Welcome to **E-XFL.COM** **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 192 | | Number of Gates | 30000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 256-BBGA | | Supplier Device Package | 256-PBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs30-3bg256c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram #### **CLB Interface** A block diagram of the CLB interface signals is shown in Figure 9. The input signals to the CLB are distributed evenly on all four sides providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. The exceptions are the clock (K) input and CIN/COUT signals. The K input is routed to dedicated global vertical lines as well as four single-length lines and is on the left side of the CLB. The CIN/COUT signals are routed through dedicated interconnects which do not interfere with the general routing structure. The output signals from the CLB are available to drive both vertical and horizontal channels. Figure 9: CLB Interconnect Signals #### **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each PSM consists of programmable pass transistors used to establish connections between the lines (see Figure 10). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. # **Single-Length Lines** Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 10. Routing connectivity is shown in Figure 8. Single-length lines incur a delay whenever they go through a PSM. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. - The 16 x 1 single-port configuration contains a RAM array with 16 locations, each one-bit wide. One 4-bit address decoder determines the RAM location for write and read operations. There is one input for writing data and one output for reading data, all at the selected address. - The (16 x 1) x 2 single-port configuration combines two 16 x 1 single-port configurations (each according to the preceding description). There is one data input, one data output and one address decoder for each array. These arrays can be addressed independently. - The 32 x 1 single-port configuration contains a RAM array with 32 locations, each one-bit wide. There is one data input, one data output, and one 5-bit address decoder. - The dual-port mode 16 x 1 configuration contains a RAM array with 16 locations, each one-bit wide. There are two 4-bit address decoders, one for each port. One port consists of an input for writing and an output for reading, all at a selected address. The other port consists of one output for reading from an independently selected address. The appropriate choice of RAM configuration mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Selection criteria include the following: Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port, and the 16 x 1 dual-port configurations each use one entire CLB, the 16 x 1 single-port configuration uses only one half of a CLB. Due to its simultaneous read/write capability, the dual-port RAM can transfer twice as much data as the single-port RAM, which permits only one data operation at any given time. CLB memory configuration options are selected by using the appropriate library symbol in the design entry. #### **Single-Port Mode** There are three CLB memory configurations for the single-port RAM: 16×1 , $(16 \times 1) \times 2$, and 32×1 , the functional organization of which is shown in Figure 12. The single-port RAM signals and the CLB signals (Figure 2, page 4) from which they are originally derived are shown in Table 9. Table 9: Single-Port RAM Signals | RAM Signal | Function | CLB Signal | |------------------|-------------------------------|--------------------------------------| | D0 or D1 | Data In | DIN or H1 | | A[3:0] | Address | F[4:1] or G[4:1] | | A4 (32 x 1 only) | Address | H1 | | WE | Write Enable | SR | | WCLK | Clock | К | | SPO | Single Port Out
(Data Out) | F _{OUT} or G _{OUT} | #### Notes: - The (16 x 1) x 2 configuration combines two 16 x 1 single-port RAMs, each with its own independent address bus and data input. The same WE and WCLK signals are connected to both RAMs. - 2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the 32 x 1 configuration. Figure 12: Logic Diagram for the Single-Port RAM Writing data to the single-port RAM is essentially the same as writing to a data register. It is an edge-triggered (synchronous) operation performed by applying an address to the A inputs and data to the D input during the active edge of WCLK while WE is High. The timing relationships are shown in Figure 13. The High logic level on WE enables the input data register for writing. The active edge of WCLK latches the address, input data, and WE signals. Then, an internal write pulse is generated that loads the data into the memory cell. Figure 13: Data Write and Access Timing for RAM WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM. The WE input is active High and cannot be inverted within the CLB. Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO. # **Dual-Port Mode** In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported. The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the Figure 14: Logic Diagram for the Dual-Port RAM Figure 20: Spartan/XL Boundary Scan Logic Even if the boundary scan symbol is used in a design, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. # **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state. - TCK: Tie High or Low—do not toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note, "Boundary Scan in FPGA Devices." # Boundary Scan Enhancements (Spartan-XL Family Only) Spartan-XL devices have improved boundary scan
functionality and performance in the following areas: **IDCODE:** The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The use of the IDCODE enables selective configuration dependent on the FPGA found. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 #### where c = the company code (49h for Xilinx) a = the array dimension in CLBs (ranges from 0Ah for XCS05XL to 1Ch for XCS40XL) f = the family code (02h for Spartan-XL family) v = the die version number Table 13: IDCODEs Assigned to Spartan-XL FPGAs | FPGA | IDCODE | |---------|-----------| | XCS05XL | 0040A093h | | XCS10XL | 0040E093h | | XCS20XL | 00414093h | | XCS30XL | 00418093h | | XCS40XL | 0041C093h | **Configuration State:** The configuration state is available to JTAG controllers. **Configuration Disable:** The JTAG port can be prevented from configuring the FPGA. **TCK Startup:** TCK can now be used to clock the start-up block in addition to other user clocks. **CCLK Holdoff:** Changed the requirement for Boundary Scan Configure or EXTEST to be issued prior to the release of INIT pin and CCLK cycling. **Reissue Configure:** The Boundary Scan Configure can be reissued to recover from an unfinished attempt to configure the device. **Bypass FF:** Bypass FF and IOB is modified to provide DRCLOCK only during BYPASS for the bypass flip-flop, and during EXTEST or SAMPLE/PRELOAD for the IOB register. # Power-Down (Spartan-XL Family Only) All Spartan/XL devices use a combination of efficient segmented routing and advanced process technology to provide low power consumption under all conditions. The 3.3V Spartan-XL family adds a dedicated active Low power-down pin (PWRDWN) to reduce supply current to 100 μA typical. The PWRDWN pin takes advantage of one of the unused No Connect locations on the 5V Spartan device. The user must de-select the "5V Tolerant I/Os" option in the Configuration Options to achieve the specified Power Down current. The PWRDWN pin has a default internal pull-up resistor, allowing it to be left unconnected if unused. V_{CC} must continue to be supplied during Power-down, and configuration data is maintained. When the \overline{PWRDWN} pin is pulled Low, the input and output buffers are disabled. The inputs are internally forced to a logic Low level, including the MODE pins, DONE, CCLK, and \overline{TDO} , and all internal pull-up resistors are turned off. The $\overline{PROGRAM}$ pin is not affected by Power Down. The GSR net is asserted during Power Down, initializing all the flip-flops to their start-up state. PWRDWN has a minimum pulse width of 50 ns (Figure 23). On entering the Power-down state, the inputs will be disabled and the flip-flops set/reset, and then the outputs are disabled about 10 ns later. The user may prefer to assert the GTS or GSR signals before PWRDWN to affect the order of events. When the PWRDWN signal is returned High, the inputs will be enabled first, followed immediately by the release of the GSR signal initializing the flip-flops. About 10 ns later, the outputs will be enabled. Allow 50 ns after the release of PWRDWN before using the device. Figure 23: PWRDWN Pulse Timing Power-down retains the configuration, but loses all data stored in the device flip-flops. All inputs are interpreted as Low, but the internal combinatorial logic is fully functional. Make sure that the combination of all inputs Low and all flip-flops set or reset in your design will not generate internal oscillations, or create permanent bus contention by activating internal bus drivers with conflicting data onto the same long line. During configuration, the PWRDWN pin must be High. If the Power Down state is entered before or during configuration, the device will restart configuration once the PWRDWN signal is removed. Note that the configuration pins are affected by Power Down and may not reflect their normal function. If there is an external pull-up resistor on the DONE pin, it will be High during Power Down even if the device is not yet configured. Similarly, if PWRDWN is asserted before configuration is completed, the INIT pin will not indicate status information. Note that the PWRDWN pin is not part of the Boundary Scan chain. Therefore, the Spartan-XL family has a separate set of BSDL files than the 5V Spartan family. Boundary scan logic is not usable during Power Down. # **Configuration and Test** Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. Spartan/XL devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The Xilinx development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format. # **Configuration Mode Control** 5V Spartan devices have two configuration modes. - MODE = 1 sets Slave Serial mode - MODE = 0 sets Master Serial mode 3V Spartan-XL devices have three configuration modes. - M1/M0 = 11 sets Slave Serial mode - M1/M0 = 10 sets Master Serial mode - M1/M0 = 0X sets Express mode In addition to these modes, the device can be configured through the Boundary Scan logic (See "Configuration Through the Boundary Scan Pins" on page 37.). The Mode pins are sampled prior to starting configuration to determine the configuration mode. After configuration, these pin are unused. The Mode pins have a weak pull-up resistor turned on during configuration. With the Mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the Mode pins can be left unconnected. If the Master Serial mode is desired, the MODE/M0 pin should be connected directly to GND, or through a pull-down resistor of 1 K Ω or less. During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during con- Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. # **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration. Note: Figure 25: Master/Slave Serial Mode Circuit Diagram DS060_25_061301 DS060_28_080400 | Symbol | | Description | Min | Max | Units | |------------------|------|------------------------|-----|-----|-------| | T _{IC} | | INIT (High) setup time | 5 | - | μs | | T _{DC} | | D0-D7 setup time | 20 | - | ns | | T _{CD} | CCLK | D0-D7 hold time | 0 | - | ns | | T _{CCH} | COLK | CCLK High time | 45 | - | ns | | T _{CCL} | | CCLK Low time | 45 | - | ns | | F _{CC} | | CCLK Frequency | - | 10 | MHz | #### Notes: Figure 28: Express Mode Programming Switching Characteristics # **Setting CCLK Frequency** In Master mode, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for Spartan/XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for Spartan/XL devices. The frequency is changed to fast by an option when running the bitstream generation software. ## **Data Stream Format** The data stream ("bitstream") format is identical for both serial configuration modes, but different for the Spartan-XL family Express mode. In Express mode, the device becomes active when DONE goes High, therefore no length count is required. Additionally, CRC error checking is not supported in Express mode. The data stream format is shown in Table 16. Bit-serial data is read from left to right. Express mode data is shown with D0 at the left and D7 at the right. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones (or 24 fill bits, in Spartan-XL family Express mode). This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 17). Each frame begins with a start field and ends with an error check. In serial modes, a postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the
startup sequence at the end of configuration. Long daisy chains require additional start-up bytes to shift the last data through the chain. All start-up bytes are "don't cares". If not driven by the preceding DOUT, CS1 must remain High until the device is fully configured. Table 16: Spartan/XL Data Stream Formats | Data Type | Serial Modes
(D0) | Express Mode
(D0-D7)
(Spartan-XL only) | |--------------------------------|------------------------|--| | Fill Byte | 11111111b | FFFFh | | Preamble Code | 0010b | 11110010b | | Length Count | COUNT[23:0] | COUNT[23:0] ⁽¹⁾ | | Fill Bits | 1111b | - | | Field Check
