

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	400
Number of Logic Elements/Cells	950
Total RAM Bits	12800
Number of I/O	113
Number of Gates	20000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcs20xl-4tq144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

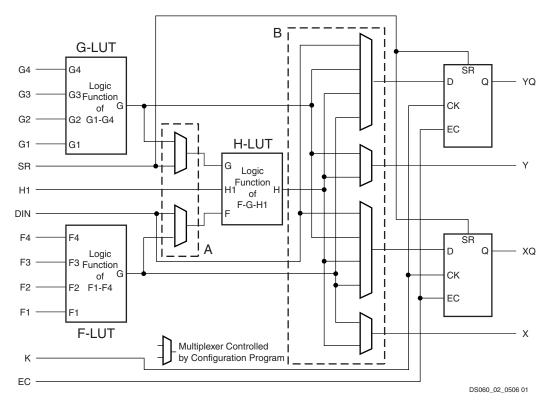


Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown)

A CLB can implement any of the following functions:

 Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables

Note: When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB.

- Any single function of five variables
- Any function of four variables together with some functions of six variables
- · Some functions of up to nine variables.

Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage.

Flip-Flops

Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay.

The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20.

Latches (Spartan-XL Family Only)

The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2.

Output Multiplexer/2-Input Function Generator (Spartan-XL Family Only)

The output path in the Spartan-XL family IOB contains an additional multiplexer not available in the Spartan family IOB. The multiplexer can also be configured as a 2-input function generator, implementing a pass gate, AND gate, OR gate, or XOR gate, with 0, 1, or 2 inverted inputs.

When configured as a multiplexer, this feature allows two output signals to time-share the same output pad, effectively doubling the number of device outputs without requiring a larger, more expensive package. The select input is the pin used for the output flip-flop clock, OK.

When the multiplexer is configured as a 2-input function generator, logic can be implemented within the IOB itself. Combined with a Global buffer, this arrangement allows very high-speed gating of a single signal. For example, a wide decoder can be implemented in CLBs, and its output gated with a Read or Write Strobe driven by a global buffer.

The user can specify that the IOB function generator be used by placing special library symbols beginning with the letter "O." For example, a 2-input AND gate in the IOB function generator is called OAND2. Use the symbol input pin labeled "F" for the signal on the critical path. This signal is placed on the OK pin — the IOB input with the shortest delay to the function generator. Two examples are shown in Figure 7.

Figure 7: AND and MUX Symbols in Spartan-XL IOB

Output Buffer

An active High 3-state signal can be used to place the output buffer in a high-impedance state, implementing 3-state outputs or bidirectional I/O. Under configuration control, the output (O) and output 3-state (T) signals can be inverted. The polarity of these signals is independently configured for each IOB (see Figure 6, page 7). An output can be configured as open-drain (open-collector) by tying the 3-state pin (T) to the output signal, and the input pin (I) to Ground.

By default, a 5V Spartan device output buffer pull-up structure is configured as a TTL-like totem-pole. The High driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below $V_{CC}.$ Alternatively, the outputs can be globally configured as CMOS drivers, with additional p-channel pull-up transistors pulling to $V_{CC}.$ This option, applied using the bitstream generation software, applies to all outputs on the device. It is not individually programmable.

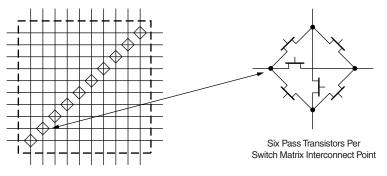
All Spartan-XL device outputs are configured as CMOS drivers, therefore driving rail-to-rail. The Spartan-XL family outputs are individually programmable for 12 mA or 24 mA output drive.

Any 5V Spartan device with its outputs configured in TTL mode can drive the inputs of any typical 3.3V device. Supported destinations for Spartan/XL device outputs are shown in Table 7.

Three-State Register (Spartan-XL Family Only)

Spartan-XL devices incorporate an optional register controlling the three-state enable in the IOBs. The use of the three-state control register can significantly improve output enable and disable time.

Output Slew Rate


The slew rate of each output buffer is, by default, reduced, to minimize power bus transients when switching non-critical signals. For critical signals, attach a FAST attribute or property to the output buffer or flip-flop.

Spartan/XL devices have a feature called "Soft Start-up," designed to reduce ground bounce when all outputs are turned on simultaneously at the end of configuration. When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. Immediately following the initial activation of the I/O, the slew rate of the individual outputs is determined by the individual configuration option for each IOB.

Pull-up and Pull-down Network

Programmable pull-up and pull-down resistors are used for tying unused pins to V_{CC} or Ground to minimize power consumption and reduce noise sensitivity. The configurable pull-up resistor is a p-channel transistor that pulls to V_{CC} . The configurable pull-down resistor is an n-channel transistor that pulls to Ground. The value of these resistors is typically 20 K Ω – 100 K Ω (See "Spartan Family DC Characteristics Over Operating Conditions" on page 43.).

DS060_10_081100

Figure 10: Programmable Switch Matrix

Double-Length Lines

The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8).

There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility.

Longlines

12

Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances.

Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array.

Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19.

I/O Routing

Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines.

