

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	576
Number of Logic Elements/Cells	1368
Total RAM Bits	18432
Number of I/O	169
Number of Gates	30000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcs30-3pq208c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

T-1-1-	Ο.	Δ I D	Ot		Functionality
םוחבו	٠,٠		STORAGE	FIDMONT	FIIDCTIONSIITV

Mode	СК	EC	SR	D	Q
Power-Up or GSR	Х	Х	Х	Х	SR
Flip-Flop	Х	Х	1	Х	SR
Operation		1*	0*	D	D
	0	Х	0*	Х	Q
Latch	1	1*	0*	Х	Q
Operation (Spartan-XL)	0	1*	0*	D	D
Both	Х	0	0*	Х	Q

Legend:

Χ	Don't care
	Rising edge (clock not inverted).
SR	Set or Reset value. Reset is default.
0*	Input is Low or unconnected (default value)
1*	Input is High or unconnected (default value)

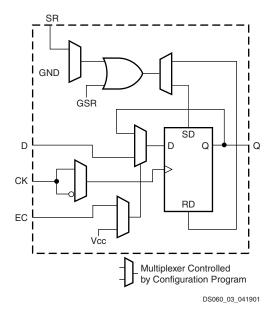


Figure 3: CLB Flip-Flop Functional Block Diagram

Clock Input

Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB.

Clock Enable

The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device.

Set/Reset

The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB.

CLB Signal Flow Control

In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y).

Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source.

Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT.

Control Signals

There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals.

This high value makes them unsuitable as wired-AND pull-up resistors.

Table 7: Supported Destinations for Spartan/XL Outputs

	Spartan-XL Outputs		rtan puts
Destination	3.3V, CMOS	5V, TTL	5V, CMOS
Any device, V _{CC} = 3.3V, CMOS-threshold inputs	V	V	Some ⁽¹⁾
Any device, V _{CC} = 5V, TTL-threshold inputs	V	V	√
Any device, V _{CC} = 5V, CMOS-threshold inputs	Unreliable Data		1

Notes:

Only if destination device has 5V tolerant inputs.

After configuration, voltage levels of unused pads, bonded or unbonded, must be valid logic levels, to reduce noise sensitivity and avoid excess current. Therefore, by default, unused pads are configured with the internal pull-up resistor active. Alternatively, they can be individually configured with the pull-down resistor, or as a driven output, or to be driven by an external source. To activate the internal pull-up, attach the PULLUP library component to the net attached to the pad. To activate the internal pull-down, attach the PULL-DOWN library component to the net attached to the pad.

Set/Reset

As with the CLB registers, the GSR signal can be used to set or clear the input and output registers, depending on the value of the INIT attribute or property. The two flip-flops can be individually configured to set or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops (Figure 5). The choice of set or reset applies to both the initial state of the flip-flop and the response to the GSR pulse.

Independent Clocks

Separate clock signals are provided for the input (IK) and output (OK) flip-flops. The clock can be independently inverted for each flip-flop within the IOB, generating either

falling-edge or rising-edge triggered flip-flops. The clock inputs for each IOB are independent.

Common Clock Enables

The input and output flip-flops in each IOB have a common clock enable input (see EC signal in Figure 5), which through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC signal on the Spartan/XL FPGA CLB. It cannot be inverted within the IOB.

Routing Channel Description

All internal routing channels are composed of metal segments with programmable switching points and switching matrices to implement the desired routing. A structured, hierarchical matrix of routing channels is provided to achieve efficient automated routing.

This section describes the routing channels available in Spartan/XL devices. Figure 8 shows a general block diagram of the CLB routing channels. The implementation software automatically assigns the appropriate resources based on the density and timing requirements of the design. The following description of the routing channels is for information only and is simplified with some minor details omitted. For an exact interconnect description the designer should open a design in the FPGA Editor and review the actual connections in this tool.

The routing channels will be discussed as follows;

- CLB routing channels which run along each row and column of the CLB array.
- IOB routing channels which form a ring (called a VersaRing) around the outside of the CLB array. It connects the I/O with the CLB routing channels.
- Global routing consists of dedicated networks primarily designed to distribute clocks throughout the device with minimum delay and skew. Global routing can also be used for other high-fanout signals.

CLB Routing Channels

The routing channels around the CLB are derived from three types of interconnects; single-length, double-length, and longlines. At the intersection of each vertical and horizontal routing channel is a signal steering matrix called a Programmable Switch Matrix (PSM). Figure 8 shows the basic routing channel configuration showing single-length lines, double-length lines and longlines as well as the CLBs and PSMs. The CLB to routing channel interface is shown as well as how the PSMs interface at the channel intersections.

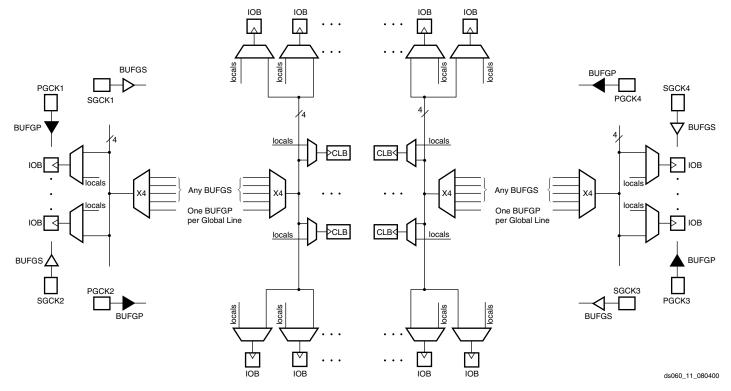


Figure 11: 5V Spartan Family Global Net Distribution

The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility.

