Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 400 | | Number of Logic Elements/Cells | 950 | | Total RAM Bits | 12800 | | Number of I/O | 113 | | Number of Gates | 20000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-TFBGA, CSPBGA | | Supplier Device Package | 144-LCSBGA (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs20xl-5cs144c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong The register choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are also available. The clock signal inverter is also shown in Figure 5 on the CK line. The Spartan family IOB data input path has a one-tap delay element: either the delay is inserted (default), or it is not. The Spartan-XL family IOB data input path has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The added delay guarantees a zero hold time with respect to clocks routed through the global clock buffers. (See Global Nets and Buffers, page 12 for a description of the global clock buffers in the Spartan/XL families.) For a shorter input register setup time, with positive hold-time, attach a NODELAY attribute or property to the flip-flop. The output of the input register goes to the routing channels (via I1 and I2 in Figure 6). The I1 and I2 signals that exit the IOB can each carry either the direct or registered input signal. The 5V Spartan family input buffers can be globally configured for either TTL (1.2V) or CMOS (VCC/2) thresholds, using an option in the bitstream generation software. The Spartan family output levels are also configurable; the two global adjustments of input threshold and output level are independent. The inputs of Spartan devices can be driven by the outputs of any 3.3V device, if the Spartan family inputs are in TTL mode. Input and output thresholds are TTL on all configuration pins until the configuration has been loaded into the device and specifies how they are to be used. Spartan-XL family inputs are TTL compatible and 3.3V CMOS compatible. Supported sources for Spartan/XL device inputs are shown in Table 4. Spartan-XL family I/Os are fully 5V tolerant even though the V_{CC} is 3.3V. This allows 5V signals to directly connect to the Spartan-XL family inputs without damage, as shown in Table 4. In addition, the 3.3V V_{CC} can be applied before or after 5V signals are applied to the I/Os. This makes the Spartan-XL devices immune to power supply sequencing problems. Figure 6: Simplified Spartan/XL IOB Block Diagram and Spartan-XL families, speeding up arithmetic and counting functions. The carry chain in 5V Spartan devices can run either up or down. At the top and bottom of the columns where there are no CLBs above and below, the carry is propagated to the right. The default is always to propagate up the column, as shown in the figures. The carry chain in Spartan-XL devices can only run up the column, providing even higher speed. Figure 16, page 18 shows a Spartan/XL FPGA CLB with dedicated fast carry logic. The carry logic shares operand and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums. Figure 17, page 19 shows the details of the Spartan/XL FPGA carry logic. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 16. The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols. Figure 16: Fast Carry Logic in Spartan/XL CLB ## **On-Chip Oscillator** Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with process, $V_{\rm CC}$, and temperature. The output frequency falls between 4 MHz and 10 MHz. The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8-MHz clock, plus any two of 500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies can vary by as much as -50% or +25%. These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code. The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design. ### Global Signals: GSR and GTS #### Global Set/Reset A separate Global Set/Reset line, as shown in Figure 3, page 5 for the CLB and Figure 5, page 6 for the IOB, sets or clears each flip-flop during power-up, reconfiguration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network. Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, if in reset mode, it is reset by both SR and GSR. GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 19.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the GSR signal. Alternatively, GSR can be driven from any internal node. #### Global 3-State A separate Global 3-state line (GTS) as shown in Figure 6, page 7 forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. GTS does not compete with other routing resources; it uses a dedicated distribution network. GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. This is similar to what is shown in Figure 19 for GSR except the IBUF would be connected to GTS. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-state signal. Alternatively, GTS can be driven from any internal node. Figure 19: Symbols for Global Set/Reset ## **Boundary Scan** The "bed of nails" has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can embed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan compatible device. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two. The Spartan and Spartan-XL families implement IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section. By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in the Spartan/XL devices. The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note: "Boundary Scan in FPGA Devices." Figure 29: Circuit for Generating CRC-16 ## **Configuration Sequence** There are four major steps in the Spartan/XL FPGA power-up configuration sequence. - · Configuration Memory Clear - Initialization -