Global Nets and Buffers

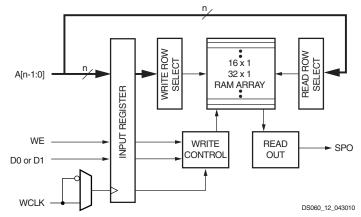
The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew.

Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect.

- The 16 x 1 single-port configuration contains a RAM array with 16 locations, each one-bit wide. One 4-bit address decoder determines the RAM location for write and read operations. There is one input for writing data and one output for reading data, all at the selected address.
- The (16 x 1) x 2 single-port configuration combines two 16 x 1 single-port configurations (each according to the preceding description). There is one data input, one data output and one address decoder for each array. These arrays can be addressed independently.
- The 32 x 1 single-port configuration contains a RAM array with 32 locations, each one-bit wide. There is one data input, one data output, and one 5-bit address decoder.
- The dual-port mode 16 x 1 configuration contains a RAM array with 16 locations, each one-bit wide. There are two 4-bit address decoders, one for each port. One port consists of an input for writing and an output for reading, all at a selected address. The other port consists of one output for reading from an independently selected address.

The appropriate choice of RAM configuration mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Selection criteria include the following: Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port, and the 16 x 1 dual-port configurations each use one entire CLB, the 16 x 1 single-port configuration uses only one half of a CLB. Due to its simultaneous read/write capability, the dual-port RAM can transfer twice as much data as the single-port RAM, which permits only one data operation at any given time.

CLB memory configuration options are selected by using the appropriate library symbol in the design entry.


Single-Port Mode

There are three CLB memory configurations for the single-port RAM: 16×1 , $(16 \times 1) \times 2$, and 32×1 , the functional organization of which is shown in Figure 12.

The single-port RAM signals and the CLB signals (Figure 2, page 4) from which they are originally derived are shown in Table 9.

Table 9: Single-Port RAM Signals

RAM Signal	Function	CLB Signal	
D0 or D1	Data In	DIN or H1	
A[3:0]	Address	F[4:1] or G[4:1]	
A4 (32 x 1 only)	Address	H1	
WE	Write Enable	SR	
WCLK	Clock	К	
SPO	Single Port Out (Data Out)	F _{OUT} or G _{OUT}	

Notes:

- The (16 x 1) x 2 configuration combines two 16 x 1 single-port RAMs, each with its own independent address bus and data input. The same WE and WCLK signals are connected to both RAMs.
- 2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the 32 x 1 configuration.

Figure 12: Logic Diagram for the Single-Port RAM

Writing data to the single-port RAM is essentially the same as writing to a data register. It is an edge-triggered (synchronous) operation performed by applying an address to the A inputs and data to the D input during the active edge of WCLK while WE is High.

The timing relationships are shown in Figure 13. The High logic level on WE enables the input data register for writing. The active edge of WCLK latches the address, input data, and WE signals. Then, an internal write pulse is generated that loads the data into the memory cell.

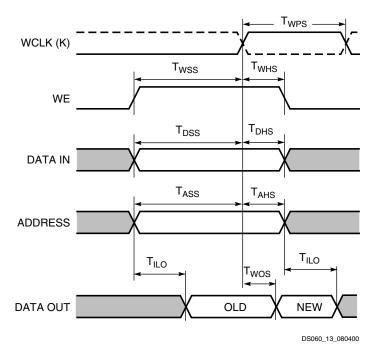


Figure 13: Data Write and Access Timing for RAM

WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be

inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM.

The WE input is active High and cannot be inverted within the CLB.

Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO.

Dual-Port Mode

In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported.

The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the

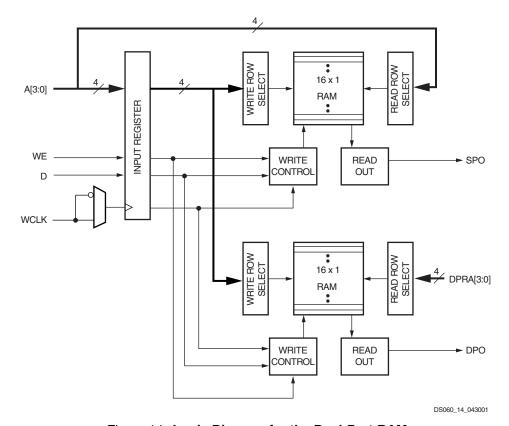


Figure 14: Logic Diagram for the Dual-Port RAM

and Spartan-XL families, speeding up arithmetic and counting functions.

The carry chain in 5V Spartan devices can run either up or down. At the top and bottom of the columns where there are no CLBs above and below, the carry is propagated to the right. The default is always to propagate up the column, as shown in the figures. The carry chain in Spartan-XL devices can only run up the column, providing even higher speed.

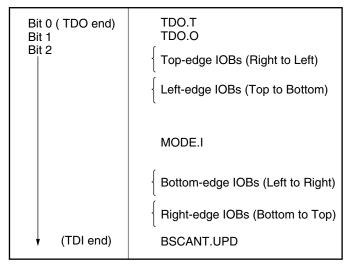
Figure 16, page 18 shows a Spartan/XL FPGA CLB with dedicated fast carry logic. The carry logic shares operand

and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums.

