



Welcome to **E-XFL.COM** 

## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

## **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                             |
|--------------------------------|-------------------------------------------------------------|
| Product Status                 | Obsolete                                                    |
| Number of LABs/CLBs            | 196                                                         |
| Number of Logic Elements/Cells | 466                                                         |
| Total RAM Bits                 | 6272                                                        |
| Number of I/O                  | 112                                                         |
| Number of Gates                | 10000                                                       |
| Voltage - Supply               | 3V ~ 3.6V                                                   |
| Mounting Type                  | Surface Mount                                               |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                             |
| Package / Case                 | 144-LQFP                                                    |
| Supplier Device Package        | 144-TQFP (20x20)                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xcs10xl-5tq144c |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



| T-1-1- | Ο.  | $\Delta$ I D | Ot      |         | Functionality  |
|--------|-----|--------------|---------|---------|----------------|
| םוחבו  | ٠,٠ |              | STORAGE | FIDMONT | FIIDCTIONSIITV |
|        |     |              |         |         |                |

| Mode                      | СК | EC | SR | D | Q  |
|---------------------------|----|----|----|---|----|
| Power-Up or<br>GSR        | Х  | Х  | Х  | Х | SR |
| Flip-Flop                 | Х  | Х  | 1  | Х | SR |
| Operation                 |    | 1* | 0* | D | D  |
|                           | 0  | Х  | 0* | Х | Q  |
| Latch                     | 1  | 1* | 0* | Х | Q  |
| Operation<br>(Spartan-XL) | 0  | 1* | 0* | D | D  |
| Both                      | Х  | 0  | 0* | Х | Q  |

#### Legend:

| Χ  | Don't care                                   |
|----|----------------------------------------------|
|    | Rising edge (clock not inverted).            |
| SR | Set or Reset value. Reset is default.        |
| 0* | Input is Low or unconnected (default value)  |
| 1* | Input is High or unconnected (default value) |



Figure 3: CLB Flip-Flop Functional Block Diagram

#### **Clock Input**

Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB.

#### **Clock Enable**

The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device.

#### Set/Reset

The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB.

### CLB Signal Flow Control

In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y).

Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source.

Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT.

#### **Control Signals**

There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals.



The register choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are also available. The clock signal inverter is also shown in Figure 5 on the CK line.

The Spartan family IOB data input path has a one-tap delay element: either the delay is inserted (default), or it is not. The Spartan-XL family IOB data input path has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The added delay guarantees a zero hold time with respect to clocks routed through the global clock buffers. (See Global Nets and Buffers, page 12 for a description of the global clock buffers in the Spartan/XL families.) For a shorter input register setup time, with positive hold-time, attach a NODELAY attribute or property to the flip-flop. The output of the input register goes to the routing channels (via I1 and I2 in Figure 6). The I1 and I2 signals that exit the IOB can each carry either the direct or registered input signal.

The 5V Spartan family input buffers can be globally configured for either TTL (1.2V) or CMOS (VCC/2) thresholds,

using an option in the bitstream generation software. The Spartan family output levels are also configurable; the two global adjustments of input threshold and output level are independent. The inputs of Spartan devices can be driven by the outputs of any 3.3V device, if the Spartan family inputs are in TTL mode. Input and output thresholds are TTL on all configuration pins until the configuration has been loaded into the device and specifies how they are to be used. Spartan-XL family inputs are TTL compatible and 3.3V CMOS compatible.

Supported sources for Spartan/XL device inputs are shown in Table 4.

Spartan-XL family I/Os are fully 5V tolerant even though the  $V_{CC}$  is 3.3V. This allows 5V signals to directly connect to the Spartan-XL family inputs without damage, as shown in Table 4. In addition, the 3.3V  $V_{CC}$  can be applied before or after 5V signals are applied to the I/Os. This makes the Spartan-XL devices immune to power supply sequencing problems.

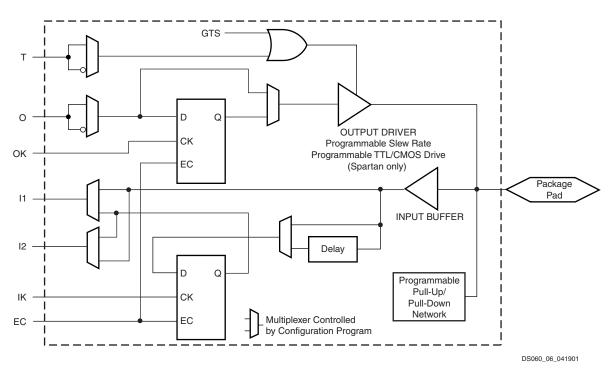



Figure 6: Simplified Spartan/XL IOB Block Diagram



# Output Multiplexer/2-Input Function Generator (Spartan-XL Family Only)

The output path in the Spartan-XL family IOB contains an additional multiplexer not available in the Spartan family IOB. The multiplexer can also be configured as a 2-input function generator, implementing a pass gate, AND gate, OR gate, or XOR gate, with 0, 1, or 2 inverted inputs.

When configured as a multiplexer, this feature allows two output signals to time-share the same output pad, effectively doubling the number of device outputs without requiring a larger, more expensive package. The select input is the pin used for the output flip-flop clock, OK.

When the multiplexer is configured as a 2-input function generator, logic can be implemented within the IOB itself. Combined with a Global buffer, this arrangement allows very high-speed gating of a single signal. For example, a wide decoder can be implemented in CLBs, and its output gated with a Read or Write Strobe driven by a global buffer.

The user can specify that the IOB function generator be used by placing special library symbols beginning with the letter "O." For example, a 2-input AND gate in the IOB function generator is called OAND2. Use the symbol input pin labeled "F" for the signal on the critical path. This signal is placed on the OK pin — the IOB input with the shortest delay to the function generator. Two examples are shown in Figure 7.



Figure 7: AND and MUX Symbols in Spartan-XL IOB

#### **Output Buffer**

An active High 3-state signal can be used to place the output buffer in a high-impedance state, implementing 3-state outputs or bidirectional I/O. Under configuration control, the output (O) and output 3-state (T) signals can be inverted. The polarity of these signals is independently configured for each IOB (see Figure 6, page 7). An output can be configured as open-drain (open-collector) by tying the 3-state pin (T) to the output signal, and the input pin (I) to Ground.

