Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-----------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 169 | | Number of Gates | 30000 | | Voltage - Supply | 4.5V ~ 5.5V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs30-3pq208i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown) A CLB can implement any of the following functions: Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables **Note:** When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. - Any single function of five variables - Any function of four variables together with some functions of six variables - · Some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. #### Flip-Flops Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay. The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20. #### Latches (Spartan-XL Family Only) The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2. Figure 4: CLB Control Signal Interface The four internal control signals are: - EC: Enable Clock - SR: Asynchronous Set/Reset or H function generator Input 0 - DIN: Direct In or H function generator Input 2 - H1: H function generator Input 1. ## Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 6 shows a simplified functional block diagram of the Spartan/XL FPGA IOB. Figure 5: IOB Flip-Flop/Latch Functional Block Diagram ## IOB Input Signal Path The input signal to the IOB can be configured to either go directly to the routing channels (via I1 and I2 in Figure 6) or to the input register. The input register can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The functionality of this register is shown in Table 3, and a simplified block diagram of the register can be seen in Figure 5. Table 3: Input Register Functionality | Mode | CK | EC | D | Q | |--------------------|----|----|---|----| | Power-Up or<br>GSR | Х | Х | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Х | 0 | Х | Q | #### Legend: | X | Don't care. | |----|----------------------------------------------| | ^ | | | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Table 4: Supported Sources for Spartan/XL Inputs | | • • • • • • • • • • • • • • • • • • • • | | | | | | |-------------------------------------------------------------|-----------------------------------------|-----------------|----------------------|--|--|--| | | - | artan<br>outs | Spartan-XL<br>Inputs | | | | | Source | 5V,<br>TTL | 5V,<br>CMOS | 3.3V<br>CMOS | | | | | Any device, V <sub>CC</sub> = 3.3V,<br>CMOS outputs | √ | Unreli-<br>able | V | | | | | Spartan family, V <sub>CC</sub> = 5V,<br>TTL outputs | <b>V</b> | Data | V | | | | | Any device, $V_{CC} = 5V$ , TTL outputs $(V_{OH} \le 3.7V)$ | <b>V</b> | | V | | | | | Any device, V <sub>CC</sub> = 5V,<br>CMOS outputs | √ | V | √ (default<br>mode) | | | | ### Spartan-XL Family V<sub>CC</sub> Clamping Spartan-XL FPGAs have an optional clamping diode connected from each I/O to $V_{CC}$ . When enabled they clampringing transients back to the 3.3V supply rail. This clamping action is required in 3.3V PCI applications. $V_{CC}$ clamping is a global option affecting all I/O pins. Spartan-XL devices are fully 5V TTL I/O compatible if $V_{CC}$ clamping is not enabled. With $V_{CC}$ clamping enabled, the Spartan-XL devices will begin to clamp input voltages to one diode voltage drop above $V_{CC}$ . If enabled, TTL I/O compatibility is maintained but full 5V I/O tolerance is sacrificed. The user may select either 5V tolerance (default) or 3.3V PCI compatibility. In both cases negative voltage is clamped to one diode voltage drop below ground. Spartan-XL devices are compatible with TTL, LVTTL, PCI 3V, PCI 5V and LVCMOS signalling. The various standards are illustrated in Table 5. Table 5: I/O Standards Supported by Spartan-XL FPGAs | Signaling<br>Standard | VCC<br>Clamping | Output<br>Drive | V <sub>IH MAX</sub> | V <sub>IH MIN</sub> | V <sub>IL MAX</sub> | V <sub>OH MIN</sub> | V <sub>OL MAX</sub> | |-----------------------|-----------------|-----------------|---------------------|------------------------|------------------------|------------------------|------------------------| | TTL | Not allowed | 12/24 mA | 5.5 | 2.0 | 0.8 | 2.4 | 0.4 | | LVTTL | OK | 12/24 mA | 3.6 | 2.0 | 0.8 | 2.4 | 0.4 | | PCI5V | Not allowed | 24 mA | 5.5 | 2.0 | 0.8 | 2.4 | 0.4 | | PCI3V | Required | 12 mA | 3.6 | 50% of V <sub>CC</sub> | 30% of V <sub>CC</sub> | 90% of V <sub>CC</sub> | 10% of V <sub>CC</sub> | | LVCMOS 3V | OK | 12/24 mA | 3.6 | 50% of V <sub>CC</sub> | 30% of V <sub>CC</sub> | 90% of V <sub>CC</sub> | 10% of V <sub>CC</sub> | # Additional Fast Capture Input Latch (Spartan-XL Family