Figure 17, page 19 shows the details of the Spartan/XL FPGA carry logic. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 16.

The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols.

Table 12: Boundary Scan Instructions


Ins	structi	on	Test	TDO	I/O Data
12	l1	10	Selected	Source	Source
0	0	0	EXTEST	DR	DR
0	0	1	SAMPLE/ PRELOAD	DR	Pin/Logic
0	1	0	USER 1	BSCAN. TDO1	User Logic
0	1	1	USER 2	BSCAN. TDO2	User Logic
1	0	0	READBACK	Readback Data	Pin/Logic
1	0	1	CONFIGURE	DOUT	Disabled
1	1	0	IDCODE (Spartan-XL only)	IDCODE Register	-
1	1	1	BYPASS	Bypass Register	-

Bit Sequence

The bit sequence within each IOB is: In, Out, 3-state. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing.

From a cavity-up view of the chip (as shown in the FPGA Editor), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 21. The device-specific pinout tables for the Spartan/XL devices include the boundary scan locations for each IOB pin.

DS060 21 080400

Figure 21: Boundary Scan Bit Sequence

BSDL (Boundary Scan Description Language) files for Spartan/XL devices are available on the Xilinx website in the File Download area. Note that the 5V Spartan devices and 3V Spartan-XL devices have different BSDL files.

Including Boundary Scan in a Design

If boundary scan is only to be used during configuration, no special elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration.

To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 22.

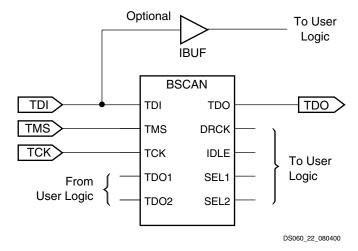


Figure 22: Boundary Scan Example

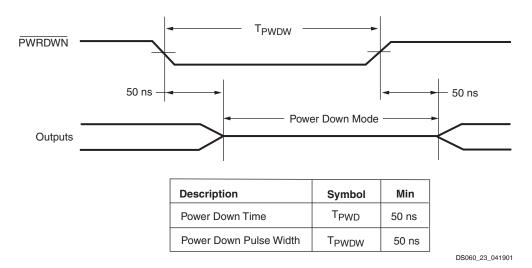


Figure 23: PWRDWN Pulse Timing

Power-down retains the configuration, but loses all data stored in the device flip-flops. All inputs are interpreted as Low, but the internal combinatorial logic is fully functional. Make sure that the combination of all inputs Low and all flip-flops set or reset in your design will not generate internal oscillations, or create permanent bus contention by activating internal bus drivers with conflicting data onto the same long line.

During configuration, the PWRDWN pin must be High. If the Power Down state is entered before or during configuration, the device will restart configuration once the PWRDWN signal is removed. Note that the configuration pins are affected by Power Down and may not reflect their normal function. If there is an external pull-up resistor on the DONE pin, it will be High during Power Down even if the device is not yet configured. Similarly, if PWRDWN is asserted before configuration is completed, the INIT pin will not indicate status information.

Note that the PWRDWN pin is not part of the Boundary Scan chain. Therefore, the Spartan-XL family has a separate set of BSDL files than the 5V Spartan family. Boundary scan logic is not usable during Power Down.

Configuration and Test

Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. Spartan/XL devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell

that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The Xilinx development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format.

Configuration Mode Control

5V Spartan devices have two configuration modes.

- MODE = 1 sets Slave Serial mode
- MODE = 0 sets Master Serial mode

3V Spartan-XL devices have three configuration modes.

- M1/M0 = 11 sets Slave Serial mode
- M1/M0 = 10 sets Master Serial mode
- M1/M0 = 0X sets Express mode

In addition to these modes, the device can be configured through the Boundary Scan logic (See "Configuration Through the Boundary Scan Pins" on page 37.).

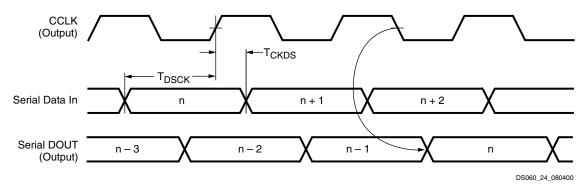
The Mode pins are sampled prior to starting configuration to determine the configuration mode. After configuration, these pin are unused. The Mode pins have a weak pull-up resistor turned on during configuration. With the Mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the Mode pins can be left unconnected. If the Master Serial mode is desired, the MODE/M0 pin should be connected directly to GND, or through a pull-down resistor of 1 K Ω or less.

During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during con-

Master Serial Mode

The Master serial mode uses an internal oscillator to generate a Configuration Clock (CCLK) for driving potential slave devices and the Xilinx serial-configuration PROM (SPROM). The CCLK speed is selectable as either 1 MHz (default) or 8 MHz. Configuration always starts at the default slow frequency, then can switch to the higher frequency during the first frame. Frequency tolerance is –50% to +25%.

In Master Serial mode, the CCLK output of the device drives a Xilinx SPROM that feeds the FPGA DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. The next data bit is put on the SPROM data output, connected to the FPGA DIN pin. The FPGA accepts this data on the subsequent rising CCLK edge.