By default, a 5V Spartan device output buffer pull-up structure is configured as a TTL-like totem-pole. The High driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below  $V_{CC}.$  Alternatively, the outputs can be globally configured as CMOS drivers, with additional p-channel pull-up transistors pulling to  $V_{CC}.$  This option, applied using the bitstream generation software, applies to all outputs on the device. It is not individually programmable.

All Spartan-XL device outputs are configured as CMOS drivers, therefore driving rail-to-rail. The Spartan-XL family outputs are individually programmable for 12 mA or 24 mA output drive.

Any 5V Spartan device with its outputs configured in TTL mode can drive the inputs of any typical 3.3V device. Supported destinations for Spartan/XL device outputs are shown in Table 7.

#### Three-State Register (Spartan-XL Family Only)

Spartan-XL devices incorporate an optional register controlling the three-state enable in the IOBs. The use of the three-state control register can significantly improve output enable and disable time.

#### **Output Slew Rate**

The slew rate of each output buffer is, by default, reduced, to minimize power bus transients when switching non-critical signals. For critical signals, attach a FAST attribute or property to the output buffer or flip-flop.

Spartan/XL devices have a feature called "Soft Start-up," designed to reduce ground bounce when all outputs are turned on simultaneously at the end of configuration. When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. Immediately following the initial activation of the I/O, the slew rate of the individual outputs is determined by the individual configuration option for each IOB.

#### **Pull-up and Pull-down Network**

Programmable pull-up and pull-down resistors are used for tying unused pins to  $V_{CC}$  or Ground to minimize power consumption and reduce noise sensitivity. The configurable pull-up resistor is a p-channel transistor that pulls to  $V_{CC}$ . The configurable pull-down resistor is an n-channel transistor that pulls to Ground. The value of these resistors is typically 20 K $\Omega$  – 100 K $\Omega$  (See "Spartan Family DC Characteristics Over Operating Conditions" on page 43.).



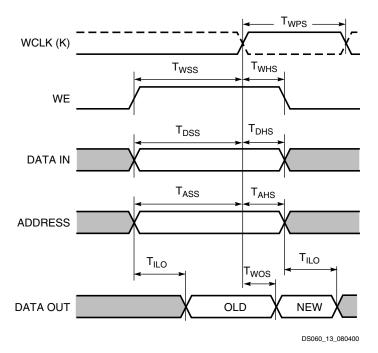



Figure 13: Data Write and Access Timing for RAM

WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be

inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM.

The WE input is active High and cannot be inverted within the CLB.

Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay  $T_{ILO}$ , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay  $T_{WOS}$ , the new data will appear on SPO.

## **Dual-Port Mode**

In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported.

The functional organization of the 16  $\times$  1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the

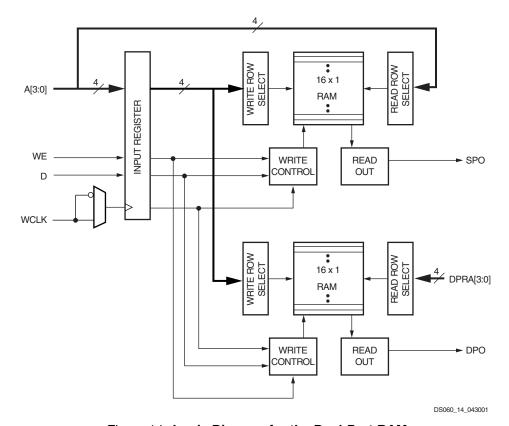



Figure 14: Logic Diagram for the Dual-Port RAM



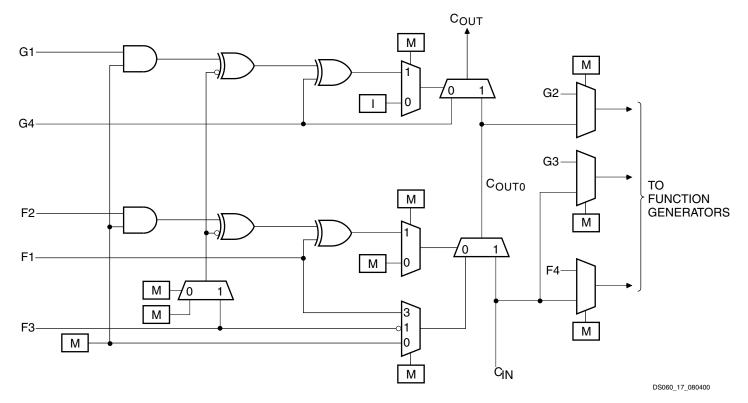



Figure 17: Detail of Spartan/XL Dedicated Carry Logic

## **3-State Long Line Drivers**

A pair of 3-state buffers is associated with each CLB in the array. These 3-state buffers (BUFT) can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal long-lines, saving logic resources.

There is a weak keeper at each end of these two horizontal longlines. This circuit prevents undefined floating levels. However, it is overridden by any driver.

The buffer enable is an active High 3-state (i.e., an active Low enable), as shown in Table 11.

## Three-State Buffer Example

Figure 18 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal.

Pay particular attention to the polarity of the T pin when using these buffers in a design. Active High 3-state (T) is identical to an active Low output enable, as shown in Table 11.

Table 11: Three-State Buffer Functionality

| IN | Т | OUT |
|----|---|-----|
| X  | 1 | Z   |
| IN | 0 | IN  |

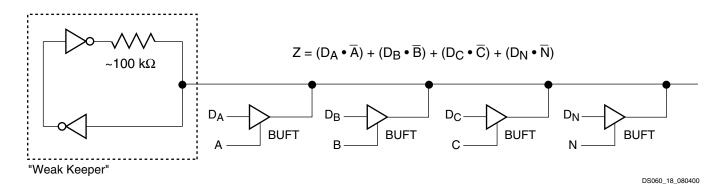



Figure 18: 3-state Buffers Implement a Multiplexer



## **On-Chip Oscillator**

Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with process,  $V_{\rm CC}$ , and temperature. The output frequency falls between 4 MHz and 10 MHz.

The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8-MHz clock, plus any two of 500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies can vary by as much as -50% or +25%.

These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code. The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design.

## Global Signals: GSR and GTS

#### Global Set/Reset

A separate Global Set/Reset line, as shown in Figure 3, page 5 for the CLB and Figure 5, page 6 for the IOB, sets or clears each flip-flop during power-up, reconfiguration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, if in reset mode, it is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 19.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the GSR signal. Alternatively, GSR can be driven from any internal node.

#### Global 3-State

A separate Global 3-state line (GTS) as shown in Figure 6, page 7 forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. GTS does not compete with other routing resources; it uses a dedicated distribution network.

GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. This is similar to what is shown in Figure 19 for GSR except the IBUF would be

connected to GTS. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-state signal. Alternatively, GTS can be driven from any internal node.

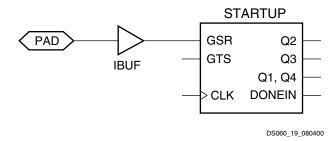



Figure 19: Symbols for Global Set/Reset

## **Boundary Scan**

The "bed of nails" has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can embed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan compatible device. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two.

The Spartan and Spartan-XL families implement IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section.

By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in the Spartan/XL devices.

The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note: "Boundary Scan in FPGA Devices."



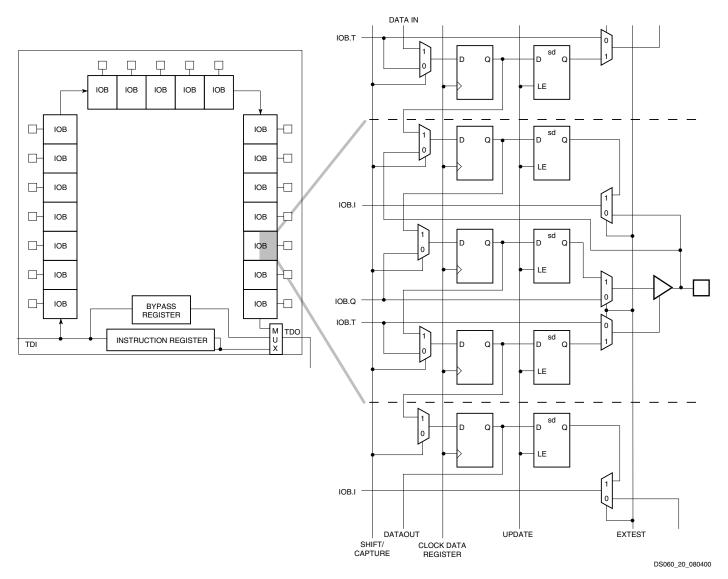



Figure 20: Spartan/XL Boundary Scan Logic



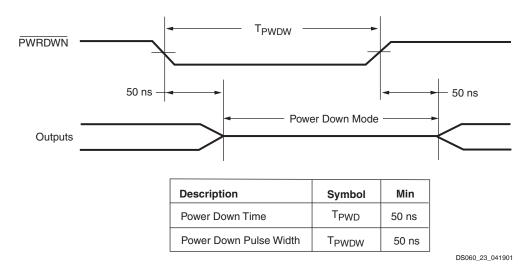



Figure 23: PWRDWN Pulse Timing

Power-down retains the configuration, but loses all data stored in the device flip-flops. All inputs are interpreted as Low, but the internal combinatorial logic is fully functional. Make sure that the combination of all inputs Low and all flip-flops set or reset in your design will not generate internal oscillations, or create permanent bus contention by activating internal bus drivers with conflicting data onto the same long line.

During configuration, the PWRDWN pin must be High. If the Power Down state is entered before or during configuration, the device will restart configuration once the PWRDWN signal is removed. Note that the configuration pins are affected by Power Down and may not reflect their normal function. If there is an external pull-up resistor on the DONE pin, it will be High during Power Down even if the device is not yet configured. Similarly, if PWRDWN is asserted before configuration is completed, the INIT pin will not indicate status information.

Note that the PWRDWN pin is not part of the Boundary Scan chain. Therefore, the Spartan-XL family has a separate set of BSDL files than the 5V Spartan family. Boundary scan logic is not usable during Power Down.

## **Configuration and Test**

Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. Spartan/XL devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell

that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The Xilinx development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format.

## **Configuration Mode Control**

5V Spartan devices have two configuration modes.

- MODE = 1 sets Slave Serial mode
- MODE = 0 sets Master Serial mode

3V Spartan-XL devices have three configuration modes.

- M1/M0 = 11 sets Slave Serial mode
- M1/M0 = 10 sets Master Serial mode
- M1/M0 = 0X sets Express mode

In addition to these modes, the device can be configured through the Boundary Scan logic (See "Configuration Through the Boundary Scan Pins" on page 37.).

The Mode pins are sampled prior to starting configuration to determine the configuration mode. After configuration, these pin are unused. The Mode pins have a weak pull-up resistor turned on during configuration. With the Mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the Mode pins can be left unconnected. If the Master Serial mode is desired, the MODE/M0 pin should be connected directly to GND, or through a pull-down resistor of 1 K $\Omega$  or less.

During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during con-



Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration.

Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously.

## **Serial Daisy Chain**

Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, is passed through

and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames.

After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received.

The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration.

Note:

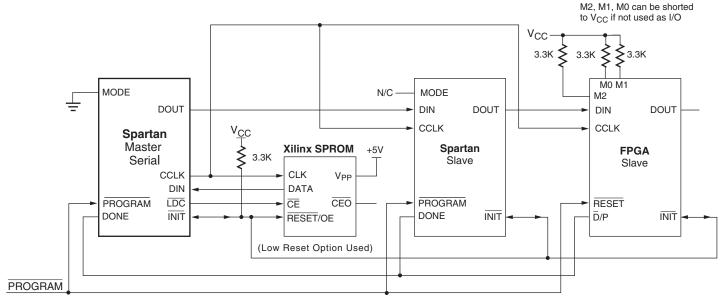
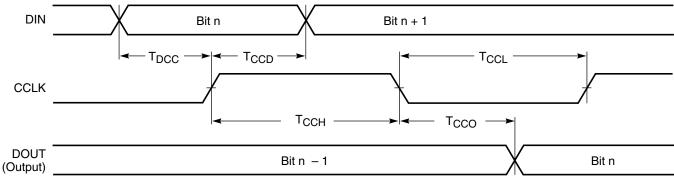




Figure 25: Master/Slave Serial Mode Circuit Diagram

DS060\_25\_061301





DS060 26 080400

| Symbol           |      | Description | Min | Max  | Units |
|------------------|------|-------------|-----|------|-------|
| T <sub>DCC</sub> |      | DIN setup   | 20  | -    | ns    |
| T <sub>CCD</sub> |      | DIN hold    | 0   | -    | ns    |
| T <sub>CCO</sub> | CCLK | DIN to DOUT | -   | 30   | ns    |
| T <sub>CCH</sub> | COLK | High time   | 40  | -    | ns    |
| T <sub>CCL</sub> |      | Low time    | 40  | -    | ns    |
| F <sub>CC</sub>  |      | Frequency   | -   | 12.5 | MHz   |

#### Notes:

Figure 26: Slave Serial Mode Programming Switching Characteristics

## **Express Mode (Spartan-XL Family Only)**

Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers (Figure 27). A CCLK frequency of 1 MHz is equivalent to a 8 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking. A length count is not used in Express mode.