The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets.

Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code.

Advanced Features Description

Distributed RAM

Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM).

Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA.

Memory Configuration Overview

There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB.

Table 8: CLB Memory Configurations

Mode	16 x 1	(16 x 1) x 2	32 x 1
Single-Port	√	√	V
Dual-Port	√	_	_

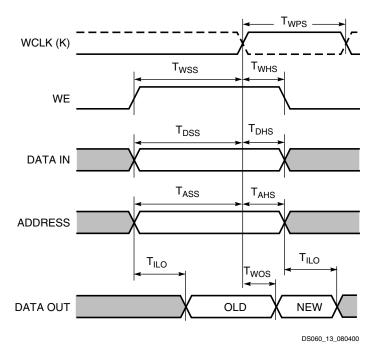


Figure 13: Data Write and Access Timing for RAM

WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be

inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM.

The WE input is active High and cannot be inverted within the CLB.

Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO.

Dual-Port Mode

In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported.

The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the

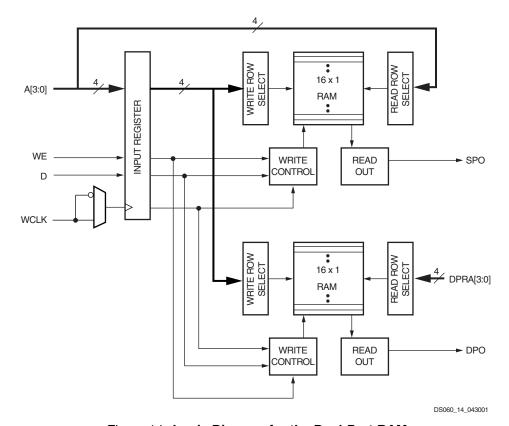


Figure 14: Logic Diagram for the Dual-Port RAM

Figure 20 is a diagram of the Spartan/XL FPGA boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Spartan/XL devices can also be configured through the boundary scan logic. See **Configuration Through the Boundary Scan Pins**, page 37.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out and 3-state Control. Non-IOB pins have appropriate partial bit population for In or Out only. PROGRAM, CCLK and DONE are not included in the boundary scan register. Each EXTEST CAPTURE-DR state captures all In, Out, and 3-state pins.

The data register also includes the following non-pin bits: TDO.T, and TDO.O, which are always bits 0 and 1 of the data register, respectively, and BSCANT.UPD, which is always the last bit of the data register. These three boundary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA provides two additional data registers that can be specified using the BSCAN macro. The FPGA provides two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are the decodes of two user instructions. For these instructions, two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to be shifted out on TDO. The data register clock (BSCAN.DRCK) is available for control of test logic which the user may wish to implement with CLBs. The NAND of TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE).

Instruction Set

The Spartan/XL FPGA boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 12.

Even if the boundary scan symbol is used in a design, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK.

Avoiding Inadvertent Boundary Scan

If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process.

To prevent activation of boundary scan during configuration, do either of the following:

- TMS: Tie High to put the Test Access Port controller in a benign RESET state.
- TCK: Tie High or Low—do not toggle this clock input.

For more information regarding boundary scan, refer to the Xilinx Application Note, "Boundary Scan in FPGA Devices."

Boundary Scan Enhancements (Spartan-XL Family Only)

Spartan-XL devices have improved boundary scan functionality and performance in the following areas:

IDCODE: The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The use of the IDCODE enables selective configuration dependent on the FPGA found.

The IDCODE register has the following binary format:

vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1

where

c = the company code (49h for Xilinx)

a = the array dimension in CLBs (ranges from 0Ah for XCS05XL to 1Ch for XCS40XL)

f = the family code (02h for Spartan-XL family)

v = the die version number

Table 13: IDCODEs Assigned to Spartan-XL FPGAs

FPGA	IDCODE
XCS05XL	0040A093h
XCS10XL	0040E093h
XCS20XL	00414093h
XCS30XL	00418093h
XCS40XL	0041C093h

Configuration State: The configuration state is available to JTAG controllers.

Configuration Disable: The JTAG port can be prevented from configuring the FPGA.

TCK Startup: TCK can now be used to clock the start-up block in addition to other user clocks.

CCLK Holdoff: Changed the requirement for Boundary Scan Configure or EXTEST to be issued prior to the release of INIT pin and CCLK cycling.

Reissue Configure: The Boundary Scan Configure can be reissued to recover from an unfinished attempt to configure the device.

Bypass FF: Bypass FF and IOB is modified to provide DRCLOCK only during BYPASS for the bypass flip-flop, and during EXTEST or SAMPLE/PRELOAD for the IOB register.

Power-Down (Spartan-XL Family Only)

All Spartan/XL devices use a combination of efficient segmented routing and advanced process technology to provide low power consumption under all conditions. The 3.3V Spartan-XL family adds a dedicated active Low power-down pin (PWRDWN) to reduce supply current to 100 μA typical. The PWRDWN pin takes advantage of one of the unused No Connect locations on the 5V Spartan device. The user must de-select the "5V Tolerant I/Os" option in the Configuration Options to achieve the specified Power Down current. The PWRDWN pin has a default internal pull-up resistor, allowing it to be left unconnected if unused.

 V_{CC} must continue to be supplied during Power-down, and configuration data is maintained. When the \overline{PWRDWN} pin is pulled Low, the input and output buffers are disabled. The inputs are internally forced to a logic Low level, including the MODE pins, DONE, CCLK, and \overline{TDO} , and all internal pull-up resistors are turned off. The $\overline{PROGRAM}$ pin is not affected by Power Down. The GSR net is asserted during Power Down, initializing all the flip-flops to their start-up state.