When used in a daisy-chain configuration the Master Serial FPGA is placed as the first device in the chain and is referred to as the lead FPGA. The lead FPGA presents the preamble data, and all data that overflows the lead device, on its DOUT pin. There is an internal pipeline delay of 1.5 CCLK periods, which means that DOUT changes on the

falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. See the timing diagram in Figure 24.

In the bitstream generation software, the user can specify Fast Configuration Rate, which, starting several bits into the first frame, increases the CCLK frequency by a factor of eight. For actual timing values please refer to the specification section. Be sure that the serial PROM and slaves are fast enough to support this data rate. Earlier families such as the XC3000 series do not support the Fast Configuration Rate option.

The SPROM CE input can be driven from either $\overline{\text{LDC}}$ or DONE. Using $\overline{\text{LDC}}$ avoids potential contention on the DIN pin, if this pin is configured as user I/O, but $\overline{\text{LDC}}$ is then restricted to be a permanently High user output after configuration. Using DONE can also avoid contention on DIN, provided the Early DONE option is invoked.

Figure 25 shows a full master/slave system. The leftmost device is in Master Serial mode, all other devices in the chain are in Slave Serial mode.

	Symbol	Description	Min	Units
CCLK T _{DSCK}		DIN setup	20	ns
COLK	T _{CKDS}	DIN hold	0	ns

Notes:

- 1. At power-up, V_{CC} must rise from 2.0V to V_{CC} min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid.
- Master Serial mode timing is based on testing in slave mode.

Figure 24: Master Serial Mode Programming Switching Characteristics

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configuration data on the rising edge of CCLK and, after loading its configuration, passes additional data out, resynchronized on the next falling edge of CCLK.

In this mode, an external signal drives the CCLK input of the FPGA (most often from a Master Serial device). The serial configuration bitstream must be available at the DIN input of the lead FPGA a short setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge.

Figure 25 shows a full master/slave system. A Spartan/XL device in Slave Serial mode should be connected as shown in the third device from the left.

Table 17: Spartan/XL Program Data

Device	XC	CS05	XC	S10	XCS20		XCS30		XC	S40
Max System Gates	5,	000	10	,000	20,000		30,000		40,000	
CLBs (Row x Col.)	100 (10 x 10)		196 400 (14 x 14) (20 x 20)		576 (24 x 24)		-	'84 x 28)		
IOBs		80	1	12	160		1	92	20)5 ⁽⁴⁾
Part Number	XCS05	XCS05XL	XCS10	XCS10XL	XCS20	XCS20XL	XCS30	XCS30XL	XCS40	XCS40XL
Supply Voltage	5V	3.3V	5V	3.3V	5V	3.3V	5V	3.3V	5V	3.3V
Bits per Frame	126	127	166	167	226	227	266	267	306	307
Frames	428	429	572	573	788	789	932	933	1,076	1,077
Program Data	53,936	54,491	94,960	95,699	178,096	179,111	247,920	249,119	329,264	330,647
PROM Size (bits)	53,984	54,544	95,008	95,752	178,144	179,160	247,968	249,168	329,312	330,696
Express Mode PROM Size (bits)	-	79,072	-	128,488	-	221,056	-	298,696	-	387,856

Notes:

- Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device)
 Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device)
 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
 PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte
- 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header.
- 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits.
- 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01.

During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback

data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged.

Statistically, one error out of 2048 might go undetected.

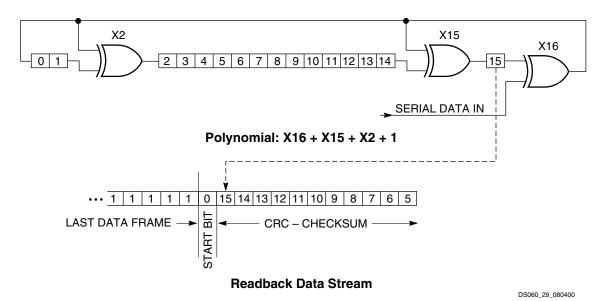


Figure 29: Circuit for Generating CRC-16

Configuration Sequence

There are four major steps in the Spartan/XL FPGA power-up configuration sequence.

- · Configuration Memory Clear
- Initialization
- Configuration
- Start-up

The full process is illustrated in Figure 30.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When V_{CC} reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms. The delay is four times as long when in Master Serial Mode to allow ample time for all slaves to reach a stable V_{CC} . When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain.

This delay is applied only on power-up. It is not applied when reconfiguring an FPGA by pulsing the PROGRAM pin

Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator.

At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the $\overline{PROGRAM}$ pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the \overline{INIT} input.

Initialization

During initialization and configuration, user pins HDC, $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE provide status outputs for the system interface. The outputs $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE are held Low and HDC is held High starting at the initial application of power.

The open drain $\overline{\text{INIT}}$ pin is released after the final initialization pass through the frame addresses. There is a deliberate delay before a Master-mode device recognizes an inactive $\overline{\text{INIT}}$. Two internal clocks after the $\overline{\text{INIT}}$ pin is recognized as High, the device samples the MODE pin to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded.

Readback Abort

When the Readback Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the Readback operation and prepares the logic to accept another trigger.