Code | - | 11010010b | | Start Field | 0b | 11111110b ⁽²⁾ | | Data Frame | DATA[n-1:0] | DATA[n-1:0] | | CRC or Constant
Field Check | xxxx (CRC)
or 0110b | 11010010b | | Extend Write
Cycle | - | FFD2FFFFFh | | Postamble | 01111111b | - | | Start-Up Bytes ⁽³⁾ | FFh | FFFFFFFFFF | ### Legend: | Unshaded | Once per bitstream | |----------|---------------------| | Light | Once per data frame | | Dark | Once per device | #### Notes: - 1. Not used by configuration logic. - 2. 11111111b for XCS40XL only. - 3. Development system may add more start-up bytes. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The Spartan-XL family Express mode only supports non-CRC error checking. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading before DONE goes High, and the pulling down of the $\overline{\text{INIT}}$ pin. In Master serial mode, CCLK continues to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling V_{CC} . # Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 16. If a frame data error is detected during the loading of the FPGA, the configuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the INIT pin Low and goes into a Wait state. # **Spartan-XL Family DC Characteristics Over Operating Conditions** | Symbol | Description | | Min | Тур. | Max | Units | |-------------------|---|---|------|------|---------------------|-------| | V _{OH} | High-level output voltage @ $I_{OH} = -4.0 \text{ mA}$, $V_{CC} \text{ min (LVTTL)}$ | | 2.4 | - | - | V | | | High-level output voltage @ $I_{OH} = -500 \mu A$, (LV | n-level output voltage @ I _{OH} = -500 μA, (LVCMOS) | | - | - | V | | V _{OL} | Low-level output voltage @ I _{OL} = 12.0 mA, V _{CO} | ; min (LVTTL) ⁽¹⁾ | - | - | 0.4 | V | | | Low-level output voltage @ I _{OL} = 24.0 mA, V _{CO} | ; min (LVTTL) ⁽²⁾ | - | - | 0.4 | V | | | Low-level output voltage @ I _{OL} = 1500 μA, (LV | CMOS) | - | - | 10% V _{CC} | V | | V _{DR} | Data retention supply voltage (below which cormay be lost) | retention supply voltage (below which configuration data be lost) | | - | - | V | | I _{CCO} | Quiescent FPGA supply current ^(3,4) | Commercial | - | 0.1 | 2.5 | mA | | | | Industrial | - | 0.1 | 5 | mA | | I _{CCPD} | Power Down FPGA supply current ^(3,5) | Commercial | - | 0.1 | 2.5 | mA | | | | Industrial | - | 0.1 | 5 | mA | | IL | Input or output leakage current | | -10 | - | 10 | μΑ | | C _{IN} | Input capacitance (sample tested) | | - | - | 10 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{IN} = 0V (sample tested) | | 0.02 | - | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{IN} = 3.3V (s | sample tested) | 0.02 | - | - | mA | #### Notes: - With up to 64 pins simultaneously sinking 12 mA (default mode). - 2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected). - 3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option. - With no output current loads, no active input resistors, and all package pins at V_{CC} or GND. - 5. With PWRDWN active. # **Supply Current Requirements During Power-On** Spartan-XL FPGAs require that a minimum supply current I_{CCPO} be provided to the V_{CC} lines for a successful power on. If more current is available, the FPGA can consume more than I_{CCPO} min., though this cannot adversely affect reliability. A maximum limit for I_{CCPO} is not specified. Be careful when using foldback/crowbar supplies and fuses. It is possible to control the magnitude of I_{CCPO} by limiting the supply current available to the FPGA. A current limit below the trip level will avoid inadvertently activating over-current protection circuits. | Symbol | Description | Min | Max | Units | |-------------------|---|-----|-----|-------| | I _{CCPO} | Total V _{CC} supply current required during power-on | 100 | - | mA | | T _{CCPO} | V _{CC} ramp time ^(2,3) | - | 50 | ms | #### Notes: - 1. The I_{CCPO} requirement applies for a brief time (commonly only a few milliseconds) when V_{CC} ramps from 0 to 3.3V. - 2. The ramp time is measured from GND to V_{CC} max on a fully loaded board. - V_{CC} must not dip in the negative direction during power on. # **Spartan-XL Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and expressed in nanoseconds unless otherwise noted. | | | | Speed | Grade | | | |-------------------|--|---|-------|-------|-----------|-------| | | | -5 | | -4 | | 1 | | Symbol | Description | Min | Max | Min | Max | Units | | Clocks | | | | | | | | T _{CH} | Clock High time | 2.0 | - | 2.3 | - | ns | | T _{CL} | Clock Low time | 2.0 | - | 2.3 | - | ns | | Combinato | orial Delays | | , | 1 | ı | | | T _{ILO} | F/G inputs to X/Y outputs | - | 1.0 | - | 1.1 | ns | | T _{IHO} | F/G inputs via H to X/Y outputs | - | 1.7 | - | 2.0 | ns | | T _{ITO} | F/G inputs via transparent latch to Q outputs | - | 1.5 | - | 1.8 | ns | | T _{HH1O} | C inputs via H1 via H to X/Y outputs | - | 1.5 | - | 1.8 | ns | | Sequentia | l Delays | * | | | , | | | T _{CKO} | Clock K to Flip-Flop or latch outputs Q | - | 1.2 | - | 1.4 | ns | | Setup Tim | e before Clock K | | , | | ı | | | T _{ICK} | F/G inputs | 0.6 | - | 0.7 | - | ns | | T _{IHCK} | F/G inputs via H | 1.3 | - | 1.6 | - | ns | | Hold Time | after Clock K | * | | | , | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | Set/Reset | Direct | | | | | | | T _{RPW} | Width (High) | 2.5 | - | 2.8 | - | ns | | T _{RIO} | Delay from C inputs via S/R, going High to Q | - | 2.3 | - | 2.7 | ns | | Global Set | Reset | * | | | , | | | T_{MRW} | Minimum GSR Pulse Width | 10.5 | - | 11.5 | - | ns | | T_{MRQ} | Delay from GSR input to any Q | See page 60 for T _{RRI} values per device. | | | r device. | | | F _{TOG} | Toggle Frequency (MHz) (for export control purposes) | - | 250 | - | 217 | MHz | # Spartan-XL Family Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper- ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. #### Spartan-XL Family Setup and Hold | | Speed Grade | | | Grade | | | |---|-------------|---------|---------|---------|-------|--| | | | | -5 | -4 | | | | Symbol | Description | Device | Max | Max | Units | | | Input Setup/Hold Times Using Global Clock and IFF | | | | | | | | T _{SUF} /T _{HF} | No Delay | XCS05XL | 1.1/2.0 | 1.6/2.6 | ns | | | | | XCS10XL | 1.0/2.2 | 1.5/2.8 | ns | | | | | XCS20XL | 0.9/2.4 | 1.4/3.0 | ns | | | | | XCS30XL | 0.8/2.6 | 1.3/3.2 | ns | | | | | XCS40XL | 0.7/2.8 | 1.2/3.4 | ns | | | T _{SU} /T _H | Full Delay | XCS05XL | 3.9/0.0 | 5.1/0.0 | ns | | | | | XCS10XL | 4.1/0.0 | 5.3/0.0 | ns | | | | | XCS20XL | 4.3/0.0 | 5.5/0.0 | ns | | | | | XCS30XL | 4.5/0.0 | 5.7/0.0 | ns | | | | | XCS40XL | 4.7/0.0 | 5.9/0.0 | ns | | #### Notes: - 1. IFF = Input Flip-Flop or Latch - 2. Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per IOB/CLB. #### **Capacitive Load Factor** Figure 35 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay.