Express mode must be specified as an option to the development system. The Express mode bitstream is not compatible with the other configuration modes (see Table 16, page 32.) Express mode is selected by a <0X> on the Mode pins (M1, M0).

The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge (Figure 28).

## Pseudo Daisy Chain

Multiple devices with different configurations can be configured in a pseudo daisy chain provided that all of the devices

are in Express mode. Concatenated bitstreams are used to configure the chain of Express mode devices so that each device receives a separate header. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. Frame data is accepted only when CS1 is High and the device's configuration memory is not already full. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pull-up). The status pin DOUT is pulled Low after the header is received, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the next header and configuration data on the D0-D7 bus.

The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using a development system option.

The requirement that all DONE pins in a daisy chain be wired together applies only to Express mode, and only if all devices in the chain are to become active simultaneously. All Spartan-XL devices in Express mode are synchronized

Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.



Table 16: Spartan/XL Data Stream Formats

| Data Type                      | Serial Modes<br>(D0)   | Express Mode<br>(D0-D7)<br>(Spartan-XL only) |
|--------------------------------|------------------------|----------------------------------------------|
| Fill Byte                      | 11111111b              | FFFFh                                        |
| Preamble Code                  | 0010b                  | 11110010b                                    |
| Length Count                   | COUNT[23:0]            | COUNT[23:0] <sup>(1)</sup>                   |
| Fill Bits                      | 1111b                  | -                                            |
| Field Check<br>Code            | -                      | 11010010b                                    |
| Start Field                    | 0b                     | 11111110b <sup>(2)</sup>                     |
| Data Frame                     | DATA[n-1:0]            | DATA[n-1:0]                                  |
| CRC or Constant<br>Field Check | xxxx (CRC)<br>or 0110b | 11010010b                                    |
| Extend Write<br>Cycle          | -                      | FFD2FFFFFh                                   |
| Postamble                      | 01111111b              | -                                            |
| Start-Up Bytes <sup>(3)</sup>  | FFh                    | FFFFFFFFFF                                   |

#### Legend:

| Unshaded | Once per bitstream  |
|----------|---------------------|
| Light    | Once per data frame |
| Dark     | Once per device     |

#### Notes:

- 1. Not used by configuration logic.
- 2. 11111111b for XCS40XL only.
- 3. Development system may add more start-up bytes.

A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The Spartan-XL family Express mode only supports non-CRC error checking. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data loading before DONE goes High, and the pulling down of the  $\overline{\text{INIT}}$  pin. In Master serial mode, CCLK continues to operate externally. The user must detect  $\overline{\text{INIT}}$  and initialize a new configuration by pulsing the  $\overline{\text{PROGRAM}}$  pin Low or cycling  $V_{CC}$ .

# Cyclic Redundancy Check (CRC) for Configuration and Readback

The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum.

Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 16. If a frame data error is detected during the loading of the FPGA, the configuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the INIT pin Low and goes into a Wait state.



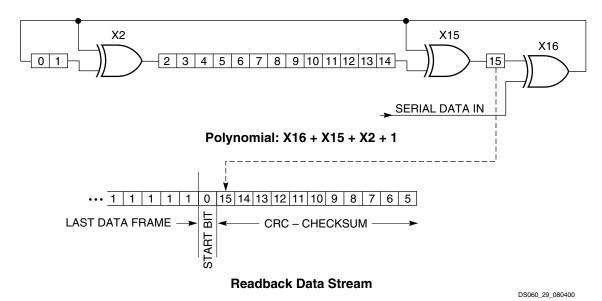



Figure 29: Circuit for Generating CRC-16

## **Configuration Sequence**

There are four major steps in the Spartan/XL FPGA power-up configuration sequence.

- · Configuration Memory Clear
- Initialization
- Configuration
- Start-up

The full process is illustrated in Figure 30.

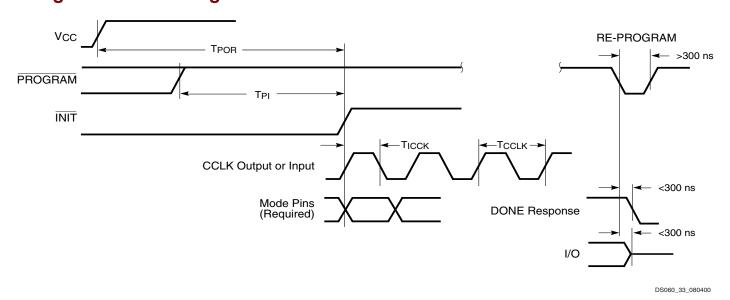
## Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When  $V_{CC}$  reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms. The delay is four times as long when in Master Serial Mode to allow ample time for all slaves to reach a stable  $V_{CC}$ . When all  $\overline{\text{INIT}}$  pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain.

This delay is applied only on power-up. It is not applied when reconfiguring an FPGA by pulsing the PROGRAM pin

Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator.

At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the  $\overline{PROGRAM}$  pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the  $\overline{INIT}$  input.


### Initialization

During initialization and configuration, user pins HDC,  $\overline{\text{LDC}}$ ,  $\overline{\text{INIT}}$  and DONE provide status outputs for the system interface. The outputs  $\overline{\text{LDC}}$ ,  $\overline{\text{INIT}}$  and DONE are held Low and HDC is held High starting at the initial application of power.

The open drain  $\overline{\text{INIT}}$  pin is released after the final initialization pass through the frame addresses. There is a deliberate delay before a Master-mode device recognizes an inactive  $\overline{\text{INIT}}$ . Two internal clocks after the  $\overline{\text{INIT}}$  pin is recognized as High, the device samples the MODE pin to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded.