After an aborted Readback, additional clocks (up to one Readback clock per configuration frame) may be required to re-initialize the control logic. The status of Readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If Readback must be inhibited for security reasons, the Readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner.

Violating the Maximum High and Low Time Specification for the Readback Clock

The Readback clock has a maximum High and Low time specification. In some cases, this specification cannot be

met. For example, if a processor is controlling Readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification.

The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the Readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register.

The user must precisely calculate the location of the Readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 16 and Table 17.

Spartan Family IOB Output Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to

the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted.

				Speed	Grade		
			-4		-	3	
Symbol	Description	Device	Min	Max	Min	Max	Units
Clocks							
T _{CH}	Clock High	All devices	3.0	-	4.0	-	ns
T _{CL}	Clock Low	All devices	3.0	-	4.0	-	ns
Propagation	Delays - TTL Outputs ^(1,2)						
T _{OKPOF}	Clock (OK) to Pad, fast	All devices	-	3.3	-	4.5	ns
T _{OKPOS}	Clock (OK to Pad, slew-rate limited	All devices	-	6.9	-	7.0	ns
T _{OPF}	Output (O) to Pad, fast	All devices	-	3.6	-	4.8	ns
T _{OPS}	Output (O) to Pad, slew-rate limited	All devices	-	7.2	-	7.3	ns
T _{TSHZ}	3-state to Pad High-Z (slew-rate independent)	All devices	-	3.0	-	3.8	ns
T _{TSONF}	3-state to Pad active and valid, fast	All devices	-	6.0	-	7.3	ns
T _{TSONS}	3-state to Pad active and valid, slew-rate limited	All devices	-	9.6	-	9.8	ns
Setup and H	old Times		+	+	!	-	
T _{OOK}	Output (O) to clock (OK) setup time	All devices	2.5	-	3.8	-	ns
T _{OKO}	Output (O) to clock (OK) hold time	All devices	0.0	-	0.0	-	ns
T _{ECOK}	Clock Enable (EC) to clock (OK) setup time	All devices	2.0	-	2.7	-	ns
T _{OKEC}	Clock Enable (EC) to clock (OK) hold time	All devices	0.0	-	0.5	-	ns
Global Set/F	Reset	l	1				
T_{MRW}	Minimum GSR pulse width	All devices	11.5		13.5		ns
T _{RPO}	Delay from GSR input to any Pad	XCS05	-	12.0	-	15.0	ns
		XCS10	-	12.5	-	15.7	ns
		XCS20	-	13.0	-	16.2	ns
		XCS30	-	13.5	-	16.9	ns
		XCS40	-	14.0	-	17.5	ns

Notes:

- 1. Delay adder for CMOS Outputs option (with fast slew rate option): for -3 speed grade, add 1.0 ns; for -4 speed grade, add 0.8 ns.
- 2. Delay adder for CMOS Outputs option (with slow slew rate option): for -3 speed grade, add 2.0 ns; for -4 speed grade, add 1.5 ns.
- 3. Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times.
- 4. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

Spartan-XL Family Detailed Specifications

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

Notwithstanding the definition of the above terms, all specifications are subject to change without notice.

Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications.

Spartan-XL Family Absolute Maximum Ratings⁽¹⁾

Symbol	Descri	Value	Units	
V _{CC}	Supply voltage relative to GND		-0.5 to 4.0	V
V _{IN}	Input voltage relative to GND	5V Tolerant I/O Checked ^(2, 3)	-0.5 to 5.5	V
		Not 5V Tolerant I/Os ^(4, 5)	-0.5 to $V_{CC} + 0.5$	V
V _{TS}	Voltage applied to 3-state output	5V Tolerant I/O Checked ^(2, 3)	-0.5 to 5.5	V
		Not 5V Tolerant I/Os ^(4, 5)	-0.5 to $V_{CC} + 0.5$	V
T _{STG}	Storage temperature (ambient)		-65 to +150	°C
TJ	Junction temperature	Plastic packages	+125	°C

Notes:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
 ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
 is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
- 2. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA and undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve.
- 3. With 5V Tolerant I/Os selected, the Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to + 7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- 4. Without 5V Tolerant I/Os selected, the Maximum DC overshoot or undershoot must be limited to either 0.5V or 10 mA, whichever is easier to achieve.
- 5. Without 5V Tolerant I/Os selected, the Maximum AC conditions are as follows; the device pins may undershoot to –2.0V or overshoot to V_{CC} + 2.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- 6. For soldering guidelines, see the Package Information on the Xilinx website.

Spartan-XL Family Recommended Operating Conditions

Symbol	Description	Min	Max	Units	
V_{CC}	Supply voltage relative to GND, T _J = 0°C to +85°C	3.0	3.6	V	
	Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C^{(1)}$	Industrial	3.0	3.6	V
V _{IH}	High-level input voltage ⁽²⁾		50% of V _{CC}	5.5	V
V _{IL}	Low-level input voltage ⁽²⁾		0	30% of V _{CC}	V
T _{IN}	Input signal transition time		-	250	ns

Notes:

- At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C.
- Input and output measurement threshold is ~50% of V_{CC}.