If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 35 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control. Figure 35: Delay Factor at Various Capacitive Loads # **Spartan-XL Family IOB Output Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted. | | | | | Speed | Grade | | | |--------------------|---|-------------|------|-------|-------|------|-------| | | | | - | 5 | | 4 | | | Symbol | Description | Device | Min | Max | Min | Max | Units | | Propagation | Delays | | | | | | | | T _{OKPOF} | Clock (OK) to Pad, fast | All devices | - | 3.2 | - | 3.7 | ns | | T _{OPF} | Output (O) to Pad, fast | All devices | - | 2.5 | - | 2.9 | ns | | T _{TSHZ} | 3-state to Pad High-Z (slew-rate independent) | All devices | - | 2.8 | - | 3.3 | ns | | T _{TSONF} | 3-state to Pad active and valid, fast | All devices | - | 2.6 | - | 3.0 | ns | | T _{OFPF} | Output (O) to Pad via Output MUX, fast | All devices | - | 3.7 | - | 4.4 | ns | | T _{OKFPF} | Select (OK) to Pad via Output MUX, fast | All devices | - | 3.3 | - | 3.9 | ns | | T _{SLOW} | For Output SLOW option add | All devices | - | 1.5 | - | 1.7 | ns | | Setup and H | old Times | | , | | | | | | T _{OOK} | Output (O) to clock (OK) setup time | All devices | 0.5 | - | 0.5 | - | ns | | T _{OKO} | Output (O) to clock (OK) hold time | All devices | 0.0 | - | 0.0 | - | ns | | T _{ECOK} | Clock Enable (EC) to clock (OK) setup time | All devices | 0.0 | - | 0.0 | - | ns | | T _{OKEC} | Clock Enable (EC) to clock (OK) hold time | All devices | 0.1 | - | 0.2 | - | ns | | Global Set/R | eset | | | | | | | | T_{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | T _{RPO} | Delay from GSR input to any Pad | XCS05XL | - | 11.9 | - | 14.0 | ns | | | | XCS10XL | - | 12.4 | - | 14.5 | ns | | | | XCS20XL | - | 12.9 | - | 15.0 | ns | | | | XCS30XL | - | 13.9 | - | 16.0 | ns | | | | XCS40XL | - | 14.9 | - | 17.0 | ns | #### Notes: ^{1.} Output timing is measured at \sim 50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. ^{2.} Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # **Device-Specific Pinout Tables** Device-specific tables include all packages for each Spartan and Spartan-XL device. They follow the pad locations around the die, and include boundary scan register locations. Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options. # XCS05 and XCS05XL Device Pinouts | XCS05/XL | (A) | | Bndry | |--|---------------------|-------|-------| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | Scan | | VCC | P2 | P89 | - | | I/O | P3 | P90 | 32 | | I/O | P4 | P91 | 35 | | I/O | - | P92 | 38 | | I/O | - | P93 | 41 | | I/O | P5 | P94 | 44 | | I/O | P6 | P95 | 47 | | I/O | P7 | P96 | 50 | | I/O | P8 | P97 | 53 | | I/O | P9 | P98 | 56 | | I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾ | P10 | P99 | 59 | | VCC | P11 | P100 | - | | GND | P12 | P1 | - | | I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾ | P13 | P2 | 62 | | I/O | P14 | P3 | 65 | | I/O, TDI | P15 | P4 | 68 | | I/O, TCK | P16 | P5 | 71 | | I/O, TMS | P17 | P6 | 74 | | I/O | P18 | P7 | 77 | | I/O | - | P8 | 83 | | I/O | P19 | P9 | 86 | | I/O | P20 | P10 | 89 | | GND | P21 | P11 | - | | VCC | P22 | P12 | - | | I/O | P23 | P13 | 92 | | I/O | P24 | P14 | 95 | | I/O | - | P15 | 98 | | I/O | P25 | P16 | 104 | | I/O | P26 | P17 | 107 | | I/O | P27 | P18 | 110 | | I/O | - | P19 | 113 | | I/O | P28 | P20 | 116 | | I/O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾ | P29 | P21 | 119 | | Not Connected ⁽¹⁾ , M1 ⁽²⁾ | P30 | P22 | 122 | | GND | P31 | P23 | - | | MODE ⁽¹⁾ , M0 ⁽²⁾ | P32 | P24 | 125 | | VCC | P33 | P25 | - | | 1 | 1 | | I. | # **XCS05 and XCS05XL Device Pinouts** | XCS05/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | Bndry
Scan | |---|---------------------|-------|--------------------| | Not Connected ⁽¹⁾ , | P34 | P26 | 126 ⁽¹⁾ | | PWRDWN ⁽²⁾ | | F20 | | | I/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾ | P35 | P27 | 127 ⁽³⁾ | | I/O (HDC) | P36 | P28 | 130 ⁽³⁾ | | I/O | - | P29 | 133 ⁽³⁾ | | I/O (LDC) | P37 | P30 | 136 ⁽³⁾ | | I/O | P38 | P31 | 139 ⁽³⁾ | | I/O | P39 | P32 | 142 ⁽³⁾ | | I/O | - | P33 | 145 ⁽³⁾ | | I/O | - | P34 | 148 ⁽³⁾ | | I/O | P40 | P35 | 151 ⁽³⁾ | | I/O (ĪNĪT) | P41 | P36 | 154 ⁽³⁾ | | VCC | P42 | P37 | - | | GND | P43 | P38 | - | | I/O | P44 | P39 | 157 ⁽³⁾ | | I/O | P45 | P40 | 160 ⁽³⁾ | | I/O | - | P41 | 163 ⁽³⁾ | | I/O | - | P42 | 166 ⁽³⁾ | | I/O | P46 | P43 | 169 ⁽³⁾ | | I/O | P47 | P44 | 172 ⁽³⁾ | | I/O | P48 | P45 | 175 ⁽³⁾ | | I/O | P49 | P46 | 178 ⁽³⁾ | | I/O | P50 | P47 | 181 ⁽³⁾ | | I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾ | P51 | P48 | 184 ⁽³⁾ | | GND | P52 | P49 | - | | DONE | P53 | P50 | - | | VCC | P54 | P51 | - | | PROGRAM | P55 | P52 | - (0) | | I/O (D7 ⁽²⁾) | P56 | P53 | 187 ⁽³⁾ | | I/O, PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾ | P57 | P54 | 190 ⁽³⁾ | | I/O (D6 ⁽²⁾) | P58 | P55 | 193 ⁽³⁾ | | I/O | - | P56 | 196 ⁽³⁾ | | I/O (D5 ⁽²⁾) | P59 | P57 | 199 ⁽³⁾ | | I/O | P60 | P58 | 202 ⁽³⁾ | | I/O | - | P59 | 205 ⁽³⁾ | | I/O | - | P60 | 208 ⁽³⁾ | | I/O (D4 ⁽²⁾) | P61 | P61 | 211(3) | | 1/0 | P62 | P62 | 214 ⁽³⁾ | | VCC | P63 | P63 | - | | GND | P64 | P64 | - | | I/O (D3 ⁽²⁾) | P65 | P65 | 217 ⁽³⁾ | | 1/0 | P66 | P66 | 220(3) | | 1/0 | - | P67 | 223 ⁽³⁾ | | I/O (D2 ⁽²⁾) | P67 | P68 | 229 ⁽³⁾ | | 1/0 | P68 | P69 | 232 ⁽³⁾ | | I/O (D1 ⁽²⁾) | P69 | P70 | 235 ⁽³⁾ | # **XCS10 and XCS10XL Device Pinouts** | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | |----------------------|---------------------|-------|------------------------|-------|---------------| | I/O | P80 | P81 | A10 | P116 | 17 | | GND | - | - | C9 | P118 | - | | I/O | - | - | B9 | P119 | 20 | | I/O | - | - | A9 | P120 | 23 | | I/O | P81 | P82 | D8 | P121 | 26 | | I/O | P82 | P83 | C8 | P122 | 29 | | I/O | - | P84 | B8 | P123 | 32 | | I/O | - | P85 | A8 | P124 | 35 | | I/O | P83 | P86 | B7 | P125 | 38 | | I/O | P84 | P87 | A7 | P126 | 41 | | GND | P1 | P88 | C7 | P127 | - | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS10XL is not part of the Boundary Scan chain. For the XCS10XL, subtract 1 from all Boundary Scan numbers from GCK3 on (175 and higher). - 4. PC84 and CS144 packages discontinued by PDN2004-01 # Additional XCS10/XL Package Pins | TQ144 | | | | | | | | | | |--------------------|---|---|---|---|---|--|--|--|--| | Not Connected Pins | | | | | | | | | | | P117 | - | - | - | - | - | | | | | | 5/5/97 | | | | | | | | | | | CS144 | | | | | | | | | | |--------------------|---|---|---|---|---|--|--|--|--| | Not Connected Pins | | | | | | | | | | | D9 | - | - | - | - | - | | | | | | 4/28/99 | | | | | | | | | | # XCS20 and XCS20XL Device Pinouts | XCS20/XL | | | | | Bndry | |--------------------|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | VCC | P89 | D7 | P128 | P183 | - | | I/O | P90 | A6 | P129 | P184 | 62 | | I/O | P91 | B6 | P130 | P185 | 65 | | I/O | P92 | C6 | P131 | P186 | 68 | | I/O | P93 | D6 | P132 | P187 | 71 | | I/O | - | - | - | P188 | 74 | | I/O | - | - | - | P189 | 77 | | I/O | P94 | A5 | P133 | P190 | 80 | | I/O | P95 | B5 | P134 | P191 | 83 | | VCC ⁽²⁾ | - | - | - | P192 | - | | I/O | - | C5 | P135 | P193 | 86 | | I/O | - | D5 | P136 | P194 | 89 | | GND | - | A4 | P137 | P195 | - | | I/O | - | - | - | P196 | 92 | | I/O | - | - | - | P197 | 95 | | I/O | - | - | - | P198 | 98 | | I/O | - | - | - | P199 | 101 | | I/O | P96 | B4 | P138 | P200 | 104 | | I/O | P97 | C4 | P139 | P201 | 107 | | I/O | - | А3 | P140 | P204 | 110 | | I/O | - | B3 | P141 | P205 | 113 | | I/O | P98 | C3 | P142 | P206 | 116 | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | V0400 | CS144 ^(2,4) | TO444 | DOGGG | Bndry | |---|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | | TQ144 | PQ208 | Scan | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P99 | A2 | P143 | P207 | 119 | | VCC | P100 | B2 | P144 | P208 | - | | GND | P1 | A1 | P1 | P1 | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | B1 | P2 | P2 | 122 | | I/O | P3 | C2 | P3 | P3 | 125 | | I/O | - | C1 | P4 | P4 | 128 | | I/O | - | D4 | P5 | P5 | 131 | | I/O, TDI | P4 | D3 | P6 | P6 | 134 | | I/O, TCK | P5 | D2 | P7 | P7 | 137 | | I/O | - | - | - | P8 | 140 | | I/O | - | - | - | P9 | 143 | | I/O | - | - | - | P10 | 146 | | I/O | - | - | - | P11 | 149 | | GND | - | D1 | P8 | P13 | - | | I/O | - | E4 | P9 | P14 | 152 | | I/O | - | E3 | P10 | P15 | 155 | | I/O, TMS | P6 | E2 | P11 | P16 | 158 | | I/O | P7 | E1 | P12 | P17 | 161 | | VCC ⁽²⁾ | - | - | - | P18 | - | | I/O | - | - | - | P19 | 164 | | I/O | - | - | - | P20 | 167 | # **XCS20 and XCS20XL Device Pinouts** | | and XCS2UXL Device Pinouts | | | | | | | | |---|----------------------------|------------------------|-------|-------
--------------------|--|--|--| | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | | | | | PROGRAM | P52 | M13 | P74 | P106 | - | | | | | I/O (D7 ⁽²⁾) | P53 | L12 | P75 | P107 | 367 ⁽³⁾ | | | | | I/O, | P54 | L13 | P76 | P108 | 370 ⁽³⁾ | | | | | PGCK3 ⁽¹⁾ ,
GCK5 ⁽²⁾ | | | | | | | | | | I/O | | K10 | P77 | P109 | 373 ⁽³⁾ | | | | | 1/0 | - | K10 | P77 | P109 | 373 ⁽³⁾ | | | | | I/O (D6 ⁽²⁾) | -
