltage ⁽²⁾ | TTL inputs | 0 | 8.0 | V | | | | CMOS inputs | 0 | 20% | V_{CC} | | T _{IN} | Input signal transition time | 1 | - | 250 | ns | - At
junction temperatures above those listed as Recommended Operating Conditions, all delay parameters increase by 0.35% per °C. - 2. Input and output measurement thresholds are: 1.5V for TTL and 2.5V for CMOS. # **Spartan Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and expressed in nanoseconds unless otherwise noted. | | | Speed Grade | | | | | |--------------------|--|-------------|---------------------------|---------------|---------|-------| | | Decesiation - | - | 4 | - | 3 | Units | | Symbol | Description | Min | Max | Min | Max | | | Clocks | | | | | | | | T _{CH} | Clock High time | 3.0 | - | 4.0 | - | ns | | T_{CL} | Clock Low time | 3.0 | - | 4.0 | - | ns | | Combina | torial Delays | | 1 | 1 | 1 | 1 | | T _{ILO} | F/G inputs to X/Y outputs | - | 1.2 | - | 1.6 | ns | | T _{IHO} | F/G inputs via H to X/Y outputs | - | 2.0 | - | 2.7 | ns | | T _{HH1O} | C inputs via H1 via H to X/Y outputs | - | 1.7 | - | 2.2 | ns | | CLB Fast | Carry Logic | | 1 | | 1 | | | T _{OPCY} | Operand inputs (F1, F2, G1, G4) to C _{OUT} | - | 1.7 | - | 2.1 | ns | | T _{ASCY} | Add/Subtract input (F3) to C _{OUT} | - | 2.8 | - | 3.7 | ns | | T _{INCY} | Initialization inputs (F1, F3) to C _{OUT} | - | 1.2 | - | 1.4 | ns | | T _{SUM} | C _{IN} through function generators to X/Y outputs | - | 2.0 | - | 2.6 | ns | | T _{BYP} | C _{IN} to C _{OUT} , bypass function generators | - | 0.5 | - | 0.6 | ns | | Sequentia | al Delays | | | | | | | T _{CKO} | Clock K to Flip-Flop outputs Q | - | 2.1 | - | 2.8 | ns | | Setup Tin | ne before Clock K | | | | | | | T _{ICK} | F/G inputs | 1.8 | - | 2.4 | - | ns | | T _{IHCK} | F/G inputs via H | 2.9 | - | 3.9 | - | ns | | T _{HH1CK} | C inputs via H1 through H | 2.3 | - | 3.3 | - | ns | | T _{DICK} | C inputs via DIN | 1.3 | - | 2.0 | - | ns | | T _{ECCK} | C inputs via EC | 2.0 | - | 2.6 | - | ns | | T _{RCK} | C inputs via S/R, going Low (inactive) | 2.5 | - | 4.0 | - | ns | | Hold Time | e after Clock K | | 1 | | 1 | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | Set/Reset | Direct | | | | | | | T _{RPW} | Width (High) | 3.0 | - | 4.0 | - | ns | | T _{RIO} | Delay from C inputs via S/R, going High to Q | - | 3.0 | - | 4.0 | ns | | Global Se | et/Reset | | | | | | | T_{MRW} | Minimum GSR pulse width | 11.5 | - | 13.5 | - | ns | | T_{MRQ} | Delay from GSR input to any Q | See pa | ge 50 for T _{RI} | RI values per | device. | | | F _{TOG} | Toggle Frequency (MHz) (for export control purposes) | - | 166 | - | 125 | MHz | # Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (continued) All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted. # **Dual-Port RAM Synchronous (Edge-Triggered) Write Operation Characteristics** | | | | - | 4 | - | 3 | | |-------------------|---|---------------------|-----|-----|------|-----|-------| | Symbol | Dual Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Operati | ion | | | | | | | | T _{WCDS} | Address write cycle time (clock K period) | 16x1 | 8.0 | - | 11.6 | - | ns | | T _{WPDS} | Clock K pulse width (active edge) | 16x1 | 4.0 | - | 5.8 | - | ns | | T _{ASDS} | Address setup time before clock K | 16x1 | 1.5 | - | 2.1 | - | ns | | T _{AHDS} | Address hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{DSDS} | DIN setup time before clock K | 16x1 | 1.5 | - | 1.6 | - | ns | | T _{DHDS} | DIN hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WSDS} | WE setup time before clock K | 16x1 | 1.5 | - | 1.6 | - | ns | | T _{WHDS} | WE hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WODS} | Data valid after clock K | 16x1 | - | 6.5 | - | 7.0 | ns | #### Notes: # Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Timing ^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing ### **Spartan Family Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more pre- cise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. ### Spartan Family Output Flip-Flop, Clock-to-Out | | | | Speed | Grade | | |---------------------|---------------------------------------|-------------|-------|-------|-------| | | | | -4 | -3 | | | Symbol | Description | Device | Max | Max | Units | | Global Pri | mary Clock to TTL Output using OFF | | | ' | ' | | T _{ICKOF} | Fast | XCS05 | 5.3 | 8.7 | ns | | | | XCS10 | 5.7 | 9.1 | ns | | | | XCS20 | 6.1 | 9.3 | ns | | | | XCS30 | 6.5 | 9.4 | ns | | | | XCS40 | 6.8 | 10.2 | ns | | T _{ICKO} | Slew-rate limited | XCS05 | 9.0 | 11.5 | ns | | | | XCS10 | 9.4 | 12.0 | ns | | | | XCS20 | 9.8 | 12.2 | ns | | | | XCS30 | 10.2 | 12.8 | ns | | | | XCS40 | 10.5 | 12.8 | ns | | Global Sec | condary Clock to TTL Output using OFF | | | | | | T _{ICKSOF} | Fast | XCS05 | 5.8 | 9.2 | ns | | | | XCS10 | 6.2 | 9.6 | ns | | | | XCS20 | 6.6 | 9.8 | ns | | | | XCS30 | 7.0 | 9.9 | ns | | | | XCS40 | 7.3 | 10.7 | ns | | T _{ICKSO} | Slew-rate limited | XCS05 | 9.5 | 12.0 | ns | | | | XCS10 | 9.9 | 12.5 | ns | | | | XCS20 | 10.3 | 12.7 | ns | | | | XCS30 | 10.7 | 13.2 | ns | | | | XCS40 | 11.0 | 14.3 | ns | | Delay Add | er for CMOS Outputs Option | | | 1 | 1 | | T _{CMOSOF} | Fast | All devices | 0.8 | 1.0 | ns | | T_{CMOSO} | Slew-rate limited | All devices | 1.5 | 2.0 | ns | - Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 34. - 3. OFF = Output Flip-Flop ### Spartan-XL Family Global Buffer Switching Characteristic Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | Spee | | | |------------------|---|---------|------|-----|-------| | | | | -5 | -4 | | | Symbol | Description | Device | Max | Max | Units | | T _{GLS} | From pad through buffer, to any clock K | XCS05XL | 1.4 | 1.5 | ns | | | | XCS10XL | 1.7 | 1.8 | ns | | | | XCS20XL | 2.0 | 2.1 | ns | | | | XCS30XL | 2.3 | 2.5 | ns | | | | XCS40XL | 2.6 | 2.8 | ns | # Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted. | | | | Speed Grade | | | | | |-------------------|---|---------------------|-------------|-----|-----|-----|-------| | | | | • | -5 | - | -4 | | | Symbol | Single Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Ope | ration | | | | | • | | | T _{WCS} | Address write cycle time (clock K period) | 16x2 | 7.7 | - | 8.4 | - | ns | | T _{WCTS} | | 32x1 | 7.7 | - | 8.4 | - | ns | | T _{WPS} | Clock K pulse width (active edge) | 16x2 | 3.1 | - | 3.6 | - | ns | | T _{WPTS} | | 32x1 | 3.1 | - | 3.6 | - | ns | | T _{ASS} |