Spartan-XL Family DC Characteristics Over Operating Conditions

Symbol	Description	Min	Тур.	Max	Units	
V _{OH}	High-level output voltage @ $I_{OH} = -4.0 \text{ mA}, V_{C}$	2.4	-	-	V	
	High-level output voltage @ $I_{OH} = -500 \mu A$, (LV	(CMOS)	90% V _{CC}	-	-	V
V _{OL}	Low-level output voltage @ I _{OL} = 12.0 mA, V _{CO}	; min (LVTTL) ⁽¹⁾	-	-	0.4	V
	Low-level output voltage @ I _{OL} = 24.0 mA, V _{CO}	; min (LVTTL) ⁽²⁾	-	-	0.4	V
	Low-level output voltage @ I _{OL} = 1500 μA, (LV	CMOS)	-	-	10% V _{CC}	V
V _{DR}	Data retention supply voltage (below which cormay be lost)	2.5	-	-	V	
I _{cco}	Quiescent FPGA supply current ^(3,4)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
I _{CCPD}	Power Down FPGA supply current ^(3,5)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
Ι <u></u>	Input or output leakage current	1	-10	-	10	μΑ
C _{IN}	Input capacitance (sample tested)	-	-	10	pF	
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V (samp	0.02	-	0.25	mA	
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 3.3V (s	sample tested)	0.02	-	-	mA

Notes:

- With up to 64 pins simultaneously sinking 12 mA (default mode).
- 2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected).
- 3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option.
- With no output current loads, no active input resistors, and all package pins at V_{CC} or GND.
- 5. With PWRDWN active.

Supply Current Requirements During Power-On

Spartan-XL FPGAs require that a minimum supply current I_{CCPO} be provided to the V_{CC} lines for a successful power on. If more current is available, the FPGA can consume more than I_{CCPO} min., though this cannot adversely affect reliability.

A maximum limit for I_{CCPO} is not specified. Be careful when using foldback/crowbar supplies and fuses. It is possible to control the magnitude of I_{CCPO} by limiting the supply current available to the FPGA. A current limit below the trip level will avoid inadvertently activating over-current protection circuits.

Symbol	Description	Min	Max	Units
I _{CCPO}	Total V _{CC} supply current required during power-on	100	-	mA
T _{CCPO}	V _{CC} ramp time ^(2,3)	-	50	ms

Notes:

- 1. The I_{CCPO} requirement applies for a brief time (commonly only a few milliseconds) when V_{CC} ramps from 0 to 3.3V.
- 2. The ramp time is measured from GND to V_{CC} max on a fully loaded board.
- V_{CC} must not dip in the negative direction during power on.

Spartan-XL Family CLB Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and expressed in nanoseconds unless otherwise noted.

		-	5	-4		1
Symbol	Description	Min	Max	Min	Max	Units
Clocks						
T _{CH}	Clock High time	2.0	-	2.3	-	ns
T _{CL}	Clock Low time	2.0	-	2.3	-	ns
Combinato	orial Delays		,	1	ı	
T _{ILO}	F/G inputs to X/Y outputs	-	1.0	-	1.1	ns
T _{IHO}	F/G inputs via H to X/Y outputs	-	1.7	-	2.0	ns
T _{ITO}	F/G inputs via transparent latch to Q outputs	-	1.5	-	1.8	ns
T _{HH1O}	C inputs via H1 via H to X/Y outputs	-	1.5	-	1.8	ns
Sequentia	l Delays	*			,	
T _{CKO}	Clock K to Flip-Flop or latch outputs Q	-	1.2	-	1.4	ns
Setup Tim	e before Clock K		,		ı	
T _{ICK}	F/G inputs	0.6	-	0.7	-	ns
T _{IHCK}	F/G inputs via H	1.3	-	1.6	-	ns
Hold Time	after Clock K	*			,	
	All Hold times, all devices	0.0	-	0.0	-	ns
Set/Reset	Direct					
T _{RPW}	Width (High)	2.5	-	2.8	-	ns
T _{RIO}	Delay from C inputs via S/R, going High to Q	-	2.3	-	2.7	ns
Global Set	Reset	*			,	
T_{MRW}	Minimum GSR Pulse Width	10.5	-	11.5	-	ns
T_{MRQ}	Delay from GSR input to any Q	See pag	ge 60 for T _{RI}	RI values pe	r device.	
F _{TOG}	Toggle Frequency (MHz) (for export control purposes)	-	250	-	217	MHz

Table 18: Pin Descriptions (Continued)

	I/O				
Pin Name	During Config.	I/O After Config.	Pin Description		
SGCK1 - SGCK4 (Spartan)	Weak Pull-up (except SGCK4	I or I/O	Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.		
	is DOUT)		The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins.		
GCK1 - GCK8 (Spartan-XL)	Weak Pull-up (except	I or I/O	Eight Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.		
	GCK6 is DOUT)		The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol is automatically placed on one of these pins.		
CS1 (Spartan-XL)	I	I/O	During Express configuration, CS1 is used as a serial-enable signal for daisy-chaining.		
D0-D7 (Spartan-XL)	I	I/O	During Express configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins.		
DIN	I	I/O	During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. After configuration, DIN is a user-programmable I/O pin.		
DOUT	0	I/O	During Slave Serial or Master Serial configuration, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input.		
			In Spartan-XL family Express mode, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.		
			After configuration, DOUT is a user-programmable I/O pin.		
Unrestricted User-Programmable I/O Pins					
I/O	Weak Pull-up	I/O	These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor network that defines the logic level as High.		