Configuration - Start-up The full process is illustrated in Figure 30. ## Configuration Memory Clear When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When V_{CC} reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms. The delay is four times as long when in Master Serial Mode to allow ample time for all slaves to reach a stable V_{CC} . When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain. This delay is applied only on power-up. It is not applied when reconfiguring an FPGA by pulsing the PROGRAM pin Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator. At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the $\overline{PROGRAM}$ pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the \overline{INIT} input. #### Initialization During initialization and configuration, user pins HDC, $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE provide status outputs for the system interface. The outputs $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE are held Low and HDC is held High starting at the initial application of power. The open drain $\overline{\text{INIT}}$ pin is released after the final initialization pass through the frame addresses. There is a deliberate delay before a Master-mode device recognizes an inactive $\overline{\text{INIT}}$. Two internal clocks after the $\overline{\text{INIT}}$ pin is recognized as High, the device samples the MODE pin to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded. to wait after completing the configuration memory clear operation. When \overline{INIT} is no longer held Low externally, the device determines its configuration mode by capturing the state of the Mode pins, and is ready to start the configuration process. A master device waits up to an additional 300 μs to make sure that any slaves in the optional daisy chain have seen that \overline{INIT} is High. For more details on Configuration, refer to the Xilinx Application Note "FPGA Configuration Guidelines" (XAPP090). #### Start-Up Start-up is the transition from the configuration process to the intended user operation. This transition involves a change from one clock source to another, and a change from interfacing parallel or serial configuration data where most outputs are 3-stated, to normal operation with I/O pins active in the user system. Start-up must make sure that the user logic 'wakes up' gracefully, that the outputs become active without causing contention with the configuration signals, and that the internal flip-flops are released from the Global Set/Reset (GSR) at the right time. #### **Start-Up Initiation** Two conditions have to be met in order for the start-up sequence to begin: - The chip's internal memory must be full, and - The configuration length count must be met, exactly. In all configuration modes except Express mode, Spartan/XL devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration. In Express mode, there is no length count. The start-up sequence for each device begins when the device has received its quota of configuration data. Wiring the DONE pins of several devices together delays start-up of all devices until all are fully configured. #### **Start-Up Events** The device can be programmed to control three start-up events. - The release of the open-drain DONE output - The termination of the Global Three-State and the change of configuration-related pins to the user function, activating all IOBs. - The termination of the Global Set/Reset initialization of all CLB and IOB storage elements. Figure 31 describes start-up timing in detail. The three events — DONE going High, the internal GSR being de-activated, and the user I/O going active — can all occur in any arbitrary sequence. This relative timing is selected by options in the bitstream generation software. Heavy lines in Figure 31 show the default timing. The thin lines indicate all other possible timing options. The start-up logic must be clocked until the "F" (Finished) state is reached. The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. GSR is then released another clock period later to make sure that user operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 31, but the designer can modify it to meet particular requirements. #### Start-Up Clock Normally, the start-up sequence is controlled by the internal device oscillator (CCLK), which is asynchronous to the system clock. As a configuration option, they can be triggered by an on-chip user net called UCLK. This user net can be accessed by placing the STARTUP library symbol, and the start-up modes are known as UCLK_NOSYNC or UCLK_SYNC. This allows the device to wake up in synchronism with the user system. #### **DONE Pin** Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software. The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to the start-up control logic. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK_SYNC or UCLK_SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. Express mode configuration always uses either CCLK_SYNC or UCLK_SYNC timing, while the other configuration modes can use any of the four timing sequences. When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active. ## Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted. | | | | | Speed | l Grade | | | |-------------------|---|---------------------|-----|-------|---------|-----|-------| | | | | | 4 | - | 3 | - | | Symbol | Single Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Ope | eration | | | | | | | | T _{WCS} | Address write cycle time (clock K period) | 16x2 | 8.0 | - | 11.6 | - | ns | | T _{WCTS} | | 32x1 | 8.0 | - | 11.6 | - | ns | | T_{WPS} | Clock K pulse width (active edge) | 16x2 | 4.0 | - | 5.8 | - | ns | | T_{WPTS} | | 32x1 | 4.0 | - | 5.8 | - | ns | | T _{ASS} | Address setup time before clock K | 16x2 | 1.5 | - | 2.0 | - | ns | | T _{ASTS} | | 32x1 | 1.5 | - | 2.0 | - | ns | | T _{AHS} | Address hold time after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{AHTS} | | 32x1 | 0.0 | - | 0.0 | - | ns | | T _{DSS} | DIN setup time before clock K | 16x2 | 1.5 | - | 2.7 | - | ns | | T _{DSTS} | | 32x1 | 1.5 | - | 1.7 | - | ns | | T _{DHS} | DIN hold time after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{DHTS} | | 32x1 | 0.0 | - | 0.0 | - | ns | | T _{WSS} | WE setup time before clock K | 16x2 | 1.5 | - | 1.6 | - | ns | | T _{WSTS} | | 32x1 | 1.5 | - | 1.6 | - | ns | | T _{WHS} | WE hold time after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{WHTS} | | 32x1 | 0.0 | - | 0.0 | - | ns | | T _{WOS} | Data valid after clock K | 16x2 | - | 6.5 | - | 7.9 | ns | | T _{WOTS} | | 32x1 | - | 7.0 | - | 9.3 | ns | | Read Ope | ration | | | i. | | | 1 | | T _{RC} | Address read cycle time | 16x2 | 2.6 | - | 2.6 | - | ns | | T _{RCT} | | 32x1 | 3.8 | - | 3.8 | - | ns | | T _{ILO} | Data valid after address change (no Write | 16x2 | - | 1.2 | - | 1.6 | ns | | T _{IHO} | Enable) | 32x1 | - | 2.0 | - | 2.7 | ns | | T _{ICK} | Address setup time before clock K | 16x2 | 1.8 | - | 2.4 | - | ns | | T _{IHCK} | | 32x1 | 2.9 | - | 3.9 | - | ns | #### Notes: ^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing. #### **Capacitive Load Factor** Figure 34 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output
delay. Figure 34 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control. Figure 34: Delay Factor at Various Capacitive Loads ## **Spartan-XL Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and expressed in nanoseconds unless otherwise noted. | | | | Speed | Grade | | | | |-------------------|--|---------|---------------------------|--------------|-----------|-------|--| | | | - | 5 | - | 4 | 1 | | | Symbol | Description | Min | Max | Min | Max | Units | | | Clocks | | | | | | | | | T _{CH} | Clock High time | 2.0 | - | 2.3 | - | ns | | | T _{CL} | Clock Low time | 2.0 | - | 2.3 | - | ns | | | Combinato | orial Delays | | , | 1 | ı | | | | T _{ILO} | F/G inputs to X/Y outputs | - | 1.0 | - | 1.1 | ns | | | T _{IHO} | F/G inputs via H to X/Y outputs | - | 1.7 | - | 2.0 | ns | | | T _{ITO} | F/G inputs via transparent latch to Q outputs | - | 1.5 | - | 1.8 | ns | | | T _{HH1O} | C inputs via H1 via H to X/Y outputs | - | 1.5 | - | 1.8 | ns | | | Sequentia | l Delays | * | | | , | | | | T _{CKO} | Clock K to Flip-Flop or latch outputs Q | - | 1.2 | - | 1.4 | ns | | | Setup Tim | e before Clock K | | , | | ı | | | | T _{ICK} | F/G inputs | 0.6 | - | 0.7 | - | ns | | | T _{IHCK} | F/G inputs via H | 1.3 | - | 1.6 | - | ns | | | Hold Time | after Clock K | * | | | , | | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | | Set/Reset | Direct | | | | | | | | T _{RPW} | Width (High) | 2.5 | - | 2.8 | - | ns | | | T _{RIO} | Delay from C inputs via S/R, going High to Q | - | 2.3 | - | 2.7 | ns | | | Global Set | Reset | * | | | , | | | | T_{MRW} | Minimum GSR Pulse Width | 10.5 | - | 11.5 | - | ns | | | T_{MRQ} | Delay from GSR input to any Q | See pag | ge 60 for T _{RI} | RI values pe | r device. | | | | F _{TOG} | Toggle Frequency (MHz) (for export control purposes) | - | 250 | - | 217 | MHz | | ## Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted. | | | Speed Grade | | | | | | |-------------------|---|---------------------|-----|-----|-----|-----|-------| | | | | • | -5 | - | -4 | _ | | Symbol | Single Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Ope | ration | | | | | | | | T _{WCS} | Address write cycle time (clock K period) | 16x2 | 7.7 | - | 8.4 | - | ns | | T _{WCTS} | | 32x1 | 7.7 | - | 8.4 | - | ns | | T _{WPS} | Clock K pulse width (active edge) | 16x2 | 3.1 | - | 3.6 | - | ns | | T _{WPTS} | | 32x1 | 3.1 | - | 3.6 | - | ns | | T _{ASS} | Address setup time before clock K | 16x2 | 1.3 | - | 1.5 | - | ns | | T _{ASTS} | | 32x1 | 1.5 | - | 1.7 | - | ns | | T _{DSS} | DIN setup time before clock K | 16x2 | 1.5 | - | 1.7 | - | ns | | T _{DSTS} | | 32x1 | 1.8 | - | 2.1 | - | ns | | T _{WSS} | WE setup time before clock K | 16x2 | 1.4 | - | 1.6 | - | ns | | T _{WSTS} | | 32x1 | 1.3 | - | 1.5 | - | ns | | | All hold times after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{WOS} | Data valid after clock K | 32x1 | - | 4.5 | - | 5.3 | ns | | T _{WOTS} | | 16x2 | - | 5.4 | - | 6.3 | ns | | Read Ope | ration | • | 11 | 1 | | | 11 | | T _{RC} | Address read cycle time | 16x2 | 2.6 | - | 3.1 | - | ns | | T _{RCT} | | 32x1 | 3.8 | - | 5.5 | - | ns | | T _{ILO} | Data Valid after address change (no Write | 16x2 | - | 1.0 | - | 1.1 | ns | | T _{IHO} | Enable) | 32x1 | - | 1.7 | - | 2.0 | ns | | T _{ICK} | Address setup time before clock K | 16x2 | 0.6 | - | 0.7 | - | ns | | T _{IHCK} | | 32x1 | 1.3 | - | 1.6 | - | ns | | Notes: | | | | | | | | #### Notes: 56 ^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing. ### Spartan-XL Family Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper- ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. #### Spartan-XL Family Setup and Hold | | | | Speed | | | |-----------------------------------|--------------------------------------|---------|---------|---------|-------| | | | | -5 | -4 | | | Symbol | Description | Device | Max | Max | Units | | Input Setup/H | old Times Using Global Clock and IFF | | | | | | T _{SUF} /T _{HF} | No Delay | XCS05XL | 1.1/2.0 | 1.6/2.6 | ns | | | | XCS10XL | 1.0/2.2 | 1.5/2.8 | ns | | | | XCS20XL | 0.9/2.4 | 1.4/3.0 | ns | | | | XCS30XL | 0.8/2.6 | 1.3/3.2 | ns | | | | XCS40XL | 0.7/2.8 | 1.2/3.4 | ns | | T _{SU} /T _H | Full Delay | XCS05XL | 3.9/0.0 | 5.1/0.0 | ns | | | | XCS10XL | 4.1/0.0 | 5.3/0.0 | ns | | | | XCS20XL | 4.3/0.0 | 5.5/0.0 | ns | | | | XCS30XL | 4.5/0.0 | 5.7/0.0 | ns | | | | XCS40XL | 4.7/0.0 | 5.9/0.0 | ns | #### Notes: - 1. IFF = Input Flip-Flop or Latch - 2. Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per IOB/CLB. #### **Capacitive Load Factor** Figure 35 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 35 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control. Figure 35: Delay Factor at Various Capacitive Loads ## **Spartan-XL Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | | Speed | Grade | | | | |--------------------|---|-------------|------|---------|-------|------|-------|--| | | | | - | 5 | - | 4 | | | | Symbol | Description | Device | Min | Min Max | | Max | Units | | | Setup Tim | es | | | | | | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK) | All devices | 0.0 | - | 0.0 | - | ns | | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.0 | - | 1.2 | - | ns | | | T _{POCK} | Pad to Fast Capture Latch Enable (OK), no delay | All devices | 0.7 | - | 0.8 | - | ns | | | Hold Time | es | | | | • | | | | | | All Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | | Propagati | on Delays | | | | • | | | | | T _{PID} | Pad to I1, I2 | All devices | - | 0.9 | - | 1.1 | ns | | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.1 | - | 2.5 | ns | | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 1.0 | - | 1.1 | ns | | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 1.1 | - | 1.2 | ns | | | Delay Add | ler for Input with Full Delay Option | | | | • | | | | | T _{Delay} | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS05XL | 4.0 | - | 4.7 | - | ns | | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS10XL | 4.8 | - | 5.6 | - | ns | | | | | XCS20XL | 5.0 | - | 5.9 | - | ns | | | | | XCS30XL | 5.5 | - | 6.5 | - | ns | | | | | XCS40XL | 6.5 | - | 7.6 | - | ns | | | Global Se | t/Reset | " | | ı | 1 | ı | i. | | | T _{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | | T _{RRI} | Delay from GSR input to any Q | XCS05XL | - | 9.0 | - | 10.5 | ns | | | | | XCS10XL | - | 9.5 | - | 11.0 | ns | | | | | XCS20XL | - | 10.0 | - | 11.5 | ns | | | | | XCS30XL | - | 11.0 | - | 12.5 | ns | | | | | XCS40XL | - | 12.0 | - | 13.5 | ns | | #### Notes: - 1. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. ### **XCS10 and XCS10XL Device Pinouts** | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | |----------------------|---------------------|-------|------------------------|-------|---------------| | I/O | P80 | P81 | A10 | P116 | 17 | | GND | - | - | C9 | P118 | -
| | I/O | - | - | B9 | P119 | 20 | | I/O | - | - | A9 | P120 | 23 | | I/O | P81 | P82 | D8 | P121 | 26 | | I/O | P82 | P83 | C8 | P122 | 29 | | I/O | - | P84 | B8 | P123 | 32 | | I/O | - | P85 | A8 | P124 | 35 | | I/O | P83 | P86 | B7 | P125 | 38 | | I/O | P84 | P87 | A7 | P126 | 41 | | GND | P1 | P88 | C7 | P127 | - | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS10XL is not part of the Boundary Scan chain. For the XCS10XL, subtract 1 from all Boundary Scan numbers from GCK3 on (175 and higher). - 4. PC84 and CS144 packages discontinued by PDN2004-01 ### Additional XCS10/XL Package Pins | TQ144 | | | | | | | | | | | |--------------------|--------|--|--|--|--|--|--|--|--|--| | Not Connected Pins | | | | | | | | | | | | P117 | P117 | | | | | | | | | | | 5/5/97 | 5/5/97 | | | | | | | | | | | CS144 | | | | | | | | | | | |---------|--------------------|---|---|---|---|--|--|--|--|--| | | Not