PWRDWN has a minimum pulse width of 50 ns (Figure 23). On entering the Power-down state, the inputs will be disabled and the flip-flops set/reset, and then the outputs are disabled about 10 ns later. The user may prefer to assert the GTS or GSR signals before PWRDWN to affect the order of events. When the PWRDWN signal is returned High, the inputs will be enabled first, followed immediately by the release of the GSR signal initializing the flip-flops. About 10 ns later, the outputs will be enabled. Allow 50 ns after the release of PWRDWN before using the device.

to the DONE pin. User I/Os for each device become active after the DONE pin for that device goes High. (The exact timing is determined by development system options.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device

in the chain has completed its configuration cycle. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured. Only devices supporting Express mode can be used to form an Express mode daisy chain.

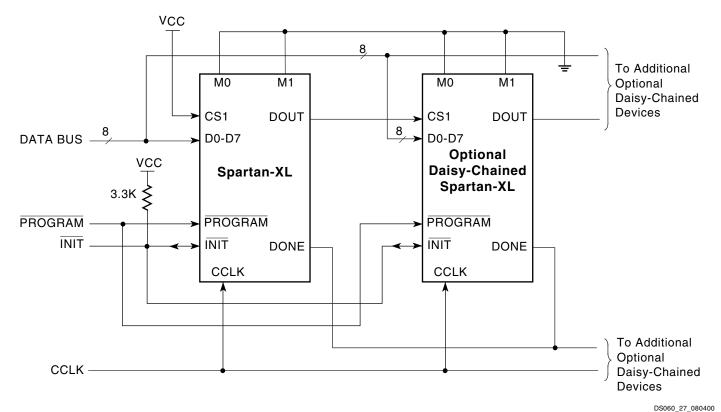


Figure 27: Express Mode Circuit Diagram

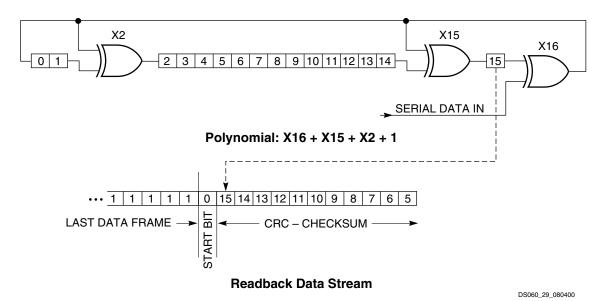


Figure 29: Circuit for Generating CRC-16

Configuration Sequence

There are four major steps in the Spartan/XL FPGA power-up configuration sequence.

- · Configuration Memory Clear
- Initialization
- Configuration
- Start-up

The full process is illustrated in Figure 30.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When V_{CC} reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms. The delay is four times as long when in Master Serial Mode to allow ample time for all slaves to reach a stable V_{CC} . When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain.

This delay is applied only on power-up. It is not applied when reconfiguring an FPGA by pulsing the PROGRAM pin

Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator.

At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the $\overline{PROGRAM}$ pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the \overline{INIT} input.

Initialization

During initialization and configuration, user pins HDC, $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE provide status outputs for the system interface. The outputs $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE are held Low and HDC is held High starting at the initial application of power.

The open drain $\overline{\text{INIT}}$ pin is released after the final initialization pass through the frame addresses. There is a deliberate delay before a Master-mode device recognizes an inactive $\overline{\text{INIT}}$. Two internal clocks after the $\overline{\text{INIT}}$ pin is recognized as High, the device samples the MODE pin to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded.

Readback Switching Characteristics Guidelines

The following guidelines reflect worst-case values over the recommended operating conditions.

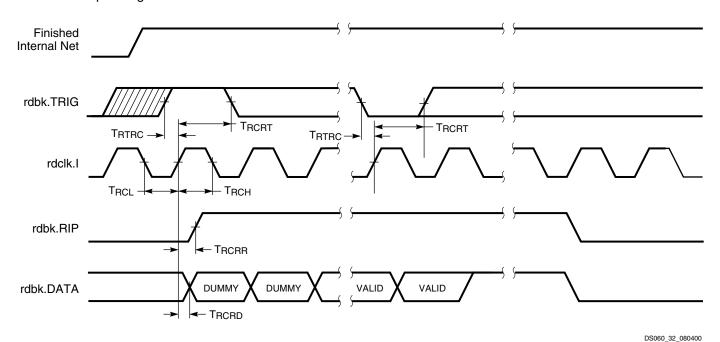
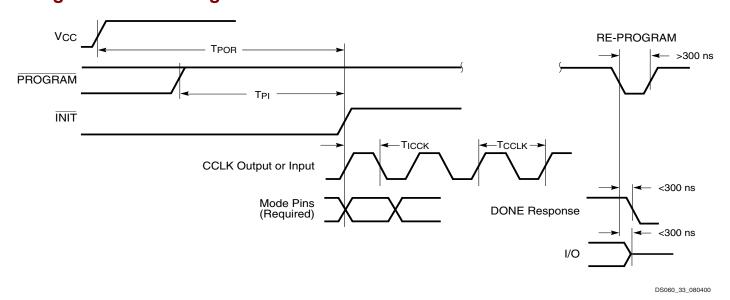


Figure 33: Spartan and Spartan-XL Readback Timing Diagram

Spartan and Spartan-XL Readback Switching Characteristics


Symbol		Description	Min	Max	Units
T _{RTRC}	rdbk.TRIG	rdbk.TRIG setup to initiate and abort Readback	200	-	ns
T _{RCRT}		rdbk.TRIG hold to initiate and abort Readback	50	-	ns
T _{RCRD}	rdclk.l	rdbk.DATA delay	-	250	ns
T _{RCRR}		rdbk.RIP delay	-	250	ns
T _{RCH}		High time	250	500	ns
T _{RCL}		Low time	250	500	ns

Notes:

- 1. Timing parameters apply to all speed grades.
- 2. If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback.