## **Configuration Switching Characteristics**



## **Master Mode**

| Symbol            | Description                | Min | Max  | Units             |
|-------------------|----------------------------|-----|------|-------------------|
| T <sub>POR</sub>  | Power-on reset             | 40  | 130  | ms                |
| T <sub>PI</sub>   | Program Latency            | 30  | 200  | μs per CLB column |
| T <sub>ICCK</sub> | CCLK (output) delay        | 40  | 250  | μs                |
| T <sub>CCLK</sub> | CCLK (output) period, slow | 640 | 2000 | ns                |
| T <sub>CCLK</sub> | CCLK (output) period, fast | 100 | 250  | ns                |

## **Slave Mode**

| Symbol            | Description                    | Min | Max | Units             |
|-------------------|--------------------------------|-----|-----|-------------------|
| T <sub>POR</sub>  | Power-on reset                 | 10  | 33  | ms                |
| T <sub>Pl</sub>   | Program latency                | 30  | 200 | μs per CLB column |
| T <sub>ICCK</sub> | CCLK (input) delay (required)  | 4   | -   | μs                |
| T <sub>CCLK</sub> | CCLK (input) period (required) | 80  | -   | ns                |



## **Spartan Family DC Characteristics Over Operating Conditions**

| Symbol           | Description                                                                              |                     | Min                   | Max  | Units |
|------------------|------------------------------------------------------------------------------------------|---------------------|-----------------------|------|-------|
| V <sub>OH</sub>  | High-level output voltage @ I <sub>OH</sub> = -4.0 mA, V <sub>CC</sub> min               | TTL outputs         | 2.4                   | -    | V     |
|                  | High-level output voltage @ I <sub>OH</sub> = −1.0 mA, V <sub>CC</sub> min               | CMOS outputs        | V <sub>CC</sub> - 0.5 | -    | V     |
| V <sub>OL</sub>  | Low-level output voltage @ I <sub>OL</sub> = 12.0 mA, V <sub>CC</sub> min <sup>(1)</sup> | TTL outputs         | -                     | 0.4  | V     |
|                  |                                                                                          | CMOS outputs        | -                     | 0.4  | V     |
| $V_{DR}$         | Data retention supply voltage (below which configuratio                                  | n data may be lost) | 3.0                   | -    | V     |
| I <sub>cco</sub> | Quiescent FPGA supply current <sup>(2)</sup>                                             | Commercial          | -                     | 3.0  | mA    |
|                  |                                                                                          | Industrial          | -                     | 6.0  | mA    |
| IL               | Input or output leakage current                                                          |                     | -10                   | +10  | μΑ    |
| C <sub>IN</sub>  | Input capacitance (sample tested)                                                        |                     | -                     | 10   | pF    |
| I <sub>RPU</sub> | Pad pull-up (when selected) @ V <sub>IN</sub> = 0V (sample tested)                       |                     | 0.02                  | 0.25 | mA    |
| I <sub>RPD</sub> | Pad pull-down (when selected) @ V <sub>IN</sub> = 5V (sample tes                         | ted)                | 0.02                  | -    | mA    |

#### Notes:

- 1. With 50% of the outputs simultaneously sinking 12 mA, up to a maximum of 64 pins.
- With no output current loads, no active input pull-up resistors, all package pins at V<sub>CC</sub> or GND, and the FPGA configured with a Tie option.

## **Spartan Family Global Buffer Switching Characteristic Guidelines**

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For

more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

|                 |                                                   |        | Spee | d Grade |       |
|-----------------|---------------------------------------------------|--------|------|---------|-------|
|                 |                                                   |        | -4   | -3      |       |
| Symbol          | Description                                       | Device | Max  | Max     | Units |
| T <sub>PG</sub> | From pad through Primary buffer, to any clock K   | XCS05  | 2.0  | 4.0     | ns    |
|                 |                                                   | XCS10  | 2.4  | 4.3     | ns    |
|                 |                                                   | XCS20  | 2.8  | 5.4     | ns    |
|                 |                                                   | XCS30  | 3.2  | 5.8     | ns    |
|                 |                                                   | XCS40  | 3.5  | 6.4     | ns    |
| T <sub>SG</sub> | From pad through Secondary buffer, to any clock K | XCS05  | 2.5  | 4.4     | ns    |
|                 |                                                   | XCS10  | 2.9  | 4.7     | ns    |
|                 |                                                   | XCS20  | 3.3  | 5.8     | ns    |
|                 |                                                   | XCS30  | 3.6  | 6.2     | ns    |
|                 |                                                   | XCS40  | 3.9  | 6.7     | ns    |



## **Spartan Family Pin-to-Pin Output Parameter Guidelines**

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more pre-

cise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report.

## Spartan Family Output Flip-Flop, Clock-to-Out

|                     |                                       |             | Speed Grade |      |          |
|---------------------|---------------------------------------|-------------|-------------|------|----------|
|                     |                                       |             | -4          | -3   |          |
| Symbol              | Description                           | Device      | Max         | Max  | Units    |
| Global Pri          | mary Clock to TTL Output using OFF    |             |             | •    | <u>'</u> |
| T <sub>ICKOF</sub>  | Fast                                  | XCS05       | 5.3         | 8.7  | ns       |
|                     |                                       | XCS10       | 5.7         | 9.1  | ns       |
|                     |                                       | XCS20       | 6.1         | 9.3  | ns       |
|                     |                                       | XCS30       | 6.5         | 9.4  | ns       |
|                     |                                       | XCS40       | 6.8         | 10.2 | ns       |
| T <sub>ICKO</sub>   | Slew-rate limited                     | XCS05       | 9.0         | 11.5 | ns       |
|                     |                                       | XCS10       | 9.4         | 12.0 | ns       |
|                     |                                       | XCS20       | 9.8         | 12.2 | ns       |
|                     |                                       | XCS30       | 10.2        | 12.8 | ns       |
|                     |                                       | XCS40       | 10.5        | 12.8 | ns       |
| Global Sec          | condary Clock to TTL Output using OFF |             |             |      |          |
| T <sub>ICKSOF</sub> | Fast                                  | XCS05       | 5.8         | 9.2  | ns       |
|                     |                                       | XCS10       | 6.2         | 9.6  | ns       |
|                     |                                       | XCS20       | 6.6         | 9.8  | ns       |
|                     |                                       | XCS30       | 7.0         | 9.9  | ns       |
|                     |                                       | XCS40       | 7.3         | 10.7 | ns       |
| T <sub>ICKSO</sub>  | Slew-rate limited                     | XCS05       | 9.5         | 12.0 | ns       |
|                     |                                       | XCS10       | 9.9         | 12.5 | ns       |
|                     |                                       | XCS20       | 10.3        | 12.7 | ns       |
|                     |                                       | XCS30       | 10.7        | 13.2 | ns       |
|                     |                                       | XCS40       | 11.0        | 14.3 | ns       |
| Delay Add           | er for CMOS Outputs Option            |             |             | 1    | 1        |
| T <sub>CMOSOF</sub> | Fast                                  | All devices | 0.8         | 1.0  | ns       |
| $T_{CMOSO}$         | Slew-rate limited                     | All devices | 1.5         | 2.0  | ns       |

#### Notes:

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- Output timing is measured at ~50% V<sub>CC</sub> threshold with 50 pF external capacitive load. For different loads, see Figure 34.
- 3. OFF = Output Flip-Flop



## **Spartan Family Pin-to-Pin Input Parameter Guidelines**

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper-

ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading.