XCS20 and XCS20XL Device Pinouts

XCS20 and XCS20XL Device Pinouts							
XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan		
PROGRAM	P52	M13	P74	P106	-		
I/O (D7 ⁽²⁾)	P53	L12	P75	P107	367 ⁽³⁾		
I/O,	P54	L13	P76	P108	370 ⁽³⁾		
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾							
I/O		K10	P77	P109	373 ⁽³⁾		
1/0	-	K10	P77	P109	373 ⁽³⁾		
I/O (D6 ⁽²⁾)	- P55	K11	P79	P110	379 ⁽³⁾		
I/O (D6(=/)		K12		P112	382 (3)		
	P56	NIS	P80		385 (3)		
1/0	-	-	-	P114			
1/0	-	-	-	P115	388 (3)		
1/0	-	-	-	P116	391 ⁽³⁾		
I/O	-	-	-	P117	394 ⁽³⁾		
GND	-	J10	P81	P118	- (2)		
1/0	-	J11	P82	P119	397 ⁽³⁾		
I/O	-	J12	P83	P120	400 (3)		
VCC ⁽²⁾	-	-	-	P121	- (0)		
I/O (D5 ⁽²⁾)	P57	J13	P84	P122	403 (3)		
I/O	P58	H10	P85	P123	406 ⁽³⁾		
I/O	-	-	-	P124	409 (3)		
I/O	-	-	-	P125	412 ⁽³⁾		
I/O	P59	H11	P86	P126	415 ⁽³⁾		
I/O	P60	H12	P87	P127	418 ⁽³⁾		
I/O (D4 ⁽²⁾)	P61	H13	P88	P128	421 ⁽³⁾		
I/O	P62	G12	P89	P129	424 ⁽³⁾		
VCC	P63	G13	P90	P130	-		
GND	P64	G11	P91	P131	-		
I/O (D3 ⁽²⁾)	P65	G10	P92	P132	427 ⁽³⁾		
I/O	P66	F13	P93	P133	430 ⁽³⁾		
I/O	P67	F12	P94	P134	433 ⁽³⁾		
I/O	-	F11	P95	P135	436 ⁽³⁾		
I/O	-	-	-	P136	439 ⁽³⁾		
I/O	-	-	-	P137	442 (3)		
I/O (D2 ⁽²⁾)	P68	F10	P96	P138	445 ⁽³⁾		
I/O	P69	E13	P97	P139	448 ⁽³⁾		
VCC ⁽²⁾	-	-	-	P140	-		
I/O	_	E12	P98	P141	451 ⁽³⁾		
I/O	_	E11	P99	P142	454 ⁽³⁾		
GND	-	E10	P100	P143	-		
I/O	-	-	-	P145	457 ⁽³⁾		
I/O	-	-	-	P146	460 ⁽³⁾		
I/O	-	-	-	P147	463 ⁽³⁾		
I/O	-	-	-	P148	466 ⁽³⁾		
I/O (D1 ⁽²⁾)	P70	D13	P101	P149	469 ⁽³⁾		
I/O	P71	D12	P102	P150	472 ⁽³⁾		
I/O	-	D11	P103	P151	475 ⁽³⁾		

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	C13	P104	P152	478 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P72	C12	P105	P153	481 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P73	C11	P106	P154	484 ⁽³⁾
CCLK	P74	B13	P107	P155	-
VCC	P75	B12	P108	P156	-
O, TDO	P76	A13	P109	P157	0
GND	P77	A12	P110	P158	-
I/O	P78	B11	P111	P159	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P79	A11	P112	P160	5
I/O	-	D10	P113	P161	8
I/O	-	C10	P114	P162	11
I/O (CS1 ⁽²⁾)	P80	B10	P115	P163	14
I/O	P81	A10	P116	P164	17
I/O	-	D9	P117	P166	20
I/O	-	-	-	P167	23
I/O	-	-	-	P168	26
I/O	-	-	-	P169	29
GND	-	C9	P118	P170	-
I/O	-	B9	P119	P171	32
I/O	-	A9	P120	P172	35
VCC ⁽²⁾	-	-	-	P173	-
I/O	P82	D8	P121	P174	38
I/O	P83	C8	P122	P175	41
I/O	-	-	-	P176	44
I/O	-	-	-	P177	47
I/O	P84	B8	P123	P178	50
I/O	P85	A8	P124	P179	53
I/O	P86	B7	P125	P180	56
I/O	P87	A7	P126	P181	59
GND	P88	C7	P127	P182	-

2/8/00

Additional XCS20/XL Package Pins

PQ208							
Not Connected Pins							
P12	P12 P18 ⁽¹⁾ P33 ⁽¹⁾ P39 P65 P71 ⁽¹⁾						
P86 ⁽¹⁾	P92	P111	P121 ⁽¹⁾	P140 ⁽¹⁾	P144		
P165	P173 ⁽¹⁾	P192 ⁽¹⁾	P202	P203	-		
9/16/98							