Configuration Switching Characteristics

Master Mode

Symbol	Description	Min	Max	Units
T _{POR}	Power-on reset	40	130	ms
T _{PI}	Program Latency	30	200	μs per CLB column
T _{ICCK}	CCLK (output) delay	40	250	μs
T _{CCLK}	CCLK (output) period, slow	640	2000	ns
T _{CCLK}	CCLK (output) period, fast	100	250	ns

Slave Mode

Symbol	Description	Min	Max	Units
T _{POR}	Power-on reset	10	33	ms
T _{Pl}	Program latency	30	200	μs per CLB column
T _{ICCK}	CCLK (input) delay (required)	4	-	μs
T _{CCLK}	CCLK (input) period (required)	80	-	ns

Spartan Family Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more pre-

cise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report.

Spartan Family Output Flip-Flop, Clock-to-Out

			Speed	Grade	
			-4	-3	
Symbol	Description	Device	Max	Max	Units
Global Pri	mary Clock to TTL Output using OFF			'	'
T _{ICKOF}	Fast	XCS05	5.3	8.7	ns
		XCS10	5.7	9.1	ns
		XCS20	6.1	9.3	ns
		XCS30	6.5	9.4	ns
		XCS40	6.8	10.2	ns
T _{ICKO}	Slew-rate limited	XCS05	9.0	11.5	ns
		XCS10	9.4	12.0	ns
	XCS20	9.8	12.2	ns	
		XCS30	10.2	12.8	ns
		XCS40	10.5	12.8	ns
Global Sec	condary Clock to TTL Output using OFF				
T _{ICKSOF}	Fast	XCS05	5.8	9.2	ns
		XCS10	6.2	9.6	ns
	I Secondary Clock to TTL Output using OFF SOF Fast	XCS20	6.6	9.8	ns
		XCS30	7.0	9.9	ns
		XCS40	7.3	10.7	ns
T _{ICKSO}	Slew-rate limited	XCS05	9.5	12.0	ns
		XCS10	9.9	12.5	ns
	XCS20	10.3	12.7	ns	
		XCS30	10.7	13.2	ns
	XCS40	11.0	14.3	ns	
Delay Add	er for CMOS Outputs Option			1	1
T _{CMOSOF}	Fast	All devices	0.8	1.0	ns
T_{CMOSO}	Slew-rate limited	All devices	1.5	2.0	ns

Notes:

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 34.
- 3. OFF = Output Flip-Flop

Spartan Family IOB Output Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to

the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted.

			Speed Grade				
			-	4	-	3	
Symbol	Description	Device	Min	Max	Min	Max	Units
Clocks							
T _{CH}	Clock High	All devices	3.0	-	4.0	-	ns
T _{CL}	Clock Low	All devices	3.0	-	4.0	-	ns
Propagation	Delays - TTL Outputs ^(1,2)						
T _{OKPOF}	Clock (OK) to Pad, fast	All devices	-	3.3	-	4.5	ns
T _{OKPOS}	Clock (OK to Pad, slew-rate limited	All devices	-	6.9	-	7.0	ns
T _{OPF}	Output (O) to Pad, fast	All devices	-	3.6	-	4.8	ns
T _{OPS}	Output (O) to Pad, slew-rate limited	All devices	-	7.2	-	7.3	ns
T _{TSHZ}	3-state to Pad High-Z (slew-rate independent)	All devices	-	3.0	-	3.8	ns
T _{TSONF}	3-state to Pad active and valid, fast	All devices	-	6.0	-	7.3	ns
T _{TSONS}	3-state to Pad active and valid, slew-rate limited	All devices	-	9.6	-	9.8	ns
Setup and H	old Times		+	+	!	-	
T _{OOK}	Output (O) to clock (OK) setup time	All devices	2.5	-	3.8	-	ns
T _{OKO}	Output (O) to clock (OK) hold time	All devices	0.0	-	0.0	-	ns
T _{ECOK}	Clock Enable (EC) to clock (OK) setup time	All devices	2.0	-	2.7	-	ns
T _{OKEC}	Clock Enable (EC) to clock (OK) hold time	All devices	0.0	-	0.5	-	ns
Global Set/F	Reset	l	1				
T_{MRW}	Minimum GSR pulse width	All devices	11.5		13.5		ns
T _{RPO}	Delay from GSR input to any Pad	XCS05	-	12.0	-	15.0	ns
		XCS10	-	12.5	-	15.7	ns
		XCS20	-	13.0	-	16.2	ns
		XCS30	-	13.5	-	16.9	ns
		XCS40	-	14.0	-	17.5	ns

Notes:

- 1. Delay adder for CMOS Outputs option (with fast slew rate option): for -3 speed grade, add 1.0 ns; for -4 speed grade, add 0.8 ns.
- 2. Delay adder for CMOS Outputs option (with slow slew rate option): for -3 speed grade, add 2.0 ns; for -4 speed grade, add 1.5 ns.
- 3. Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times.
- 4. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

Spartan-XL Family Global Buffer Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For

more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

			Spee	d Grade	Units ns ns
			-5	-4	
Symbol	Description	Device	Max	Max	Units
T _{GLS}	From pad through buffer, to any clock K	XCS05XL	1.4	1.5	ns
		XCS10XL	1.7	1.8	ns
		XCS20XL	2.0	2.1	ns
		XCS30XL	2.3	2.5	ns
		XCS40XL	2.6	2.8	ns

Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted.