## Spartan Family Primary and Secondary Setup and Hold

|                                     |                                         |        | Speed     | l Grade   |       |  |
|-------------------------------------|-----------------------------------------|--------|-----------|-----------|-------|--|
|                                     |                                         |        | -4        | -3        |       |  |
| Symbol                              | Description                             | Device | Min       | Min       | Units |  |
| Input Setup/H                       | old Times Using Primary Clock and IFF   |        |           |           |       |  |
| T <sub>PSUF</sub> /T <sub>PHF</sub> | No Delay                                | XCS05  | 1.2 / 1.7 | 1.8 / 2.5 | ns    |  |
|                                     |                                         | XCS10  | 1.0 / 2.3 | 1.5 / 3.4 | ns    |  |
|                                     |                                         | XCS20  | 0.8 / 2.7 | 1.2 / 4.0 | ns    |  |
|                                     |                                         | XCS30  | 0.6 / 3.0 | 0.9 / 4.5 | ns    |  |
|                                     |                                         | XCS40  | 0.4 / 3.5 | 0.6 / 5.2 | ns    |  |
| T <sub>PSU</sub> /T <sub>PH</sub>   | With Delay                              | XCS05  | 4.3 / 0.0 | 6.0 / 0.0 | ns    |  |
|                                     |                                         | XCS10  | 4.3 / 0.0 | 6.0 / 0.0 | ns    |  |
|                                     |                                         | XCS20  | 4.3 / 0.0 | 6.0 / 0.0 | ns    |  |
|                                     |                                         | XCS30  | 4.3 / 0.0 | 6.0 / 0.0 | ns    |  |
|                                     |                                         | XCS40  | 5.3 / 0.0 | 6.8 / 0.0 | ns    |  |
| Input Setup/H                       | old Times Using Secondary Clock and IFF |        |           |           |       |  |
| $T_{SSUF}/T_{SHF}$                  | No Delay                                | XCS05  | 0.9 / 2.2 | 1.5 / 3.0 | ns    |  |
|                                     |                                         | XCS10  | 0.7 / 2.8 | 1.2 / 3.9 | ns    |  |
|                                     |                                         | XCS20  | 0.5 / 3.2 | 0.9 / 4.5 | ns    |  |
|                                     |                                         | XCS30  | 0.3 / 3.5 | 0.6 / 5.0 | ns    |  |
|                                     |                                         | XCS40  | 0.1 / 4.0 | 0.3 / 5.7 | ns    |  |
| T <sub>SSU</sub> /T <sub>SH</sub>   | With Delay                              | XCS05  | 4.0 / 0.0 | 5.7 / 0.0 | ns    |  |
|                                     |                                         | XCS10  | 4.0 / 0.0 | 5.7 / 0.0 | ns    |  |
|                                     |                                         | XCS20  | 4.0 / 0.5 | 5.7 / 0.5 | ns    |  |
|                                     |                                         | XCS30  | 4.0 / 0.5 | 5.7 / 0.5 | ns    |  |
|                                     |                                         | XCS40  | 5.0 / 0.0 | 6.5 / 0.0 | ns    |  |

#### Notes:

Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a
reference load of one clock pin per IOB/CLB.

<sup>2.</sup> IFF = Input Flip-flop or Latch



## **Spartan Family IOB Input Switching Characteristic Guidelines**

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

|                    |                                                         |             | Speed Grade |      |      |      |       |
|--------------------|---------------------------------------------------------|-------------|-------------|------|------|------|-------|
|                    |                                                         |             | -           | 4    | -    | 3    |       |
| Symbol             | Description Device                                      |             | Min         | Max  | Min  | Max  | Units |
| Setup Tin          | nes - TTL Inputs <sup>(1)</sup>                         |             |             | •    | •    |      | 1     |
| T <sub>ECIK</sub>  | Clock Enable (EC) to Clock (IK), no delay               | All devices | 1.6         | -    | 2.1  | -    | ns    |
| T <sub>PICK</sub>  | Pad to Clock (IK), no delay                             | All devices | 1.5         | -    | 2.0  | -    | ns    |
| Hold Time          | es                                                      | ·           |             |      |      |      |       |
| T <sub>IKEC</sub>  | Clock Enable (EC) to Clock (IK), no delay               | All devices | 0.0         | -    | 0.9  | -    | ns    |
|                    | All Other Hold Times                                    | All devices | 0.0         | -    | 0.0  | -    | ns    |
| Propagat           | ion Delays - TTL Inputs <sup>(1)</sup>                  | ,           |             |      |      |      |       |
| T <sub>PID</sub>   | Pad to I1, I2                                           | All devices | -           | 1.5  | -    | 2.0  | ns    |
| T <sub>PLI</sub>   | Pad to I1, I2 via transparent input latch, no delay     | All devices | -           | 2.8  | -    | 3.6  | ns    |
| T <sub>IKRI</sub>  | Clock (IK) to I1, I2 (flip-flop)                        | All devices | -           | 2.7  | -    | 2.8  | ns    |
| T <sub>IKLI</sub>  | Clock (IK) to I1, I2 (latch enable, active Low)         | All devices | -           | 3.2  | -    | 3.9  | ns    |
| Delay Ad           | der for Input with Delay Option                         |             |             | I    | I    | II.  | 1     |
| T <sub>Delay</sub> | $T_{\text{ECIKD}} = T_{\text{ECIK}} + T_{\text{Delay}}$ | XCS05       | 3.6         | -    | 4.0  | -    | ns    |
|                    | $T_{PICKD} = T_{PICK} + T_{Delay}$                      | XCS10       | 3.7         | -    | 4.1  | -    | ns    |
|                    | $T_{PDLI} = T_{PLI} + T_{Delay}$                        | XCS20       | 3.8         | -    | 4.2  | -    | ns    |
|                    |                                                         | XCS30       | 4.5         | -    | 5.0  | -    | ns    |
|                    |                                                         | XCS40       | 5.5         | -    | 5.5  | -    | ns    |
| Global Se          | et/Reset                                                |             |             | I    | I    | II.  | 1     |
| $T_{MRW}$          | Minimum GSR pulse width                                 | All devices | 11.5        | -    | 13.5 | -    | ns    |
| T <sub>RRI</sub>   | Delay from GSR input to any Q                           | XCS05       | -           | 9.0  | -    | 11.3 | ns    |
|                    |                                                         | XCS10       | -           | 9.5  | -    | 11.9 | ns    |
|                    |                                                         | XCS20       | -           | 10.0 | -    | 12.5 | ns    |
|                    |                                                         | XCS30       | -           | 10.5 | -    | 13.1 | ns    |
|                    |                                                         | XCS40       | -           | 11.0 | -    | 13.8 | ns    |

### Notes:

- 1. Delay adder for CMOS Inputs option: for -3 speed grade, add 0.4 ns; for -4 speed grade, add 0.2 ns.
- 2. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table.
- 3. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.