Address setup time before clock K | 16x2 | 1.3 | - | 1.5 | - | ns | | T _{ASTS} | | 32x1 | 1.5 | - | 1.7 | - | ns | | T _{DSS} | DIN setup time before clock K | 16x2 | 1.5 | - | 1.7 | - | ns | | T _{DSTS} | | 32x1 | 1.8 | - | 2.1 | - | ns | | T _{WSS} | WE setup time before clock K | 16x2 | 1.4 | - | 1.6 | - | ns | | T _{WSTS} | | 32x1 | 1.3 | - | 1.5 | - | ns | | | All hold times after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{WOS} | Data valid after clock K | 32x1 | - | 4.5 | - | 5.3 | ns | | T _{WOTS} | | 16x2 | - | 5.4 | - | 6.3 | ns | | Read Ope | ration | <u> </u> | | | | | | | T _{RC} | Address read cycle time | 16x2 | 2.6 | - | 3.1 | - | ns | | T _{RCT} | | 32x1 | 3.8 | - | 5.5 | - | ns | | T _{ILO} | Data Valid after address change (no Write | 16x2 | - | 1.0 | - | 1.1 | ns | | T _{IHO} | Enable) | 32x1 | - | 1.7 | - | 2.0 | ns | | T _{ICK} | Address setup time before clock K | 16x2 | 0.6 | - | 0.7 | - | ns | | T _{IHCK} | | 32x1 | 1.3 | - | 1.6 | - | ns | | Notes: | | • | | • | • | | | ### Notes: 56 ^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing. ### **Spartan-XL Family IOB Output Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted. | | | | Speed Grade | | | | | |--------------------|---|-------------|-------------|------|------|------|-------| | | | | -5 | | -4 | | | | Symbol | Description | Device | Min | Max | Min | Max | Units | | Propagation Delays | | | | | | | | | T _{OKPOF} | Clock (OK) to Pad, fast | All devices | - | 3.2 | - | 3.7 | ns | | T _{OPF} | Output (O) to Pad, fast | All devices | - | 2.5 | - | 2.9 | ns | | T _{TSHZ} | 3-state to Pad High-Z (slew-rate independent) | All devices | - | 2.8 | - | 3.3 | ns | | T _{TSONF} | 3-state to Pad active and valid, fast | All devices | - | 2.6 | - | 3.0 | ns | | T _{OFPF} | Output (O) to Pad via Output MUX, fast | All devices | - | 3.7 | - | 4.4 | ns | | T _{OKFPF} | Select (OK) to Pad via Output MUX, fast | All devices | - | 3.3 | - | 3.9 | ns | | T _{SLOW} | For Output SLOW option add | All devices | - | 1.5 | - | 1.7 | ns | | Setup and H | old Times | | , | | | | | | T _{OOK} | Output (O) to clock (OK) setup time | All devices | 0.5 | - | 0.5 | - | ns | | T _{OKO} | Output (O) to clock (OK) hold time | All devices | 0.0 | - | 0.0 | - | ns | | T _{ECOK} | Clock Enable (EC) to clock (OK) setup time | All devices | 0.0 | - | 0.0 | - | ns | | T _{OKEC} | Clock Enable (EC) to clock (OK) hold time | All devices | 0.1 | - | 0.2 | - | ns | | Global Set/R | eset | | | | | | | | T_{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | T _{RPO} | Delay from GSR input to any Pad | XCS05XL | - | 11.9 | - | 14.0 | ns | | | | XCS10XL | - | 12.4 | - | 14.5 | ns | | | | XCS20XL | - | 12.9 | - | 15.0 | ns | | | | XCS30XL | - | 13.9 | - | 16.0 | ns | | | | XCS40XL | - | 14.9 | - | 17.0 | ns | ^{1.