				Speed	l Grade		
			•	-5	-	-4	
Symbol	Single Port RAM	Size ⁽¹⁾	Min	Max	Min	Max	Units
Write Ope	ration						
T _{WCS}	Address write cycle time (clock K period)	16x2	7.7	-	8.4	-	ns
T _{WCTS}		32x1	7.7	-	8.4	-	ns
T _{WPS}	Clock K pulse width (active edge)	16x2	3.1	-	3.6	-	ns
T _{WPTS}		32x1	3.1	-	3.6	-	ns
T _{ASS}	Address setup time before clock K	16x2	1.3	-	1.5	-	ns
T _{ASTS}		32x1	1.5	-	1.7	-	ns
T _{DSS}	DIN setup time before clock K	16x2	1.5	-	1.7	-	ns
T _{DSTS}		32x1	1.8	-	2.1	-	ns
T _{WSS}	WE setup time before clock K	16x2	1.4	-	1.6	-	ns
T _{WSTS}		32x1	1.3	-	1.5	-	ns
	All hold times after clock K	16x2	0.0	-	0.0	-	ns
T _{WOS}	Data valid after clock K	32x1	-	4.5	-	5.3	ns
T _{WOTS}		16x2	-	5.4	-	6.3	ns
Read Ope	ration	•	11	1			11
T _{RC}	Address read cycle time	16x2	2.6	-	3.1	-	ns
T _{RCT}		32x1	3.8	-	5.5	-	ns
T _{ILO}	Data Valid after address change (no Write	16x2	-	1.0	-	1.1	ns
T _{IHO}	Enable)	32x1	-	1.7	-	2.0	ns
T _{ICK}	Address setup time before clock K	16x2	0.6	-	0.7	-	ns
T _{IHCK}		32x1	1.3	-	1.6	-	ns
Notes:							

Notes:

56

^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.

XCS20 and XCS20XL Device Pinouts

XCS20 and		OVE DEA	ICE FIII	UUIS	
XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
PROGRAM	P52	M13	P74	P106	-
I/O (D7 ⁽²⁾)	P53	L12	P75	P107	367 ⁽³⁾
I/O,	P54	L13	P76	P108	370 ⁽³⁾
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾					
I/O		K10	P77	P109	373 ⁽³⁾
1/0	-	K10	P77	P109	373 ⁽³⁾
I/O (D6 ⁽²⁾)	- P55	K11	P79	P110	379 ⁽³⁾
I/O (D6(=/)		K12		P112	382 (3)
	P56	NI3	P80		385 (3)
1/0	-	-	-	P114	
1/0	-	-	-	P115	388 (3)
1/0	-	-	-	P116	391 ⁽³⁾
I/O	-	-	-	P117	394 ⁽³⁾
GND	-	J10	P81	P118	- (2)
I/O	-	J11	P82	P119	397 ⁽³⁾
I/O	-	J12	P83	P120	400 (3)
VCC ⁽²⁾	-	-	-	P121	- (0)
I/O (D5 ⁽²⁾)	P57	J13	P84	P122	403 (3)
I/O	P58	H10	P85	P123	406 ⁽³⁾
I/O	-	-	-	P124	409 (3)
I/O	-	-	-	P125	412 ⁽³⁾
I/O	P59	H11	P86	P126	415 ⁽³⁾
I/O	P60	H12	P87	P127	418 ⁽³⁾
I/O (D4 ⁽²⁾)	P61	H13	P88	P128	421 ⁽³⁾
I/O	P62	G12	P89	P129	424 ⁽³⁾
VCC	P63	G13	P90	P130	-
GND	P64	G11	P91	P131	-
I/O (D3 ⁽²⁾)	P65	G10	P92	P132	427 ⁽³⁾
I/O	P66	F13	P93	P133	430 ⁽³⁾
I/O	P67	F12	P94	P134	433 ⁽³⁾
I/O	-	F11	P95	P135	436 ⁽³⁾
I/O	-	-	-	P136	439 ⁽³⁾
I/O	-	-	-	P137	442 (3)
I/O (D2 ⁽²⁾)	P68	F10	P96	P138	445 ⁽³⁾
I/O	P69	E13	P97	P139	448 ⁽³⁾
VCC ⁽²⁾	-	-	-	P140	-
I/O	_	E12	P98	P141	451 ⁽³⁾
I/O	_	E11	P99	P142	454 ⁽³⁾
GND	-	E10	P100	P143	-
I/O	-	-	-	P145	457 ⁽³⁾
I/O	-	-	-	P146	460 ⁽³⁾
I/O	-	-	-	P147	463 ⁽³⁾
I/O	-	-	-	P148	466 ⁽³⁾
I/O (D1 ⁽²⁾)	P70	D13	P101	P149	469 ⁽³⁾
I/O	P71	D12	P102	P150	472 ⁽³⁾
I/O	-	D11	P103	P151	475 ⁽³⁾