## Spartan-XL Family Global Buffer Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For

more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

|                  |                                         |         | Spee | Speed Grade |       |
|------------------|-----------------------------------------|---------|------|-------------|-------|
|                  |                                         |         | -5   | -4          |       |
| Symbol           | Description                             | Device  | Max  | Max         | Units |
| T <sub>GLS</sub> | From pad through buffer, to any clock K | XCS05XL | 1.4  | 1.5         | ns    |
|                  |                                         | XCS10XL | 1.7  | 1.8         | ns    |
|                  |                                         | XCS20XL | 2.0  | 2.1         | ns    |
|                  |                                         | XCS30XL | 2.3  | 2.5         | ns    |
|                  |                                         | XCS40XL | 2.6  | 2.8         | ns    |



## Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted.

|                   |                                           |                     | Speed Grade |     |     |     |       |
|-------------------|-------------------------------------------|---------------------|-------------|-----|-----|-----|-------|
|                   |                                           |                     | -5          |     | -4  |     |       |
| Symbol            | Single Port RAM                           | Size <sup>(1)</sup> | Min         | Max | Min | Max | Units |
| Write Ope         | ration                                    |                     |             |     |     | •   |       |
| T <sub>WCS</sub>  | Address write cycle time (clock K period) | 16x2                | 7.7         | -   | 8.4 | -   | ns    |
| T <sub>WCTS</sub> |                                           | 32x1                | 7.7         | -   | 8.4 | -   | ns    |
| T <sub>WPS</sub>  | Clock K pulse width (active edge)         | 16x2                | 3.1         | -   | 3.6 | -   | ns    |
| T <sub>WPTS</sub> |                                           | 32x1                | 3.1         | -   | 3.6 | -   | ns    |
| T <sub>ASS</sub>  | Address setup time before clock K         | 16x2                | 1.3         | -   | 1.5 | -   | ns    |
| T <sub>ASTS</sub> |                                           | 32x1                | 1.5         | -   | 1.7 | -   | ns    |
| T <sub>DSS</sub>  | DIN setup time before clock K             | 16x2                | 1.5         | -   | 1.7 | -   | ns    |
| T <sub>DSTS</sub> |                                           | 32x1                | 1.8         | -   | 2.1 | -   | ns    |
| T <sub>WSS</sub>  | WE setup time before clock K              | 16x2                | 1.4         | -   | 1.6 | -   | ns    |
| T <sub>WSTS</sub> |                                           | 32x1                | 1.3         | -   | 1.5 | -   | ns    |
|                   | All hold times after clock K              | 16x2                | 0.0         | -   | 0.0 | -   | ns    |
| T <sub>WOS</sub>  | Data valid after clock K                  | 32x1                | -           | 4.5 | -   | 5.3 | ns    |
| T <sub>WOTS</sub> |                                           | 16x2                | -           | 5.4 | -   | 6.3 | ns    |
| Read Ope          | ration                                    | <u> </u>            |             |     |     |     |       |
| T <sub>RC</sub>   | Address read cycle time                   | 16x2                | 2.6         | -   | 3.1 | -   | ns    |
| T <sub>RCT</sub>  |                                           | 32x1                | 3.8         | -   | 5.5 | -   | ns    |
| T <sub>ILO</sub>  | Data Valid after address change (no Write | 16x2                | -           | 1.0 | -   | 1.1 | ns    |
| T <sub>IHO</sub>  | Enable)                                   | 32x1                | -           | 1.7 | -   | 2.0 | ns    |
| T <sub>ICK</sub>  | Address setup time before clock K         | 16x2                | 0.6         | -   | 0.7 | -   | ns    |
| T <sub>IHCK</sub> |                                           | 32x1                | 1.3         | -   | 1.6 | -   | ns    |
| Notes:            |                                           | •                   |             | •   | •   |     |       |

#### Notes:

56

<sup>1.</sup> Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.