P55 | K11 | P79 | P110 | 379 ⁽³⁾ | | | | | I/O (D6(=/) | | K12 | | P112 | 382 (3) | | | | | | P56 | NIS | P80 | | 385 (3) | | | | | 1/0 | - | - | - | P114 | | | | | | 1/0 | - | - | - | P115 | 388 (3) | | | | | 1/0 | - | - | - | P116 | 391 ⁽³⁾ | | | | | I/O | - | - | - | P117 | 394 ⁽³⁾ | | | | | GND | - | J10 | P81 | P118 | - (2) | | | | | I/O | - | J11 | P82 | P119 | 397 ⁽³⁾ | | | | | I/O | - | J12 | P83 | P120 | 400 (3) | | | | | VCC ⁽²⁾ | - | - | - | P121 | - (0) | | | | | I/O (D5 ⁽²⁾) | P57 | J13 | P84 | P122 | 403 (3) | | | | | I/O | P58 | H10 | P85 | P123 | 406 ⁽³⁾ | | | | | I/O | - | - | - | P124 | 409 (3) | | | | | I/O | - | - | - | P125 | 412 ⁽³⁾ | | | | | I/O | P59 | H11 | P86 | P126 | 415 ⁽³⁾ | | | | | I/O | P60 | H12 | P87 | P127 | 418 ⁽³⁾ | | | | | I/O (D4 ⁽²⁾) | P61 | H13 | P88 | P128 | 421 ⁽³⁾ | | | | | I/O | P62 | G12 | P89 | P129 | 424 ⁽³⁾ | | | | | VCC | P63 | G13 | P90 | P130 | - | | | | | GND | P64 | G11 | P91 | P131 | - | | | | | I/O (D3 ⁽²⁾) | P65 | G10 | P92 | P132 | 427 ⁽³⁾ | | | | | I/O | P66 | F13 | P93 | P133 | 430 ⁽³⁾ | | | | | I/O | P67 | F12 | P94 | P134 | 433 ⁽³⁾ | | | | | I/O | - | F11 | P95 | P135 | 436 ⁽³⁾ | | | | | I/O | - | - | - | P136 | 439 ⁽³⁾ | | | | | I/O | - | - | - | P137 | 442 (3) | | | | | I/O (D2 ⁽²⁾) | P68 | F10 | P96 | P138 | 445 ⁽³⁾ | | | | | I/O | P69 | E13 | P97 | P139 | 448 ⁽³⁾ | | | | | VCC ⁽²⁾ | - | - | - | P140 | - | | | | | I/O | _ | E12 | P98 | P141 | 451 ⁽³⁾ | | | | | I/O | _ | E11 | P99 | P142 | 454 ⁽³⁾ | | | | | GND | - | E10 | P100 | P143 | - | | | | | I/O | - | - | - | P145 | 457 ⁽³⁾ | | | | | I/O | - | - | - | P146 | 460 ⁽³⁾ | | | | | I/O | - | - | - | P147 | 463 ⁽³⁾ | | | | | I/O | - | - | - | P148 | 466 ⁽³⁾ | | | | | I/O (D1 ⁽²⁾) | P70 | D13 | P101 | P149 | 469 ⁽³⁾ | | | | | I/O | P71 | D12 | P102 | P150 | 472 ⁽³⁾ | | | | | I/O | - | D11 | P103 | P151 | 475 ⁽³⁾ | | | | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | |---|-------|------------------------|-------|-------|--------------------| | I/O | - | C13 | P104 | P152 | 478 ⁽³⁾ | | I/O
(D0 ⁽²⁾ , DIN) | P72 | C12 | P105 | P153 | 481 ⁽³⁾ | | I/O,
SGCK4 ⁽¹⁾ ,
GCK6 ⁽²⁾
(DOUT) | P73 | C11 | P106 | P154 | 484 ⁽³⁾ | | CCLK | P74 | B13 | P107 | P155 | - | | VCC | P75 | B12 | P108 | P156 | - | | O, TDO | P76 | A13 | P109 | P157 | 0 | | GND | P77 | A12 | P110 | P158 | - | | I/O | P78 | B11 | P111 | P159 | 2 | | I/O,
PGCK4 ⁽¹⁾ ,
GCK7 ⁽²⁾ | P79 | A11 | P112 | P160 | 5 | | I/O | - | D10 | P113 | P161 | 8 | | I/O | - | C10 | P114 | P162 | 11 | | I/O (CS1 ⁽²⁾) | P80 | B10 | P115 | P163 | 14 | | I/O | P81 | A10 | P116 | P164 | 17 | | I/O | - | D9 | P117 | P166 | 20 | | I/O | - | - | - | P167 | 23 | | I/O | - | - | - | P168 | 26 | | I/O | - | - | - | P169 | 29 | | GND | - | C9 | P118 | P170 | - | | I/O | - | B9 | P119 | P171 | 32 | | I/O | - | A9 | P120 | P172 | 35 | | VCC ⁽²⁾ | - | - | - | P173 | - | | I/O | P82 | D8 | P121 | P174 | 38 | | I/O | P83 | C8 | P122 | P175 | 41 | | I/O | - | - | - | P176 | 44 | | I/O | - | - | - | P177 | 47 | | I/O | P84 | B8 | P123 | P178 | 50 | | I/O | P85 | A8 | P124 | P179 | 53 | | I/O | P86 | B7 | P125 | P180 | 56 | | I/O | P87 | A7 | P126 | P181 | 59 | | GND | P88 | C7 | P127 | P182 | - | 2/8/00 # Additional XCS20/XL Package Pins | PQ208 | | | | | | | | | | | |--------------------|--|---------------------|---------------------|---------------------|------|--|--|--|--|--| | | Not Connected Pins | | | | | | | | | | | P12 | P12 P18 ⁽¹⁾ P33 ⁽¹⁾ P39 P65 P71 ⁽¹⁾ | | | | | | | | | | | P86 ⁽¹⁾ | P92 | P111 | P121 ⁽¹⁾ | P140 ⁽¹⁾ | P144 | | | | | | | P165 | P173 ⁽¹⁾ | P192 ⁽¹⁾ | P202 | P203 | - | | | | | | | 9/16/98 | | | | | | | | | | | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - The "PWRDWN" on the XCS20XL is not part of the Boundary Scan chain. For the XCS20XL, subtract 1 from all Boundary Scan numbers from GCK3 on (247 and higher). - 4. CS144 package discontinued by PDN2004-01 # XCS30 and XCS30XL Device Pinouts | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | VCC | P89 | P128 | P183 | P212 | VCC ⁽⁴⁾ | C10 | - | | I/O | P90 | P129 | P184 | P213 | C10 | D10 | 74 | | I/O | P91 | P130 | P185 | P214 | D10 | E10 | 77 | | I/O | P92 | P131 | P186 | P215 | A9 | A9 | 80 | | I/O | P93 | P132 | P187 | P216 | B9 | В9 | 83 | | I/O | - | - | P188 | P217 | C9 | C9 | 86 | | I/O | - | - | P189 | P218 | D9 | D9 | 89 | | I/O | P94 | P133 | P190 | P220 | A8 | A8 | 92 | | I/O | P95 | P134 | P191 | P221 | B8 | B8 | 95 | | VCC | - | - | P192 | P222 | VCC ⁽⁴⁾ | A7 | - | | I/O | - | - | - | P223 | A6 | B7 | 98 | | I/O | - | - | - | P224 | C7 | C7 | 101 | | I/O | - | P135 | P193 | P225 | B6 | D7 | 104 | | I/O | - | P136 | P194 | P226 | A5 | A6 | 107 | | GND | - | P137 | P195 | P227 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | P196 | P228 | C6 | В6 | 110 | | I/O | - | - | P197 | P229 | B5 | C6 | 113 | | I/O | - | - | P198 | P230 | A4 | D6 | 116 | | I/O | - | - | P199 | P231 | C5 | E6 | 119 | | I/O | P96 | P138 | P200 | P232 | B4 | A 5 | 122 | | I/O | P97 | P139 | P201 | P233 | A3 | C5 | 125 | | I/O | - | - | P202 | P234 | D5 | B4 | 128 | | I/O | - | - | P203 | P235 | C4 | C4 | 131 | | I/O | - | P140 | P204 | P236 | В3 | A3 | 134 | | I/O | - | P141 | P205 | P237 | B2 | A2 | 137 | | I/O | P98 | P142 | P206 | P238 | A2 | В3 | 140 | | I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾ | P99 | P143 | P207 | P239 | СЗ | B2 | 143 | | VCC | P100 | P144 | P208 | P240 | VCC ⁽⁴⁾ | A1 | - | | GND | P1 | P1 | P1 | P1 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾ | P2 | P2 | P2 | P2 | B1 | C3 | 146 | | I/O | P3 | P3 | P3 | P3 | C2 | C2 | 149 | | I/O | - | P4 | P4 | P4 | D2 | B1 | 152 | # **XCS40 and XCS40XL Device Pinouts** | XC540 and | I AUS4 | OVE D | FVICE P | illouis | | |---|--------|-------|--------------------|------------------------|--------------------| | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | | I/O | P90 | P105 | Y16 | W14 | 466 ⁽³⁾ | | GND | P91 | P106 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P107 | V15 | V14 | 469 ⁽³⁾ | | I/O | P92 | P108 | W16 | U14 | 472 ⁽³⁾ | | I/O | P93 | P109 | Y17 | T14 | 475 ⁽³⁾ | | I/O | P94 | P110 | V16 | R14 | 478 ⁽³⁾ | | I/O | P95 | P111 | W17 | W15 | 481 ⁽³⁾ | | I/O | P96 | P112 | Y18 | U15 | 484 (3) | | I/O | - | - | - | T15 | 487 ⁽³⁾ | | I/O | - | - | - | W16 | 490 (3) | | I/O | P97 | P113 | U16 | V16 | 493 (3) | | I/O | P98 | P114 | V17 | U16 | 496 ⁽³⁾ | | I/O | P99 | P115 | W18 | W17 | 499 (3) | | I/O | P100 | P116 | Y19 | W18 | 502 ⁽³⁾ | | I/O | P101 | P117 | V18 | V17 | 505 ⁽³⁾ | | I/O, | P102 | P118 | W19 | V18 | 508 ⁽³⁾ | | SGCK3 ⁽¹⁾ , | | | | | | | GCK4 ⁽²⁾ | | | | | | | GND | P103 | P119 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | DONE | P104 | P120 | Y20 | W19 | - | | VCC | P105 | P121 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | PROGRAM | P106 | P122 | V19 | U18 | - | | I/O (D7 ⁽²⁾) | P107 | P123 | U19 | V19 | 511 ⁽³⁾ | | I/O, | P108 | P124 | U18 | U19 | 514 ⁽³⁾ | | PGCK3 ⁽¹⁾ ,
GCK5 ⁽²⁾ | | | | | | | I/O | P109 | P125 | T17 | T16 | 517 ⁽³⁾ | | I/O | P110 | P126 | V20 | T17 | 520 ⁽³⁾ | | I/O | - | P127 | U20 | T18 | 523 ⁽³⁾ | | I/O | P111 | P128 | T18 | T19 | 526 ⁽³⁾ | | I/O | _ | - | - | R15 | 529 ⁽³⁾ | | I/O | - | - | - | R17 | 523 ⁽³⁾ | | I/O (D6 ⁽²⁾) | P112 | P129 | T19 | R16 | 535 ⁽³⁾ | | I/O | P113 | P130 | T20 | R19 | 538 ⁽³⁾ | | I/O | P114 | P131 | R18 | P15 | 541 ⁽³⁾ | | I/O | P115 | P132 | R19 | P17 | 544 (3) | | I/O | P116 | P133 | R20 | P18 | 547 ⁽³⁾ | | I/O | P117 | P134 | P18 | P16 | 550 ⁽³⁾ | | GND | P118 | P135 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | | P136 | P20 | P19 | 553 ⁽³⁾ | | I/O | _ | P137 | N18 | N17 | 556 ⁽³⁾ | | I/O | P119 | P138 | N19 | N18 | 559 ⁽³⁾ | | I/O | P120 | P139 | N20 | N19 | 562 ⁽³⁾ | | VCC | P121 | P140 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | 502 () | | I/O (D5 ⁽²⁾) | P122 | P140 | M17 | M19 | 565 ⁽³⁾ | | I/O (D3(=/) | P123 | P141 | M18 | M17 | 568 ⁽³⁾ | | "0 | 1 123 | 1 142 | IVI I O | IVI I / | JU0 (°) | # XCS40 and XCS40XL Device Pinouts | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | |---|-------|-------|--------------------|------------------------|--------------------| | I/O | - | - | - | M18 | 571 ⁽³⁾ | | I/O | - | - | M19 | M16 | 574 ⁽³⁾ | | I/O | P124 | P144 | M20 | L19 | 577 ⁽³⁾ | | I/O | P125 | P145 | L19 | L18 | 580 ⁽³⁾ | | I/O | P126 | P146 | L18 | L17 | 583 ⁽³⁾ | | I/O | P127 | P147 | L20 | L16 | 586 ⁽³⁾ | | I/O (D4 ⁽²⁾) | P128 | P148 | K20 | K19 | 589 ⁽³⁾ | | I/O | P129 | P149 | K19 | K18 | 592 ⁽³⁾ | | VCC | P130 | P150 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | GND | P131 | P151 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O (D3 ⁽²⁾) | P132 | P152 | K18 | K16 | 595 ⁽³⁾ | | I/O | P133 | P153 | K17 | K15 | 598 ⁽³⁾ | | I/O | P134 | P154 | J20 | J19 | 601 ⁽³⁾ | | I/O | P135 | P155 | J19 | J18 | 604 ⁽³⁾ | | I/O | P136 | P156 | J18 | J17 | 607 ⁽³⁾ | | I/O | P137 | P157 | J17 | J16 | 610 ⁽³⁾ | | I/O | - | - | H20 | H19 | 613 ⁽³⁾ | | I/O | - | - | - | H18 | 616 ⁽³⁾ | | I/O (D2 ⁽²⁾) | P138 | P159 | H19 | H17 | 619 ⁽³⁾ | | I/O | P139 | P160 | H18 | H16 | 622 ⁽³⁾ | | VCC | P140 | P161 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | P141 | P162 | G19 | G18 | 625 ⁽³⁾ |
 I/O | P142 | P163 | F20 | G17 | 628 ⁽³⁾ | | I/O | - | P164 | G18 | G16 | 631 ⁽³⁾ | | I/O | - | P165 | F19 | F19 | 634 ⁽³⁾ | | GND | P143 | P166 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P167 | F18 | F18 | 637 ⁽³⁾ | | I/O | P144 | P168 | E19 | F17 | 640 ⁽³⁾ | | I/O | P145 | P169 | D20 | F16 | 643 ⁽³⁾ | | I/O | P146 | P170 | E18 | F15 | 646 ⁽³⁾ | | I/O | P147 | P171 | D19 | E19 | 649 ⁽³⁾ | | I/O | P148 | P172 | C20 | E17 | 652 ⁽³⁾ | | I/O (D1 ⁽²⁾) | P149 | P173 | E17 | E16 | 655 ⁽³⁾ | | I/O | P150 | P174 | D18 | D19 | 658 ⁽³⁾ | | I/O | - | - | - | D18 | 661 ⁽³⁾ | | I/O | - | - | - | D17 | 664 ⁽³⁾ | | I/O | P151 | P175 | C19 | C19 | 667 ⁽³⁾ | | I/O | P152 | P176 | B20 | B19 | 670 ⁽³⁾ | | I/O (D0 ⁽²⁾ ,
DIN) | P153 | P177 | C18 | C18 | 673 ⁽³⁾ | | I/O,
SGCK4 ⁽¹⁾ ,
GCK6 ⁽²⁾