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	C13	P104	P152	478 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P72	C12	P105	P153	481 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P73	C11	P106	P154	484 ⁽³⁾
CCLK	P74	B13	P107	P155	-
VCC	P75	B12	P108	P156	-
O, TDO	P76	A13	P109	P157	0
GND	P77	A12	P110	P158	-
I/O	P78	B11	P111	P159	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P79	A11	P112	P160	5
I/O	-	D10	P113	P161	8
I/O	-	C10	P114	P162	11
I/O (CS1 ⁽²⁾)	P80	B10	P115	P163	14
I/O	P81	A10	P116	P164	17
I/O	-	D9	P117	P166	20
I/O	-	-	-	P167	23
I/O	-	-	-	P168	26
I/O	-	-	-	P169	29
GND	-	C9	P118	P170	-
I/O	-	B9	P119	P171	32
I/O	-	A9	P120	P172	35
VCC ⁽²⁾	-	-	-	P173	-
I/O	P82	D8	P121	P174	38
I/O	P83	C8	P122	P175	41
I/O	-	-	-	P176	44
I/O	-	-	-	P177	47
I/O	P84	B8	P123	P178	50
I/O	P85	A8	P124	P179	53
I/O	P86	B7	P125	P180	56
I/O	P87	A7	P126	P181	59
GND	P88	C7	P127	P182	-

2/8/00

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	P5	P5	P5	D3	C1	155
I/O, TDI	P4	P6	P6	P6	E4	D4	158
I/O, TCK	P5	P7	P7	P7	C1	D3	161
I/O	-	-	P8	P8	D1	E2	164
I/O	-	-	P9	P9	E3	E4	167
I/O	-	-	P10	P10	E2	E1	170
I/O	-	-	P11	P11	E1	F5	173
I/O	-	-	P12	P12	F3	F3	176
I/O	-	-	-	P13	F2	F2	179
GND	-	P8	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P9	P14	P15	G3	F4	182
I/O	-	P10	P15	P16	G2	F1	185
I/O, TMS	P6	P11	P16	P17	G1	G3	188
I/O	P7	P12	P17	P18	НЗ	G2	191
VCC	-	-	P18	P19	VCC ⁽⁴⁾	G1	-
I/O	-	-	-	P20	H2	G4	194
I/O	-	-	-	P21	H1	H1	197
I/O	-	-	P19	P23	J2	H4	200
I/O	-	-	P20	P24	J1	J1	203
I/O	-	P13	P21	P25	K2	J2	206
I/O	P8	P14	P22	P26	КЗ	J3	209
I/O	P9	P15	P23	P27	K1	J4	212
I/O	P10	P16	P24	P28	L1	K1	215
GND	P11	P17	P25	P29	GND ⁽⁴⁾	GND ⁽⁴⁾	-
VCC	P12	P18	P26	P30	VCC ⁽⁴⁾	K2	-
I/O	P13	P19	P27	P31	L2	K3	218
I/O	P14	P20	P28	P32	L3	K4	221
I/O	P15	P21	P29	P33	L4	K5	224
I/O	-	P22	P30	P34	M1	L1	227
I/O	-	-	P31	P35	M2	L2	230
I/O	-	-	P32	P36	M3	L3	233
I/O	-	-	-	P38	N1	M2	236
I/O	-	-	-	P39	N2	M3	239
VCC	-	-	P33	P40	VCC ⁽⁴⁾	M4	-
I/O	P16	P23	P34	P41	P1	N1	242
I/O	P17	P24	P35	P42	P2	N2	245
I/O	-	P25	P36	P43	R1	N3	248
I/O	-	P26	P37	P44	P3	N4	251
GND	-	P27	P38	P45	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P46	T1	P1	254
I/O	-	-	P39	P47	R3	P2	257
I/O	-	-	P40	P48	T2	P3	260
I/O	-	-	P41	P49	U1	P4	263
I/O	-	_	P42	P50	T3	P5	266
I/O	-	_	P43	P51	U2	R1	269

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	P18	P28	P44	P52	V1	T1	272
I/O	P19	P29	P45	P53	T4	T2	275
I/O	-	P30	P46	P54	U3	T3	278
I/O	-	P31	P47	P55	V2	U1	281
I/O	P20	P32	P48	P56	W1	V1	284
O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾	P21	P33	P49	P57	V3	U2	287
Not Connected ⁽¹⁾ , M1 ⁽²⁾	P22	P34	P50	P58	W2	V2	290
GND	P23	P35	P51	P59	GND ⁽⁴⁾	GND ⁽⁴⁾	-
MODE ⁽¹⁾ , M0 ⁽²⁾	P24	P36	P52	P60	Y1	W1	293
VCC	P25	P37	P53	P61	VCC ⁽⁴⁾	U3	-
Not Connected ⁽¹⁾ , PWRDWN ⁽²⁾	P26	P38	P54	P62	W3	V3	294 (1)
/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾	P27	P39	P55	P63	Y2	W2	295 ⁽³⁾
I/O (HDC)	P28	P40	P56	P64	W4	W3	298 (3)
I/O	-	P41	P57	P65	V4	T4	301 ⁽³⁾
I/O	-	P42	P58	P66	U5	U4	304 ⁽³⁾
I/O	P29	P43	P59	P67	Y3	V4	307 (3)
I/O (LDC)	P30	P44	P60	P68	Y4	W4	310 ⁽³⁾
I/O	-	-	P61	P69	V5	T5	313 ⁽³⁾
I/O	-	-	P62	P70	W5	W5	316 ⁽³⁾
I/O	-	-	P63	P71	Y5	R6	319 ⁽³⁾
I/O	-	-	P64	P72	V6	U6	322 (3)
I/O	-	-	P65	P73	W6	V6	325 ⁽³⁾
I/O	-	-	-	P74	Y6	T6	328 (3)
GND	-	P45	P66	P75	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P46	P67	P76	W7	W6	331 ⁽³⁾
I/O	-	P47	P68	P77	Y7	U7	334 (3)
I/O	P31	P48	P69	P78	V8	V7	337 (3)
I/O	P32	P49	P70	P79	W8	W7	340 (3)
VCC	-	-	P71	P80	VCC ⁽⁴⁾	T7	-
I/O	-	-	P72	P81	Y8	W8	343 (3)
I/O	-	-	P73	P82	U9	U8	346 ⁽³⁾
I/O	-	-	-	P84	Y9	W9	349 (3)
I/O	-	-	-	P85	W10	V9	352 ⁽³⁾
I/O	P33	P50	P74	P86	V10	U9	355 ⁽³⁾
I/O	P34	P51	P75	P87	Y10	T9	358 ⁽³⁾
I/O	P35	P52	P76	P88	Y11	W10	361 ⁽³⁾
I/O (INIT)	P36	P53	P77	P89	W11	V10	364 ⁽³⁾
VCC	P37	P54	P78	P90	VCC ⁽⁴⁾	U10	-
GND	P38	P55	P79	P91	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P39	P56	P80	P92	V11	T10	367 ⁽³⁾
I/O	P40	P57	P81	P93	U11	R10	370 (3)
I/O	P41	P58	P82	P94	Y12	W11	373 (3)
I/O	P42	P59	P83	P95	W12	V11	376 ⁽³⁾
I/O	-	-	P84	P96	V12	U11	379 (3)