Connected Pins | | | | | | | | | | | D9 | - | - | - | - | - | | | | | | | 4/28/99 | 4/28/99 | | | | | | | | | | ### XCS20 and XCS20XL Device Pinouts | XCS20/XL | | | | | Bndry | |--------------------|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | VCC | P89 | D7 | P128 | P183 | - | | I/O | P90 | A6 | P129 | P184 | 62 | | I/O | P91 | B6 | P130 | P185 | 65 | | I/O | P92 | C6 | P131 | P186 | 68 | | I/O | P93 | D6 | P132 | P187 | 71 | | I/O | - | - | - | P188 | 74 | | I/O | - | - | - | P189 | 77 | | I/O | P94 | A5 | P133 | P190 | 80 | | I/O | P95 | B5 | P134 | P191 | 83 | | VCC ⁽²⁾ | - | - | - | P192 | - | | I/O | - | C5 | P135 | P193 | 86 | | I/O | - | D5 | P136 | P194 | 89 | | GND | - | A4 | P137 | P195 | - | | I/O | - | - | - | P196 | 92 | | I/O | - | - | - | P197 | 95 | | I/O | - | - | - | P198 | 98 | | I/O | - | - | - | P199 | 101 | | I/O | P96 | B4 | P138 | P200 | 104 | | I/O | P97 | C4 | P139 | P201 | 107 | | I/O | - | А3 | P140 | P204 | 110 | | I/O | - | B3 | P141 | P205 | 113 | | I/O | P98 | C3 | P142 | P206 | 116 | ## **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | V0400 | CS144 ^(2,4) | TO444 | DOGGG | Bndry | |---|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | | TQ144 | PQ208 | Scan | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P99 | A2 | P143 | P207 | 119 | | VCC | P100 | B2 | P144 | P208 | - | | GND | P1 | A1 | P1 | P1 | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | B1 | P2 | P2 | 122 | | I/O | P3 | C2 | P3 | P3 | 125 | | I/O | - | C1 | P4 | P4 | 128 | | I/O | - | D4 | P5 | P5 | 131 | | I/O, TDI | P4 | D3 | P6 | P6 | 134 | | I/O, TCK | P5 | D2 | P7 | P7 | 137 | | I/O | - | - | - | P8 | 140 | | I/O | - | - | - | P9 | 143 | | I/O | - | - | - | P10 | 146 | | I/O | - | - | - | P11 | 149 | | GND | - | D1 | P8 | P13 | - | | I/O | - | E4 | P9 | P14 | 152 | | I/O | - | E3 | P10 | P15 | 155 | | I/O, TMS | P6 | E2 | P11 | P16 | 158 | | I/O | P7 | E1 | P12 | P17 | 161 | | VCC ⁽²⁾ | - | - | - | P18 | - | | I/O | - | - | - | P19 | 164 | | I/O | - | - | - | P20 | 167 | ## **XCS20 and XCS20XL Device Pinouts** | | CS20 and XCS20XL Device Pinouts | | | | | | | | |---|---------------------------------|------------------------|-------|-------|--------------------|--|--|--| | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | | | | | PROGRAM | P52 | M13 | P74 | P106 | - | | | | | I/O (D7 ⁽²⁾) | P53 | L12 | P75 | P107 | 367 ⁽³⁾ | | | | | I/O, | P54 | L13 | P76 | P108 | 370 ⁽³⁾ | | | | | PGCK3 ⁽¹⁾ ,
GCK5 ⁽²⁾ | | | | | | | | | | I/O | | K10 | P77 | P109 | 373 ⁽³⁾ | | | | | 1/0 | - | K10 | P77 | P109 | 373 ⁽³⁾ | | | | | I/O (D6 ⁽²⁾) | -
P55 | K11 | P79 | P110 | 379 ⁽³⁾ | | | | | I/O (D6(=/) | | K12 | | P112 | 382 (3) | | | | | | P56 | NIS | P80 | | 385 (3) | | | | | 1/0 | - | - | - | P114 | | | | | | 1/0 | - | - | - | P115 | 388 (3) | | | | | 1/0 | - | - | - | P116 | 391 ⁽³⁾ | | | | | I/O | - | - | - | P117 | 394 ⁽³⁾ | | | | | GND | - | J10 | P81 | P118 | - (2) | | | | | I/O | - | J11 | P82 | P119 | 397 ⁽³⁾ | | | | | I/O | - | J12 | P83 | P120 | 400 (3) | | | | | VCC ⁽²⁾ | - | - | - | P121 | - (0) | | | | | I/O (D5 ⁽²⁾) | P57 | J13 | P84 | P122 | 403 (3) | | | | | I/O | P58 | H10 | P85 | P123 | 406 ⁽³⁾ | | | | | I/O | - | - | - | P124 | 409 (3) | | | | | I/O | - | - | - | P125 | 412 ⁽³⁾ | | | | | I/O | P59 | H11 | P86 | P126 | 415 ⁽³⁾ | | | | | I/O | P60 | H12 | P87 | P127 | 418 ⁽³⁾ | | | | | I/O (D4 ⁽²⁾) | P61 | H13 | P88 | P128 | 421 ⁽³⁾ | | | | | I/O | P62 | G12 | P89 | P129 | 424 ⁽³⁾ | | | | | VCC | P63 | G13 | P90 | P130 | - | | | | | GND | P64 | G11 | P91 | P131 | - | | | | | I/O (D3 ⁽²⁾) | P65 | G10 | P92 | P132 | 427 ⁽³⁾ | | | | | I/O | P66 | F13 | P93 | P133 | 430 ⁽³⁾ | | | | | I/O | P67 | F12 | P94 | P134 | 433 ⁽³⁾ | | | | | I/O | - | F11 | P95 | P135 | 436 ⁽³⁾ | | | | | I/O | - | - | - | P136 | 439 ⁽³⁾ | | | | | I/O | - | - | - | P137 | 442 (3) | | | | | I/O (D2 ⁽²⁾) | P68 | F10 | P96 | P138 | 445 ⁽³⁾ | | | | | I/O | P69 | E13 | P97 | P139 | 448 ⁽³⁾ | | | | | VCC ⁽²⁾ | - | - | - | P140 | - | | | | | I/O | _ | E12 | P98 | P141 | 451 ⁽³⁾ | | | | | I/O | _ | E11 | P99 | P142 | 454 ⁽³⁾ | | | | | GND | - | E10 | P100 | P143 | - | | | | | I/O | - | - | - | P145 | 457 ⁽³⁾ | | | | | I/O | - | - | - | P146 | 460 ⁽³⁾ | | | | | I/O | - | - | - | P147 | 463 ⁽³⁾ | | | | | I/O | - | - | - | P148 | 466 ⁽³⁾ | | | | | I/O (D1 ⁽²⁾) | P70 | D13 | P101 | P149 | 469 ⁽³⁾ | | | | | I/O | P71 | D12 | P102 | P150 | 472 ⁽³⁾ | | | | | I/O | - | D11 | P103 | P151 | 475 ⁽³⁾ | | | | ## **XCS20 and XCS20XL Device Pinouts** | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | |---|-------|------------------------|-------|-------|--------------------| | I/O | - | C13 | P104 | P152 | 478 ⁽³⁾ | | I/O
(D0 ⁽²⁾ , DIN) | P72 | C12 | P105 | P153 | 481 ⁽³⁾ | | I/O,
SGCK4 ⁽¹⁾ ,
GCK6 ⁽²⁾
(DOUT) | P73 | C11 | P106 | P154 | 484 ⁽³⁾ | | CCLK | P74 | B13 | P107 | P155 | - | | VCC | P75 | B12 | P108 | P156 | - | | O, TDO | P76 | A13 | P109 | P157 | 0 | | GND | P77 | A12 | P110 | P158 | - | | I/O | P78 | B11 | P111 | P159 | 2 | | I/O,
PGCK4 ⁽¹⁾ ,