(DOUT) | P154 | P178 | B19 | B18 | 676 ⁽³⁾ | | CCLK | P155 | P179 | A20 | A19 | - | | VCC | P156 | P180 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | # XCS40 and XCS40XL Device Pinouts | XCS40/XL | | | | 00000(2 F) | Bndry | | |---|-------|-------|--------------------|------------------------|-------|--| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | | O, TDO | P157 | P181 | A19 | B17 | 0 | | | GND | P158 | P182 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | | I/O | P159 | P183 | B18 | A18 | 2 | | | I/O,
PGCK4 ⁽¹⁾ ,
GCK7 ⁽²⁾ | P160 | P184 | B17 | A17 | 5 | | | I/O | P161 | P185 | C17 | D16 | 8 | | | I/O | P162 | P186 | D16 | C16 | 11 | | | I/O (CS1 ⁽²⁾) | P163 | P187 | A18 | B16 | 14 | | | I/O | P164 | P188 | A17 | A16 | 17 | | | I/O | - | - | - | E15 | 20 | | | I/O | - | - | - | C15 | 23 | | | I/O | P165 | P189 | C16 | D15 | 26 | | | I/O | - | P190 | B16 | A15 | 29 | | | I/O | P166 | P191 | A16 | E14 | 32 | | | I/O | P167 | P192 | C15 | C14 | 35 | | | I/O | P168 | P193 | B15 | B14 | 38 | | | I/O | P169 | P194 | A15 | D14 | 41 | | | GND | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | | I/O | P171 | P197 | B14 | A14 | 44 | | | I/O | P172 | P198 | A14 | C13 | 47 | | | I/O | - | P199 | C13 | B13 | 50 | | | I/O | - | P200 | B13 | A13 | 53 | | | VCC | P173 | P201 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | | I/O | - | - | A13 | A12 | 56 | | | I/O | - | - | D12 | C12 | 59 | | | I/O | P174 | P202 | C12 | B12 | 62 | | | I/O | P175 | P203 | B12 | D12 | 65 | | | I/O | P176 | P205 | A12 | A11 | 68 | | | I/O | P177 | P206 | B11 | B11 | 71 | | | I/O | P178 | P207 | C11 | C11 | 74 | | | I/O | P179 | P208 | A11 | D11 | 77 | | | I/O | P180 | P209 | A10 | A10 | 80 | | | I/O | P181 | P210 | B10 | B10 | 83 | | | GND | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | | 2/8/00 | • | • | • | • | | | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS40XL is not part of the Boundary Scan chain. For the XCS40XL, subtract 1 from all Boundary Scan numbers from GCK3 on (343 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - CS280 package discontinued by <u>PDN2004-01</u> # Additional XCS40/XL Package Pins #### **PQ240** | | GND Pins | | | | | | | | | |------|--------------------|-----|-----|------|------|--|--|--|--| | P22 | P37 | P83 | P98 | P143 | P158 | | | | | | P204 | P219 | - | | | - | | | | | | | Not Connected Pins | | | | | | | | | | P195 | - | - | - | - | - | | | | | 2/12/98 #### **BG256** | VCC Pins | | | | | | | | | |----------|----------|-----|-----|-----|-----|--|--|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | | | E20 | F1 | F4 | F17 | G4 | G17 | | | | | K4 | L17 | P4 | P17 | P19 | R2 | | | | | R4 | R17 | U6 | U7 | U10 | U14 | | | | | U15 | V7 | W20 | - | - | - | | | | | | GND Pins | | | | | | | | | A1 | B7 | D4 | D8 | D13 | D17 | | | | | G20 | H4 | H17 | N3 | N4 | N17 | | | | | U4 | U8 | U13 | U17 | W14 | - | | | | 6/17/97 ## **CS280** | VCC Pins | | | | | | | | | |----------|----------|-----|-----|-----|-----|--|--|--| | A1 | A7 | B5 | B15 | C10 | C17 | | | | | D13 | E3 | E18 | G1 | G19 | K2 | | | | | K17 | M4 | N16 | R3 | R18 | T7 | | | | | U3 | U10 | U17 | V5 | V15 | W13 | | | | | | GND Pins | | | | | | | | | E5 | E7 | E8 | E9 | E11 | E12 | | | | | E13 | G5 | G15 | H5 | H15 | J5 | | | | | J15 | L5 | L15 | M5 | M15 | N5 | | | | | N15 | R7 | R8 | R9 | R11 | R12 | | | | | R13 | - | - | - | - | - | | | | 5/19/99 Table 20: User I/O Chart for Spartan/XL FPGAs | | Max | Package Type | | | | | | | | | |---------|-----|---------------------|----------------------|----------------------|--------------------|--------------------|--------------------|----------------------|----------------------|--| | Device | I/O | PC84 ⁽¹⁾ | VQ100 ⁽¹⁾ | CS144 ⁽¹⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽¹⁾ | CS280 ⁽¹⁾ | | | XCS05 | 80 | 61 ⁽¹⁾ | 77 | - | - | - | - | - | - | | | XCS10 | 112 | 61 ⁽¹⁾ | 77 | - | 112 | - | - | - | - | | | XCS20 | 160 | - | 77 | - | 113 | 160 | - | - | - | | | XCS30 | 192 | - | 77 ⁽¹⁾ | - | 113 | 169 | 192 | 192 ⁽¹⁾ | - | | | XCS40 | 224 | - | - | - | - | 169 | 192 | 205 | - | | | XCS05XL | 80 | 61 ⁽¹⁾ | 77 ⁽²⁾ | - | - | - | - | - | - | | | XCS10XL | 112 | 61 ⁽¹⁾ | 77 ⁽²⁾ | 112 ⁽¹⁾ | 112 ⁽²⁾ | - | - | - | - | | | XCS20XL | 160 | - | 77 ⁽²⁾ | 113 ⁽¹⁾ | 113 ⁽²⁾ | 160 ⁽²⁾ | - | - | - | | | XCS30XL | 192 | - | 77 ⁽²⁾ | - | 113 ⁽²⁾ | 169 ⁽²⁾ | 192 ⁽²⁾ | 192 ⁽²⁾ | 192 ⁽¹⁾ | | | XCS40XL | 224 | - | - | - | - | 169 ⁽²⁾ | 192 ⁽²⁾ | 205 ⁽²⁾ | 224 ⁽¹⁾ | | | 6/25/08 | | • | • | | | • | | • | | | #### 0/23/00 #### Notes: - PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 - 2. These Spartan-XL devices are available in Pb-free package options. The Pb-free packages insert a "G" in the package code. Contact Xilinx for availability. # **Ordering Information** BG = Ball Grid Array VQ = Very Thin Quad Flat Pack BGG = Ball Grid Array (Pb-free) VQG = Very Thin Quad Flat Pack (Pb-free) PC = Plastic Lead Chip Carrier TQ = Thin Quad Flat Pack PQ = Plastic Quad Flat Pack TQG = Thin Quad Flat Pack (Pb-free)