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	-	P85	P97	U12	T11	382 ⁽³⁾
I/O	-	-	-	P99	V13	U12	385 ⁽³⁾
I/O	-	-	-	P100	Y14	T12	388 (3)
VCC	-	-	P86	P101	VCC ⁽⁴⁾	W13	-
I/O	P43	P60	P87	P102	Y15	V13	391 ⁽³⁾
I/O	P44	P61	P88	P103	V14	U13	394 ⁽³⁾
I/O	-	P62	P89	P104	W15	T13	397 ⁽³⁾
I/O	-	P63	P90	P105	Y16	W14	400 (3)
GND	-	P64	P91	P106	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P107	V15	V14	403 (3)
I/O	-	-	P92	P108	W16	U14	406 ⁽³⁾
I/O	-	-	P93	P109	Y17	T14	409 (3)
I/O	-	-	P94	P110	V16	R14	412 ⁽³⁾
I/O	-	-	P95	P111	W17	W15	415 ⁽³⁾
I/O	-	-	P96	P112	Y18	U15	418 ⁽³⁾
I/O	P45	P65	P97	P113	U16	V16	421 ⁽³⁾
I/O	P46	P66	P98	P114	V17	U16	424 (3)
I/O	-	P67	P99	P115	W18	W17	427 (3)
I/O	-	P68	P100	P116	Y19	W18	430 (3)
I/O	P47	P69	P101	P117	V18	V17	433 (3)
I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾	P48	P70	P102	P118	W19	V18	436 ⁽³⁾
GND	P49	P71	P103	P119	GND ⁽⁴⁾	GND ⁽⁴⁾	-
DONE	P50	P72	P104	P120	Y20	W19	-
VCC	P51	P73	P105	P121	VCC ⁽⁴⁾	U17	-
PROGRAM	P52	P74	P106	P122	V19	U18	-
I/O (D7 ⁽²⁾)	P53	P75	P107	P123	U19	V19	439 (3)
I/O, PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾	P54	P76	P108	P124	U18	U19	442 (3)
I/O	-	P77	P109	P125	T17	T16	445 ⁽³⁾
I/O	-	P78	P110	P126	V20	T17	448 (3)
I/O	-	-	-	P127	U20	T18	451 ⁽³⁾
I/O	-	-	P111	P128	T18	T19	454 ⁽³⁾
I/O (D6 ⁽²⁾)	P55	P79	P112	P129	T19	R16	457 ⁽³⁾
I/O	P56	P80	P113	P130	T20	R19	460 ⁽³⁾
I/O	-	-	P114	P131	R18	P15	463 ⁽³⁾
I/O	-	-	P115	P132	R19	P17	466 ⁽³⁾
I/O	-	-	P116	P133	R20	P18	469 ⁽³⁾
I/O	-	-	P117	P134	P18	P16	472 ⁽³⁾
GND	-	P81	P118	P135	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P136	P20	P19	475 ⁽³⁾
I/O	-	-	-	P137	N18	N17	478 ⁽³⁾
I/O	-	P82	P119	P138	N19	N18	481 ⁽³⁾
I/O	-	P83	P120	P139	N20	N19	484 (3)
VCC	-	-	P121	P140	VCC ⁽⁴⁾	N16	-
I/O (D5 ⁽²⁾)	P57	P84	P122	P141	M17	M19	487 ⁽³⁾
I/O	P58	P85	P123	P142	M18	M17	490 (3)

CS280

	VCC Pins								
E5	E7	E8	E9	E11	E12				
E13	G5	G15	H5	H15	J5				
J15	L5	L15	M5	M15	N5				
N15	R7	R8	R9	R11	R12				
R13	-	-	-	-	-				
	Not Connected Pins								
A4	A12	C8	C12	C15	D1				
D2	D5	D8	D17	D18	E15				
H2	НЗ	H18	H19	L4	M1				
M16	M18	R2	R4	R5	R15				
R17	T8	T15	U5	V8	V12				
W12	W16	-	-	-	-				
	Not Connected Pins (VCC in XCS40XL)								
B5	B15	E3	E18	R3	R18				
V5	V15	-	-	-	-				