GCK7 ⁽²⁾ | P79 | A11 | P112 | P160 | 5 | | I/O | - | D10 | P113 | P161 | 8 | | I/O | - | C10 | P114 | P162 | 11 | | I/O (CS1 ⁽²⁾) | P80 | B10 | P115 | P163 | 14 | | I/O | P81 | A10 | P116 | P164 | 17 | | I/O | - | D9 | P117 | P166 | 20 | | I/O | - | - | - | P167 | 23 | | I/O | - | - | - | P168 | 26 | | I/O | - | - | - | P169 | 29 | | GND | - | C9 | P118 | P170 | - | | I/O | - | B9 | P119 | P171 | 32 | | I/O | - | A9 | P120 | P172 | 35 | | VCC ⁽²⁾ | - | - | - | P173 | - | | I/O | P82 | D8 | P121 | P174 | 38 | | I/O | P83 | C8 | P122 | P175 | 41 | | I/O | - | - | - | P176 | 44 | | I/O | - | - | - | P177 | 47 | | I/O | P84 | B8 | P123 | P178 | 50 | | I/O | P85 | A8 | P124 | P179 | 53 | | I/O | P86 | B7 | P125 | P180 | 56 | | I/O | P87 | A7 | P126 | P181 | 59 | | GND | P88 | C7 | P127 | P182 | - | 2/8/00 ## Additional XCS20/XL Package Pins | | PQ208 | | | | | | | | | |--|--------------------|------|---------------------|---------------------|------|--|--|--|--| | | Not Connected Pins | | | | | | | | | | P12 P18 ⁽¹⁾ P33 ⁽¹⁾ P39 P65 P71 ⁽¹⁾ | | | | | | | | | | | P86 ⁽¹⁾ | P92 | P111 | P121 ⁽¹⁾ | P140 ⁽¹⁾ | P144 | | | | | | P165 P173 ⁽¹⁾ P192 ⁽¹⁾ P202 P203 - | | | | | | | | | | | 9/16/98 | | | | | | | | | | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - The "PWRDWN" on the XCS20XL is not part of the Boundary Scan chain. For the XCS20XL, subtract 1 from all Boundary Scan numbers from GCK3 on (247 and higher). - 4. CS144 package discontinued by PDN2004-01 ## XCS30 and XCS30XL Device Pinouts | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | VCC | P89 | P128 | P183 | P212 | VCC ⁽⁴⁾ | C10 | - | | I/O | P90 | P129 | P184 | P213 | C10 | D10 | 74 | | I/O | P91 | P130 | P185 | P214 | D10 | E10 | 77 | | I/O | P92 | P131 | P186 | P215 | A9 | A9 | 80 | | I/O | P93 | P132 | P187 | P216 | B9 | В9 | 83 | | I/O | - | - | P188 | P217 | C9 | C9 | 86 | | I/O | - | - | P189 | P218 | D9 | D9 | 89 | | I/O | P94 | P133 | P190 | P220 | A8 | A8 | 92 | | I/O | P95 | P134 | P191 | P221 | B8 | B8 | 95 | | VCC | - | - | P192 | P222 | VCC ⁽⁴⁾ | A7 | - | | I/O | - | - | - | P223 | A6 | B7 | 98 | | I/O | - | - | - | P224 | C7 | C7 | 101 | | I/O | - | P135 | P193 | P225 | B6 | D7 | 104 | | I/O | - | P136 | P194 | P226 | A5 | A6 | 107 | | GND | - | P137 | P195 | P227 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | P196 | P228 | C6 | B6 | 110 | | I/O | - | - | P197 | P229 | B5 | C6 | 113 | | I/O | - | - | P198 | P230 | A4 | D6 | 116 | | I/O | - | - | P199 | P231 | C5 | E6 | 119 | | I/O | P96 | P138 | P200 | P232 | B4 | A 5 | 122 | | I/O | P97 | P139 | P201 | P233 | A3 | C5 | 125 | | I/O | - | - | P202 | P234 | D5 | B4 | 128 | | I/O | - | - | P203 | P235 | C4 | C4 | 131 | | I/O | - | P140 | P204 | P236 | В3 | A3 | 134 | | I/O | - | P141 | P205 | P237 | B2 | A2 | 137 | | I/O | P98 | P142 | P206 | P238 | A2 | В3 | 140 | | I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾ | P99 | P143 | P207 | P239 | СЗ | B2 | 143 | | VCC | P100 | P144 | P208 | P240 | VCC ⁽⁴⁾ | A1 | - | | GND | P1 | P1 | P1 | P1 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾ | P2 | P2 | P2 | P2 | B1 | C3 | 146 | | I/O | P3 | P3 | P3 | P3 | C2 | C2 | 149 | | I/O | - | P4 | P4 | P4 | D2 | B1 | 152 | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |----------------------|----------------------|-------|-------|-------
----------------------|------------------------|---------------| | I/O | - | P5 | P5 | P5 | D3 | C1 | 155 | | I/O, TDI | P4 | P6 | P6 | P6 | E4 | D4 | 158 | | I/O, TCK | P5 | P7 | P7 | P7 | C1 | D3 | 161 | | I/O | - | - | P8 | P8 | D1 | E2 | 164 | | I/O | - | - | P9 | P9 | E3 | E4 | 167 | | I/O | - | - | P10 | P10 | E2 | E1 | 170 | | I/O | - | - | P11 | P11 | E1 | F5 | 173 | | I/O | - | - | P12 | P12 | F3 | F3 | 176 | | I/O | - | - | - | P13 | F2 | F2 | 179 | | GND | - | P8 | P13 | P14 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P9 | P14 | P15 | G3 | F4 | 182 | | I/O | - | P10 | P15 | P16 | G2 | F1 | 185 | | I/O, TMS | P6 | P11 | P16 | P17 | G1 | G3 | 188 | | I/O | P7 | P12 | P17 | P18 | НЗ | G2 | 191 | | VCC | - | - | P18 | P19 | VCC ⁽⁴⁾ | G1 | - | | I/O | - | - | - | P20 | H2 | G4 | 194 | | I/O | - | - | - | P21 | H1 | H1 | 197 | | I/O | - | - | P19 | P23 | J2 | H4 | 200 | | I/O | - | - | P20 | P24 | J1 | J1 | 203 | | I/O | - | P13 | P21 | P25 | K2 | J2 | 206 | | I/O | P8 | P14 | P22 | P26 | K3 | J3 | 209 | | I/O | P9 | P15 | P23 | P27 | K1 | J4 | 212 | | I/O | P10 | P16 | P24 | P28 | L1 | K1 | 215 | | GND | P11 | P17 | P25 | P29 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | VCC | P12 | P18 | P26 | P30 | VCC ⁽⁴⁾ | K2 | - | | I/O | P13 | P19 | P27 | P31 | L2 | K3 | 218 | | I/O | P14 | P20 | P28 | P32 | L3 | K4 | 221 | | I/O | P15 | P21 | P29 | P33 | L4 | K5 | 224 | | I/O | - | P22 | P30 | P34 | M1 | L1 | 227 | | I/O | - | - | P31 | P35 | M2 | L2 | 230 | | I/O | - | - | P32 | P36 | M3 | L3 | 233 | | I/O | - | - | - | P38 | N1 | M2 | 236 | | I/O | - | - | - | P39 | N2 | M3 | 239 | | VCC | - | - | P33 | P40 | VCC ⁽⁴⁾ | M4 | - | | I/O | P16 | P23 | P34 | P41 | P1 | N1 | 242 | | I/O | P17 | P24 | P35 | P42 | P2 | N2 | 245 | | I/O | - | P25 | P36 | P43 | R1 | N3 | 248 | | I/O | - | P26 | P37 | P44 | P3 | N4 | 251 | | GND | - | P27 | P38 | P45 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | - | P46 | T1 | P1 | 254 | | I/O | - | - | P39 | P47 | R3 | P2 | 257 | | I/O | - | - | P40 | P48 | T2 | P3 | 260 | | I/O | - | - | P41 | P49 | U1 | P4 | 263 | | I/O | - | _ | P42 | P50 | T3 | P5 | 266 | | I/O | - | _ | P43 | P51 | U2 | R1 | 269 | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |----------------------|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | I/O | - | - | - | P190 | B16 | A15 | 23 | | I/O | - | P117 | P166 | P191 | A16 | E14 | 26 | | I/O | - | - | P167 | P192 | C15 | C14 | 29 | | I/O | - | - | P168 | P193 | B15 | B14 | 32 | | I/O | - | - | P169 | P194 | A15 | D14 | 35 | | GND | - | P118 | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P119 | P171 | P197 | B14 | A14 | 38 | | I/O | - | P120 | P172 | P198 | A14 | C13 | 41 | | I/O | - | - | - | P199 | C13 | B13 | 44 | | I/O | - | - | - | P200 | B13 | A13 | 47 | | VCC | - | - | P173 | P201 | VCC ⁽⁴⁾ | D13 | - | | I/O | P82 | P121 | P174 | P202 | C12 | B12 | 50 | | I/O | P83 | P122 | P175 | P203 | B12 | D12 | 53 | | I/O | - | - | P176 | P205 | A12 | A11 | 56 | | I/O | - | - | P177 | P206 | B11 | B11 | 59 | | I/O | P84 | P123 | P178 | P207 | C11 | C11 | 62 | | I/O | P85 | P124 | P179 | P208 | A11 | D11 | 65 | | I/O | P86 | P125 | P180 | P209 | A10 | A10 | 68 | | I/O | P87 | P126 | P181 | P210 | B10 | B10 | 71 | | GND | P88 | P127 | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | # Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS30XL is not part of the Boundary Scan chain. For the XCS30XL, subtract 1 from all Boundary Scan numbers from GCK3 on (295 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - 5. CS280 package, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 ## Additional XCS30/XL Package Pins #### **PQ240** | GND Pins | | | | | | | | | |----------|--------------------|---|---|---|---|--|--|--| | P22 | P37 P83 P98 P143 P | | | | | | | | | P204 | P219 | - | - | - | - | | | | | | Not Connected Pins | | | | | | | | | P195 | P195 | | | | | | | | | 2/1 | 2/98 | | |-----|------|--| | | | | #### **BG256** | VCC Pins | | | | | | | | | |----------|-----|-----|-----|-----|-----|--|--|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | | | E20 | F1 | F4 | F17 | G4 | G17 | | | | | K4 | L17 | P4 | P17 | P19 | R2 | | | | | R4 | R17 | U6 | U7 | U10 | U14 | | | | | U15 | V7 | W20 | - | - | - | | | | | | GND Pins | | | | | | | | | |-----|----------|-----------|------------|-----|-----|--|--|--|--| | A1 | B7 | D13 | D17 | | | | | | | | G20 | H4 | H17 | N3 | N4 | N17 | | | | | | U4 | U8 | U13 | U17 | W14 | - | | | | | | | l | Not Conne | ected Pins | 3 | | | | | | | A7 | A13 | C8 | D12 | H20 | J3 | | | | | | J4 | M4 | M19 | V9 | W9 | W13 | | | | | | Y13 | - | - | - | - | - | | | | | 6/4/97 ### **CS280** | | VCC Pins | | | | | | | | | |----|----------|-----|-----|-----|-----|--|--|--|--| | A1 | A7 | C10 | C17 | D13 | G1 | | | | | | G1 | G19 | K2 | K17 | M4 | N16 | | | | | | T7 | U3 | U10 | U17 | W13 | - | | | | | | | GND Pins | | | | | | | | | ### XCS40 and XCS40XL Device Pinouts #### XCS40/XL **Bndry** CS280^(2,5) **Pad Name PQ208 PQ240 BG256** Scan GND GND⁽⁴⁾ GND⁽⁴⁾ P25 P29 VCC P26 P30 VCC⁽⁴⁾ VCC⁽⁴⁾ I/O P31 P27 L2 **K**3 254 I/O P28 P32 L3 K4 257 I/O P33 K5 P29 L4 260 I/O P30 P34 M1 L1 263 I/O P31 P35 M2 L2 266 I/O P32 P36 МЗ L3 269 I/O M4 L4 272 -I/O М1 275 I/O P38 N1 M2 278 I/O P39 N2 МЗ 281 VCC⁽⁴⁾ VCC⁽⁴⁾ VCC P33 P40 I/O P34 P41 Р1 N₁ 284 I/O P35 P42 P2 N2 287 I/O P36 P43 R1 N3 290 I/O P37 P44 P3 N4 293 **GND** P38 P45 GND⁽⁴⁾ GND⁽⁴⁾ I/O P46 T1 P1 296 I/O P39 P47 R3 P2 299 I/O P40 P48 T2 Р3 302 I/O P41 P49 U1 P4 305 I/O P42 P50 T3 P5 308 I/O P43 P51 U2 R1 311 I/O R2 314 I/O R4 317 --I/O P44 P52 V1 T1 320 I/O P45 P53 T4 T2 323 P46 I/O U3 P54 Т3 326 I/O P47 P55 V2 U1 329 I/O P48 P56 W1 V1 332 I/O, P49 P57 V3 U2 335 SGCK2⁽¹⁾. GCK2 (2) Not P50 P58 W2 V2 338 Connected⁽¹⁾ $M1^{(2)}$ GND GND⁽⁴⁾ GND⁽⁴⁾ P51 P59 $MODE^{(1)}$. P52 P60 Υ1 W1 341 $M0^{(2)}$ VCC P53 P61 VCC(4) VCC⁽⁴⁾ 342(1) Not P54 P62 W3 V3 Connected⁽¹⁾ PWRDWN⁽²⁾ 343 (3) I/O, P55 P63 Y2 W2 PGCK2(1), GCK3⁽²⁾ #### XCS40 and XCS40XL Device Pinouts | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | |----------------------|-------|-------|--------------------|------------------------|--------------------| | I/O (HDC) | P56 | P64 | W4 | W3 | 346 ⁽³⁾ | | I/O | P57 | P65 | V4 | T4 | 349 ⁽³⁾ | | I/O | P58 | P66 | U5 | U4 | 352 ⁽³⁾ | | I/O | P59 | P67 | Y3 | V4 | 355 ⁽³⁾ | | I/O (LDC) | P60 | P68 | Y4 | W4 | 358 ⁽³⁾ | | I/O | - | - | - | R5 | 361 ⁽³⁾ | | I/O | - | - | - | U5 | 364 ⁽³⁾ | | I/O | P61 | P69 | V5 | T5 | 367 ⁽³⁾ | | I/O | P62 | P70 | W5 | W5 | 370 ⁽³⁾ | | I/O | P63 | P71 | Y5 | R6 | 373 ⁽³⁾ | | I/O | P64 | P72 | V6 | U6 | 376 ⁽³⁾ | | I/O | P65 | P73 | W6 | V6 | 379 ⁽³⁾ | | I/O | - | P74 | Y6 | T6 | 382 (3) | | GND | P66 | P75 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P67 | P76 | W7 | W6 | 385 (3) | | I/O | P68 | P77 | Y7 | U7 | 388 (3) | | I/O | P69 | P78 | V8 | V7 | 391 ⁽³⁾ | | I/O | P70 | P79 | W8 | W7 | 394 ⁽³⁾ | | VCC | P71 | P80 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | P72 | P81 | Y8 | W8 | 397 ⁽³⁾ | | I/O | P73 | P82 | U9 | U8 | 400 (3) | | I/O | - | - | V9 | V8 | 403 (3) | | I/O | - | - | W9 | T8 | 406 ⁽³⁾ | | I/O | - | P84 | Y9 | W9 | 409 (3) | | I/O | - | P85 | W10 | V9 | 412 ⁽³⁾ | | I/O | P74 | P86 | V10 | U9 | 415 ⁽³⁾ | | I/O | P75 | P87 | Y10 | Т9 | 418 ⁽³⁾ | | I/O | P76 | P88 | Y11 | W10 | 421 ⁽³⁾ | | I/O (ĪNIT) | P77 | P89 | W11 | V10 | 424 ⁽³⁾ | | VCC | P78 | P90 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | | GND | P79 | P91 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P80 | P92 | V11 | T10 | 427 ⁽³⁾ | | I/O | P81 | P93 | U11 | R10 | 430 ⁽³⁾ | | I/O | P82 | P94 | Y12 | W11 | 433 ⁽³⁾ | | I/O | P83 | P95 | W12 | V11 | 436 ⁽³⁾ | | I/O | P84 | P96 | V12 | U11 | 439 ⁽³⁾ | | I/O | P85 | P97 | U12 | T11 | 442 ⁽³⁾ | | I/O | - | - | Y13 | W12 | 445 ⁽³⁾ | | I/O | - | - | W13 | V12 | 448 (3) | | I/O | - | P99 | V13 | U12 | 451 ⁽³⁾ | | I/O | - | P100 | Y14 | T12 | 454 ⁽³⁾ | | VCC | P86 | P101 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | P87 | P102 | Y15 | V13 | 457 ⁽³⁾ | | I/O | P88 | P103 | V14 | U13 | 460 ⁽³⁾ | | I/O | P89 | P104 | W15 | T13 | 463 ⁽³⁾ | ## **Product Availability** Table 19 shows the packages and speed grades for Spartan/XL devices. Table 20 shows the number of user I/Os available for each device/package combination. Table 19: Component Availability Chart for Spartan/XL FPGAs | | Pins | 84 | 100 | 144 | 144 | 208 | 240 | 256 | 280 | |-----------|------|---------------------|----------------------|----------------------|-----------------|-----------------|-----------------|----------------------|----------------------| | | Туре | Plastic
PLCC | Plastic
VQFP | Chip
Scale | Plastic
TQFP | Plastic
PQFP | Plastic
PQFP | Plastic
BGA | Chip
Scale | | Device | Code | PC84 ⁽³⁾ | VQ100 ⁽³⁾ | CS144 ⁽³⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽³⁾ | CS280 ⁽³⁾ | | XCS05 | -3 | C(3) | C, I | - | - | - | - | - | - | | AC303 | -4 | C(3) | С | - | - | - | - | - | - | | XCS10 | -3 | C(3) | C, I | - | С | - | - | - | - | | AUS10 - | -4 | C(3) | С | - | С | - | - | - | - | | XCS20 | -3 | - | С | - | C, I | C, I | - | - | - | | ۸0320 | -4 | - | С | - | С | С | - | - | - | | XCS30 | -3 | - | C(3) | - | C, I | C, I | С | C(3) | - | | XC530 | -4 | - | C(3) | - | С | С | С | C(3) | - | | XCS40 | -3 | - | - | - | - | C, I | С | С | - | | AU340 | -4 | - | - | - | - | С | С | С | - | | XCS05XL | -4 | C(3) | C, I | - | - | - | - | - | - | | VC303VL | -5 | C(3) | С | - | - | - | - | - | - | | XCS10XL | -4 | C(3) | C, I | C(3) | С | - | - | - | - | | ACSTUAL - | -5 | C(3) | С | C(3) | С | - | - | - | - | | XCS20XL | -4 | - | C, I | C(3) | C, I | C, I | - | - | - | | AUGZUAL - | -5 | - | С | C(3) | С | С | - | - | - | | XCS30XL | -4 | - | C, I | - | C, I | C, I | С | С | C(3) | | AUGGUAL - | -5 | - | С | - | С | С | С | С | C(3) | |
XCS40XL | -4 | - | - | - | - | C, I | С | C, I | C(3) | | 703407L | -5 | - | - | - | - | С | С | С | C(3) | ## Notes: - 1. $C = Commercial T_J = 0^{\circ} to +85^{\circ}C$ - 2. I = Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$ - 3. PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 - 4. Some Spartan-XL devices are available in Pb-free package options. The Pb-free packages insert a "G" in the package code. Contact Xilinx for availability. ### Package Specifications Package drawings and material declaration data sheets for the Spartan/XL devices can be found on the Xilinx website at: ### www.xilinx.com/support/documentation/spartan-xl.htm#19687 Thermal data for the Spartan/XL packages can be found using the thermal query tool on the Xilinx website at: www.xilinx.com/cgi-bin/thermal/thermal.pl Table 20: User I/O Chart for Spartan/XL FPGAs | | Max
I/O | Package Type | | | | | | | | |---------|------------|---------------------|----------------------|----------------------|--------------------|--------------------|--------------------|----------------------|----------------------| | Device | | PC84 ⁽¹⁾ | VQ100 ⁽¹⁾ | CS144 ⁽¹⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽¹⁾ | CS280 ⁽¹⁾ | | XCS05 | 80 | 61 ⁽¹⁾ | 77 | - | - | - | - | - | - | | XCS10 | 112 | 61 ⁽¹⁾ | 77 | - | 112 | - | - | - | - | | XCS20 | 160 | - | 77 | - | 113 | 160 | - | - | - | | XCS30 | 192 | - | 77 ⁽¹⁾ | - | 113 | 169 | 192 | 192 ⁽¹⁾ | - | | XCS40 | 224 | - | - | - | - | 169 | 192 | 205 | - | | XCS05XL | 80 | 61 ⁽¹⁾ | 77 ⁽²⁾ | - | - | - | - | - | - | | XCS10XL | 112 | 61 ⁽¹⁾ | 77 ⁽²⁾ | 112 ⁽¹⁾ | 112 ⁽²⁾ | - | - | - | - | | XCS20XL | 160 | - | 77 ⁽²⁾ | 113 ⁽¹⁾ | 113 ⁽²⁾ | 160 ⁽²⁾ | - | - | - | | XCS30XL | 192 | - | 77 ⁽²⁾ | - | 113 ⁽²⁾ | 169 ⁽²⁾ | 192 ⁽²⁾ | 192 ⁽²⁾ | 192 ⁽¹⁾ | | XCS40XL | 224 | - | - | - | - | 169 ⁽²⁾ | 192 ⁽²⁾ | 205 ⁽²⁾ | 224 ⁽¹⁾ | | 6/25/08 | | | | | | | | | · | #### 0/23/00 #### Notes: - PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 - 2. These Spartan-XL devices are available in Pb-free package options. The Pb-free packages insert a "G" in the package code. Contact Xilinx for availability. ## **Ordering Information** BG = Ball Grid Array VQ = Very Thin Quad Flat Pack BGG = Ball Grid Array (Pb-free) VQG = Very Thin Quad Flat Pack (Pb-free) PC = Plastic Lead Chip Carrier TQ = Thin Quad Flat Pack PQ = Plastic Quad Flat Pack TQG = Thin Quad Flat Pack (Pb-free)