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- The "PWRDWN" on the XCS20XL is not part of the Boundary Scan chain. For the XCS20XL, subtract 1 from all Boundary Scan numbers from GCK3 on (247 and higher).
- 4. CS144 package discontinued by PDN2004-01

XCS30 and XCS30XL Device Pinouts

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
VCC	P89	P128	P183	P212	VCC ⁽⁴⁾	C10	-
I/O	P90	P129	P184	P213	C10	D10	74
I/O	P91	P130	P185	P214	D10	E10	77
I/O	P92	P131	P186	P215	A9	A9	80
I/O	P93	P132	P187	P216	B9	В9	83
I/O	-	-	P188	P217	C9	C9	86
I/O	-	-	P189	P218	D9	D9	89
I/O	P94	P133	P190	P220	A8	A8	92
I/O	P95	P134	P191	P221	B8	B8	95
VCC	-	-	P192	P222	VCC ⁽⁴⁾	A7	-
I/O	-	-	-	P223	A6	B7	98
I/O	-	-	-	P224	C7	C7	101
I/O	-	P135	P193	P225	B6	D7	104
I/O	-	P136	P194	P226	A5	A6	107
GND	-	P137	P195	P227	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	P196	P228	C6	В6	110
I/O	-	-	P197	P229	B5	C6	113
I/O	-	-	P198	P230	A4	D6	116
I/O	-	-	P199	P231	C5	E6	119
I/O	P96	P138	P200	P232	B4	A5	122
I/O	P97	P139	P201	P233	A3	C5	125
I/O	-	-	P202	P234	D5	B4	128
I/O	-	-	P203	P235	C4	C4	131
I/O	-	P140	P204	P236	В3	A3	134
I/O	-	P141	P205	P237	B2	A2	137
I/O	P98	P142	P206	P238	A2	В3	140
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P99	P143	P207	P239	C3	B2	143
VCC	P100	P144	P208	P240	VCC ⁽⁴⁾	A1	-
GND	P1	P1	P1	P1	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	P2	P2	P2	B1	C3	146
I/O	P3	P3	P3	P3	C2	C2	149
I/O	-	P4	P4	P4	D2	B1	152

XCS40 and XCS40XL Device Pinouts

XCS40/XL				00000(2 F)	Bndry
Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Scan
O, TDO	P157	P181	A19	B17	0
GND	P158	P182	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P159	P183	B18	A18	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P160	P184	B17	A17	5
I/O	P161	P185	C17	D16	8
I/O	P162	P186	D16	C16	11
I/O (CS1 ⁽²⁾)	P163	P187	A18	B16	14
I/O	P164	P188	A17	A16	17
I/O	-	-	-	E15	20
I/O	-	-	-	C15	23
I/O	P165	P189	C16	D15	26
I/O	-	P190	B16	A15	29
I/O	P166	P191	A16	E14	32
I/O	P167	P192	C15	C14	35
I/O	P168	P193	B15	B14	38
I/O	P169	P194	A15	D14	41
GND	P170	P196	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P171	P197	B14	A14	44
I/O	P172	P198	A14	C13	47
I/O	-	P199	C13	B13	50
I/O	-	P200	B13	A13	53
VCC	P173	P201	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	-	A13	A12	56
I/O	-	-	D12	C12	59
I/O	P174	P202	C12	B12	62
I/O	P175	P203	B12	D12	65
I/O	P176	P205	A12	A11	68
I/O	P177	P206	B11	B11	71
I/O	P178	P207	C11	C11	74
I/O	P179	P208	A11	D11	77
I/O	P180	P209	A10	A10	80
I/O	P181	P210	B10	B10	83
GND	P182	P211	GND ⁽⁴⁾	GND ⁽⁴⁾	-
2/8/00	•	•	•	•	

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- 3. The "PWRDWN" on the XCS40XL is not part of the Boundary Scan chain. For the XCS40XL, subtract 1 from all Boundary Scan numbers from GCK3 on (343 and higher).
- 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package.
- CS280 package discontinued by <u>PDN2004-01</u>

Additional XCS40/XL Package Pins

PQ240

	GND Pins							
P22	P37	P83	P98	P143	P158			
P204	P219	-	-	-	-			
	Not Connected Pins							
P195	-	-	-	-	-			

2/12/98

BG256

	VCC Pins							
C14	D6	D7	D11	D14	D15			
E20	F1	F4	F17	G4	G17			
K4	L17	P4	P17	P19	R2			
R4	R17	U6	U7	U10	U14			
U15	V7	W20	-	-	-			
	GND Pins							
A1	B7	D4	D8	D13	D17			
G20	H4	H17	N3	N4	N17			
U4	U8	U13	U17	W14	-			

6/17/97

CS280

VCC Pins							
A1	A7	B5	B15	C10	C17		
D13	E3	E18	G1	G19	K2		
K17	M4	N16	R3	R18	T7		
U3	U10	U17	V5	V15	W13		
	GND Pins						
E5	E7	E8	E9	E11	E12		
E13	G5	G15	H5	H15	J5		
J15	L5	L15	M5	M15	N5		
N15	R7	R8	R9	R11	R12		
R13	-	-	-	-	-		

5/19/99