5/21/02

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
VCC	P183	P212	VCC ⁽⁴⁾	VCC ⁽⁴⁾	Juli
					-
I/O	P184	P213	C10	D10	86
I/O	P185	P214	D10	E10	89
I/O	P186	P215	A9	A9	92
I/O	P187	P216	B9	B9	95
I/O	P188	P217	C9	C9	98
I/O	P189	P218	D9	D9	101
I/O	P190	P220	A8	A8	104
I/O	P191	P221	B8	B8	107
I/O	-	-	C8	C8	110
I/O	-	-	A7	D8	113
VCC	P192	P222	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P223	A6	B7	116
I/O	-	P224	C7	C7	119
I/O	P193	P225	B6	D7	122
I/O	P194	P226	A5	A6	125
GND	P195	P227	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P196	P228	C6	B6	128
I/O	P197	P229	B5	C6	131
I/O	P198	P230	A4	D6	134
I/O	P199	P231	C5	E6	137

XCS40 and XCS40XL Device Pinouts

XCS40/XL			741001		Bndry
Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Scan
I/O	P200	P232	B4	A5	140
I/O	P201	P233	A3	C5	143
I/O	-	1	-	D5	146
I/O	-	1	-	A4	149
I/O	P202	P234	D5	B4	152
I/O	P203	P235	C4	C4	155
I/O	P204	P236	В3	A3	158
I/O	P205	P237	B2	A2	161
I/O	P206	P238	A2	В3	164
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P207	P239	C3	B2	167
VCC	P208	P240	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P1	P1	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	P2	B1	C3	170
I/O	P3	P3	C2	C2	173
I/O	P4	P4	D2	B1	176
I/O	P5	P5	D3	C1	179
I/O, TDI	P6	P6	E4	D4	182
I/O, TCK	P7	P7	C1	D3	185
I/O	-	-	-	D2	188
I/O	-	1	-	D1	191
I/O	P8	P8	D1	E2	194
I/O	P9	P9	E3	E4	197
I/O	P10	P10	E2	E1	200
I/O	P11	P11	E1	F5	203
I/O	P12	P12	F3	F3	206
I/O	-	P13	F2	F2	209
GND	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P14	P15	G3	F4	212
I/O	P15	P16	G2	F1	215
I/O, TMS	P16	P17	G1	G3	218
I/O	P17	P18	Н3	G2	221
VCC	P18	P19	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P20	H2	G4	224
I/O	-	P21	H1	H1	227
I/O	-	-	J4	H3	230
I/O	-	-	J3	H2	233
I/O	P19	P23	J2	H4	236
I/O	P20	P24	J1	J1	239
I/O	P21	P25	K2	J2	242
I/O	P22	P26	K3	J3	245
I/O	P23	P27	K1	J4	248
I/O	P24	P28	L1	K1	251

XCS40 and XCS40XL Device Pinouts

XCS40/XL				00000(2 F)	Bndry
Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Scan
O, TDO	P157	P181	A19	B17	0
GND	P158	P182	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P159	P183	B18	A18	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P160	P184	B17	A17	5
I/O	P161	P185	C17	D16	8
I/O	P162	P186	D16	C16	11
I/O (CS1 ⁽²⁾)	P163	P187	A18	B16	14
I/O	P164	P188	A17	A16	17
I/O	-	-	-	E15	20
I/O	-	-	-	C15	23
I/O	P165	P189	C16	D15	26
I/O	-	P190	B16	A15	29
I/O	P166	P191	A16	E14	32
I/O	P167	P192	C15	C14	35
I/O	P168	P193	B15	B14	38
I/O	P169	P194	A15	D14	41
GND	P170	P196	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P171	P197	B14	A14	44
I/O	P172	P198	A14	C13	47
I/O	-	P199	C13	B13	50
I/O	-	P200	B13	A13	53
VCC	P173	P201	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	-	A13	A12	56
I/O	-	-	D12	C12	59
I/O	P174	P202	C12	B12	62
I/O	P175	P203	B12	D12	65
I/O	P176	P205	A12	A11	68
I/O	P177	P206	B11	B11	71
I/O	P178	P207	C11	C11	74
I/O	P179	P208	A11	D11	77
I/O	P180	P209	A10	A10	80
I/O	P181	P210	B10	B10	83
GND	P182	P211	GND ⁽⁴⁾	GND ⁽⁴⁾	-
2/8/00					

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- 3. The "PWRDWN" on the XCS40XL is not part of the Boundary Scan chain. For the XCS40XL, subtract 1 from all Boundary Scan numbers from GCK3 on (343 and higher).
- 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package.
- CS280 package discontinued by <u>PDN2004-01</u>

Additional XCS40/XL Package Pins

PQ240

	GND Pins							
P22	P37	P83	P98	P143	P158			
P204	P219	-	-	-	-			
	Not Connected Pins							
P195	-	-	-	-	-			

2/12/98

BG256

VCC Pins							
C14	D6	D7	D11	D14	D15		
E20	F1	F4	F17	G4	G17		
K4	L17	P4	P17	P19	R2		
R4	R17	U6	U7	U10	U14		
U15	V7	W20	-	-	-		
GND Pins							
A1	B7	D4	D8	D13	D17		
G20	H4	H17	N3	N4	N17		
U4	U8	U13	U17	W14	-		

6/17/97

CS280

VCC Pins							
A1	A7	B5	B15	C10	C17		
D13	E3	E18	G1	G19	K2		
K17	M4	N16	R3	R18	T7		
U3	U10	U17	V5	V15	W13		
GND Pins							
E5	E7	E8	E9	E11	E12		
E13	G5	G15	H5	H15	J5		
J15	L5	L15	M5	M15	N5		
N15	R7	R8	R9	R11	R12		
R13	-	-	-	-	-		

5/19/99