## **XCS20 and XCS20XL Device Pinouts**

|                                               | ACS20 and ACS20XL Device Pinouts |                        |       |       |                    |  |  |  |
|-----------------------------------------------|----------------------------------|------------------------|-------|-------|--------------------|--|--|--|
| XCS20/XL<br>Pad Name                          | VQ100                            | CS144 <sup>(2,4)</sup> | TQ144 | PQ208 | Bndry<br>Scan      |  |  |  |
| PROGRAM                                       | P52                              | M13                    | P74   | P106  | -                  |  |  |  |
| I/O (D7 <sup>(2)</sup> )                      | P53                              | L12                    | P75   | P107  | 367 <sup>(3)</sup> |  |  |  |
| I/O,                                          | P54                              | L13                    | P76   | P108  | 370 <sup>(3)</sup> |  |  |  |
| PGCK3 <sup>(1)</sup> ,<br>GCK5 <sup>(2)</sup> |                                  |                        |       |       |                    |  |  |  |
| I/O                                           |                                  | K10                    | P77   | P109  | 373 <sup>(3)</sup> |  |  |  |
| 1/0                                           | -                                | K10                    | P77   | P109  | 373 <sup>(3)</sup> |  |  |  |
| I/O (D6 <sup>(2)</sup> )                      | -<br>P55                         | K11                    | P79   | P110  | 379 <sup>(3)</sup> |  |  |  |
| I/O (D6(=/)                                   |                                  | K12                    |       | P112  | 382 (3)            |  |  |  |
|                                               | P56                              | NIS                    | P80   |       | 385 (3)            |  |  |  |
| 1/0                                           | -                                | -                      | -     | P114  |                    |  |  |  |
| 1/0                                           | -                                | -                      | -     | P115  | 388 (3)            |  |  |  |
| 1/0                                           | -                                | -                      | -     | P116  | 391 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P117  | 394 <sup>(3)</sup> |  |  |  |
| GND                                           | -                                | J10                    | P81   | P118  | - (2)              |  |  |  |
| I/O                                           | -                                | J11                    | P82   | P119  | 397 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | J12                    | P83   | P120  | 400 (3)            |  |  |  |
| VCC <sup>(2)</sup>                            | -                                | -                      | -     | P121  | - (0)              |  |  |  |
| I/O (D5 <sup>(2)</sup> )                      | P57                              | J13                    | P84   | P122  | 403 (3)            |  |  |  |
| I/O                                           | P58                              | H10                    | P85   | P123  | 406 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P124  | 409 (3)            |  |  |  |
| I/O                                           | -                                | -                      | -     | P125  | 412 <sup>(3)</sup> |  |  |  |
| I/O                                           | P59                              | H11                    | P86   | P126  | 415 <sup>(3)</sup> |  |  |  |
| I/O                                           | P60                              | H12                    | P87   | P127  | 418 <sup>(3)</sup> |  |  |  |
| I/O (D4 <sup>(2)</sup> )                      | P61                              | H13                    | P88   | P128  | 421 <sup>(3)</sup> |  |  |  |
| I/O                                           | P62                              | G12                    | P89   | P129  | 424 <sup>(3)</sup> |  |  |  |
| VCC                                           | P63                              | G13                    | P90   | P130  | -                  |  |  |  |
| GND                                           | P64                              | G11                    | P91   | P131  | -                  |  |  |  |
| I/O (D3 <sup>(2)</sup> )                      | P65                              | G10                    | P92   | P132  | 427 <sup>(3)</sup> |  |  |  |
| I/O                                           | P66                              | F13                    | P93   | P133  | 430 <sup>(3)</sup> |  |  |  |
| I/O                                           | P67                              | F12                    | P94   | P134  | 433 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | F11                    | P95   | P135  | 436 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P136  | 439 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P137  | 442 <sup>(3)</sup> |  |  |  |
| I/O (D2 <sup>(2)</sup> )                      | P68                              | F10                    | P96   | P138  | 445 <sup>(3)</sup> |  |  |  |
| I/O                                           | P69                              | E13                    | P97   | P139  | 448 <sup>(3)</sup> |  |  |  |
| VCC <sup>(2)</sup>                            | -                                | -                      | -     | P140  | -                  |  |  |  |
| I/O                                           | _                                | E12                    | P98   | P141  | 451 <sup>(3)</sup> |  |  |  |
| I/O                                           | _                                | E11                    | P99   | P142  | 454 <sup>(3)</sup> |  |  |  |
| GND                                           | -                                | E10                    | P100  | P143  | -                  |  |  |  |
| I/O                                           | -                                | -                      | -     | P145  | 457 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P146  | 460 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P147  | 463 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | -                      | -     | P148  | 466 <sup>(3)</sup> |  |  |  |
| I/O (D1 <sup>(2)</sup> )                      | P70                              | D13                    | P101  | P149  | 469 <sup>(3)</sup> |  |  |  |
| I/O                                           | P71                              | D12                    | P102  | P150  | 472 <sup>(3)</sup> |  |  |  |
| I/O                                           | -                                | D11                    | P103  | P151  | 475 <sup>(3)</sup> |  |  |  |

## **XCS20 and XCS20XL Device Pinouts**

| XCS20/XL<br>Pad Name                                            | VQ100 | CS144 <sup>(2,4)</sup> | TQ144 | PQ208 | Bndry<br>Scan      |
|-----------------------------------------------------------------|-------|------------------------|-------|-------|--------------------|
| I/O                                                             | -     | C13                    | P104  | P152  | 478 <sup>(3)</sup> |
| I/O<br>(D0 <sup>(2)</sup> , DIN)                                | P72   | C12                    | P105  | P153  | 481 <sup>(3)</sup> |
| I/O,<br>SGCK4 <sup>(1)</sup> ,<br>GCK6 <sup>(2)</sup><br>(DOUT) | P73   | C11                    | P106  | P154  | 484 <sup>(3)</sup> |
| CCLK                                                            | P74   | B13                    | P107  | P155  | -                  |
| VCC                                                             | P75   | B12                    | P108  | P156  | -                  |
| O, TDO                                                          | P76   | A13                    | P109  | P157  | 0                  |
| GND                                                             | P77   | A12                    | P110  | P158  | -                  |
| I/O                                                             | P78   | B11                    | P111  | P159  | 2                  |
| I/O,<br>PGCK4 <sup>(1)</sup> ,<br>GCK7 <sup>(2)</sup>           | P79   | A11                    | P112  | P160  | 5                  |
| I/O                                                             | -     | D10                    | P113  | P161  | 8                  |
| I/O                                                             | -     | C10                    | P114  | P162  | 11                 |
| I/O (CS1 <sup>(2)</sup> )                                       | P80   | B10                    | P115  | P163  | 14                 |
| I/O                                                             | P81   | A10                    | P116  | P164  | 17                 |
| I/O                                                             | -     | D9                     | P117  | P166  | 20                 |
| I/O                                                             | -     | -                      | -     | P167  | 23                 |
| I/O                                                             | -     | -                      | -     | P168  | 26                 |
| I/O                                                             | -     | -                      | -     | P169  | 29                 |
| GND                                                             | -     | C9                     | P118  | P170  | -                  |
| I/O                                                             | -     | B9                     | P119  | P171  | 32                 |
| I/O                                                             | -     | A9                     | P120  | P172  | 35                 |
| VCC <sup>(2)</sup>                                              | -     | -                      | -     | P173  | -                  |
| I/O                                                             | P82   | D8                     | P121  | P174  | 38                 |
| I/O                                                             | P83   | C8                     | P122  | P175  | 41                 |
| I/O                                                             | -     | -                      | -     | P176  | 44                 |
| I/O                                                             | -     | -                      | -     | P177  | 47                 |
| I/O                                                             | P84   | B8                     | P123  | P178  | 50                 |
| I/O                                                             | P85   | A8                     | P124  | P179  | 53                 |
| I/O                                                             | P86   | B7                     | P125  | P180  | 56                 |
| I/O                                                             | P87   | A7                     | P126  | P181  | 59                 |
| GND                                                             | P88   | C7                     | P127  | P182  | -                  |

2/8/00