} Output timing is measured at \sim 50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. ^{2.} Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. ### XCS05 and XCS05XL Device Pinouts | XCS05/XL | | | Bndry | |---|---------------------|-------|--------------------| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | Scan | | I/O | P70 | P71 | 238 ⁽³⁾ | | I/O (D0 ⁽²⁾ , DIN) | P71 | P72 | 241 ⁽³⁾ | | I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾
(DOUT) | P72 | P73 | 244 ⁽³⁾ | | CCLK | P73 | P74 | - | | VCC | P74 | P75 | - | | O, TDO | P75 | P76 | 0 | | GND | P76 | P77 | - | | I/O | P77 | P78 | 2 | | I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾ | P78 | P79 | 5 | | I/O (CS1 ⁽²⁾) | P79 | P80 | 8 | | I/O | P80 | P81 | 11 | | I/O | P81 | P82 | 14 | | I/O | P82 | P83 | 17 | | I/O | - | P84 | 20 | | I/O | - | P85 | 23 | | I/O | P83 | P86 | 26 | | I/O | P84 | P87 | 29 | | GND | P1 | P88 | - | ### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS05XL is not part of the Boundary Scan chain. For the XCS05XL, subtract 1 from all Boundary Scan numbers from GCK3 on (127 and higher). - 4. PC84 package discontinued by PDN2004-01 ### **XCS10 and XCS10XL Device Pinouts** | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | |----------------------|---------------------|-------|------------------------|-------|---------------| | VCC | P2 | P89 | D7 | P128 | - | | I/O | P3 | P90 | A6 | P129 | 44 | | I/O | P4 | P91 | В6 | P130 | 47 | | I/O | - | P92 | C6 | P131 | 50 | | I/O | - | P93 | D6 | P132 | 53 | | I/O | P5 | P94 | A5 | P133 | 56 | | I/O | P6 | P95 | B5 | P134 | 59 | | I/O | - | - | C5 | P135 | 62 | | I/O | - | - | D5 | P136 | 65 | | GND | - | - | A4 | P137 | - | | I/O | P7 | P96 | B4 | P138 | 68 | | I/O | P8 | P97 | C4 | P139 | 71 | | I/O | - | - | A3 | P140 | 74 | | I/O | - | - | В3 | P141 | 77 | | I/O | P9 | P98 | C3 | P142 | 80 | # **XCS10 and XCS10XL Device Pinouts** | ACS TO and | u AOOT | OAL DO | | uto | Dl | |--|---------------------|----------|------------------------|----------|---------------| | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | | I/O, | P10 | P99 | A2 | P143 | 83 | | SGCK1 ⁽¹⁾ | | | | | | | GCK8 ⁽²⁾ | | | | | | | VCC | P11 | P100 | B2 | P144 | - | | GND | P12 | P1 | A1 | P1 | - | | I/O, | P13 | P2 | B1 | P2 | 86 | | PGCK1 ⁽¹⁾ | | | | | | | GCK1 ⁽²⁾ | | | | | | | I/O | P14 | P3 | C2 | P3 | 89 | | I/O | - | - | C1 | P4 | 92 | | I/O | - | - | D4 | P5 | 95 | | I/O, TDI | P15 | P4 | D3 | P6 | 98 | | I/O, TCK | P16 | P5 | D2 | P7 | 101 | | GND | - | - | D1 | P8 | - | | I/O | - | - | E4 | P9 | 104 | | I/O | - | - | E3 | P10 | 107 | | I/O, TMS | P17 | P6 | E2 | P11 | 110 | | I/O | P18 | P7 | E1 | P12 | 113 | | I/O | - | - | F4 | P13 | 116 | | I/O | - | P8 | F3 | P14 | 119 | | I/O | P19 | P9 | F2 | P15 | 122 | | I/O | P20 | P10 | F1 | P16 | 125 | | GND | P21 | P11 | G2 | P17 | ı | | VCC | P22 | P12 | G1 | P18 | ı | | I/O | P23 | P13 | G3 | P19 | 128 | | I/O | P24 | P14 | G4 | P20 | 131 | | I/O | - | P15 | H1 | P21 | 134 | | I/O | - | - | H2 | P22 | 137 | | I/O | P25 | P16 | H3 | P23 | 140 | | I/O | P26 | P17 | H4 | P24 | 143 | | I/O | - | - | J1 | P25 | 146 | | I/O | - | - | J2 | P26 | 149 | | GND | - | - | J3 | P27 | - | | I/O | P27 | P18 | J4 | P28 | 152 | | I/O | - | P19 | K1 | P29 | 155 | | I/O | - | - | K2 | P30 | 158 | | I/O | - | - | K3 | P31 | 161 | | I/O | P28 | P20 | L1 | P32 | 164 | | I/O, | P29 | P21 | L2 | P33 | 167 | | SGCK2 ⁽¹⁾ | | | | | | | GCK2 ⁽²⁾ | | | | | | | Not | P30 | P22 | L3 | P34 | 170 | | Connect- | | | | | | | ed ⁽¹⁾ | | | | | | | M1 ⁽²⁾ | D.C. | D | | D | | | GND | P31 | P23 | M1 | P35 | - | | MODE ⁽¹⁾ ,
M0 ⁽²⁾ | P32 | P24 | M2 | P36 | 173 | | IVIU\-/ | | | | | | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |----------------------|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | I/O | - | P5 | P5 | P5 | D3 | C1 | 155 | | I/O, TDI | P4 | P6 | P6 | P6 | E4 | D4 | 158 | | I/O, TCK | P5 | P7 | P7 | P7 | C1 | D3 | 161 | | I/O | - | - | P8 | P8 | D1 | E2 | 164 | | I/O | - | - | P9 | P9 | E3 | E4 | 167 | | I/O | - | - | P10 | P10 | E2 | E1 | 170 | | I/O | - | - | P11 | P11 | E1 | F5 | 173 | | I/O | - | - | P12 | P12 | F3 | F3 | 176 | | I/O | - | - | - | P13 | F2 | F2 | 179 | | GND | - | P8 | P13 | P14 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P9 | P14 | P15 | G3 | F4 | 182 | | I/O | - | P10 | P15 | P16 | G2 | F1 | 185 | | I/O, TMS | P6 | P11 | P16 | P17 | G1 | G3 | 188 | | I/O | P7 | P12 | P17 | P18 | НЗ | G2 | 191 | | VCC | - | - | P18 | P19 | VCC ⁽⁴⁾ | G1 | - | | I/O | - | - | - | P20 | H2 | G4 | 194 | | I/O | - | - | - | P21 | H1 | H1 | 197 | | I/O | - | - | P19 | P23 | J2 | H4 | 200 | | I/O | - | - | P20 | P24 | J1 | J1 | 203 | | I/O | - | P13 | P21 | P25 | K2 | J2 | 206 | | I/O | P8 | P14 | P22 | P26 | КЗ | J3 | 209 | | I/O | P9 | P15 | P23 | P27 | K1 | J4 | 212 | | I/O | P10 | P16 | P24 | P28 | L1 | K1 | 215 | | GND | P11 | P17 | P25 | P29 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | VCC | P12 | P18 | P26 | P30 | VCC ⁽⁴⁾ | K2 | - | | I/O | P13 | P19 | P27 | P31 | L2 | K3 | 218 | | I/O | P14 | P20 | P28 | P32 | L3 | K4 | 221 | | I/O | P15 | P21 | P29 | P33 | L4 | K5 | 224 | | I/O | - | P22 | P30 | P34 | M1 | L1 | 227 | | I/O | - | - | P31 | P35 | M2 | L2 | 230 | | I/O | - | - | P32 | P36 | M3 | L3 | 233 | | I/O | - | - | - | P38 | N1 | M2 | 236 | | I/O | - | - | - | P39 | N2 | M3 | 239 | | VCC | - | - | P33 | P40 | VCC ⁽⁴⁾ | M4 | - | | I/O | P16 | P23 | P34 | P41 | P1 | N1 | 242 | | I/O | P17 | P24 | P35 | P42 | P2 | N2 | 245 | | I/O | - | P25 | P36 | P43 | R1 | N3 | 248 | | I/O | - | P26 | P37 | P44 | P3 | N4 | 251 | | GND | - | P27 | P38 | P45 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | - | P46 | T1 | P1 | 254 | | I/O | - | - | P39 | P47 | R3 | P2 | 257 | | I/O | - | - | P40 | P48 | T2 | P3 | 260 | | I/O | - | - | P41 | P49 | U1 | P4 | 263 | | I/O | - | - | P42 | P50 | T3 | P5 | 266 | | I/O | - | - | P43 |
P51 | U2 | R1 | 269 |