Only) The Spartan-XL family OB has an additional optional latch on the input. This latch is clocked by the clock used for the output flip-flop rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch. To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active High input flip-flop. ILFLX is a transparent Low Fast Capture latch followed by a transparent High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB. #### IOB Output Signal Path Output signals can be optionally inverted within the IOB, and can pass directly to the output buffer or be stored in an edge-triggered flip-flop and then to the output buffer. The functionality of this flip-flop is shown in Table 6. Table 6: Output Flip-Flop Functionality | Mode | Clock | Clock<br>Enable | т | D | Q | |--------------------|-------|-----------------|----|---|----| | Power-Up<br>or GSR | Х | Х | 0* | Х | SR | | Flip-Flop | Х | 0 | 0* | Х | Q | | | | 1* | 0* | D | D | | | Х | Х | 1 | Х | Z | | | 0 | Х | 0* | Х | Q | #### Legend: | V | Don't care | |---|------------| | | | \_\_\_ Rising edge (clock not inverted). SR Set or Reset value. Reset is default. 0\* Input is Low or unconnected (default value) 1\* Input is High or unconnected (default value) Z 3-state Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram #### **CLB Interface** A block diagram of the CLB interface signals is shown in Figure 9. The input signals to the CLB are distributed evenly on all four sides providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. The exceptions are the clock (K) input and CIN/COUT signals. The K input is routed to dedicated global vertical lines as well as four single-length lines and is on the left side of the CLB. The CIN/COUT signals are routed through dedicated interconnects which do not interfere with the general routing structure. The output signals from the CLB are available to drive both vertical and horizontal channels. Figure 9: CLB Interconnect Signals #### **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each PSM consists of programmable pass transistors used to establish connections between the lines (see Figure 10). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. ## **Single-Length Lines** Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 10. Routing connectivity is shown in Figure 8. Single-length lines incur a delay whenever they go through a PSM. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. DS060\_10\_081100 Figure 10: Programmable Switch Matrix ## **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. ## Longlines 12 Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19. #### I/O Routing Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines. #### **Global Nets and Buffers** The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect. Figure 11: 5V Spartan Family Global Net Distribution The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility. The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets. Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code. ## **Advanced Features Description** #### **Distributed RAM** Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM). Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA. #### **Memory Configuration Overview** There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB. Table 8: CLB Memory Configurations | Mode | 16 x 1 | (16 x 1) x 2 | 32 x 1 | |-------------|--------|--------------|--------| | Single-Port | √ | √ | V | | Dual-Port | √ | _ | _ | Table 12: Boundary Scan Instructions | Ins | structi | on | Test | TDO | I/O Data | |-----|---------|----|--------------------------------|--------------------|------------| | 12 | l1 | 10 | Selected | Source | Source | | 0 | 0 | 0 | EXTEST | DR | DR | | 0 | 0 | 1 | SAMPLE/<br>PRELOAD | DR | Pin/Logic | | 0 | 1 | 0 | USER 1 | BSCAN.<br>TDO1 | User Logic | | 0 | 1 | 1 | USER 2 | BSCAN.<br>TDO2 | User Logic | | 1 | 0 | 0 | READBACK | Readback<br>Data | Pin/Logic | | 1 | 0 | 1 | CONFIGURE | DOUT | Disabled | | 1 | 1 | 0 | IDCODE<br>(Spartan-XL<br>only) | IDCODE<br>Register | - | | 1 | 1 | 1 | BYPASS | Bypass<br>Register | - | #### Bit Sequence The bit sequence within each IOB is: In, Out, 3-state. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in the FPGA Editor), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 21. The device-specific pinout tables for the Spartan/XL devices include the boundary scan locations for each IOB pin. DS060 21 080400 Figure 21: Boundary Scan Bit Sequence BSDL (Boundary Scan Description Language) files for Spartan/XL devices are available on the Xilinx website in the File Download area. Note that the 5V Spartan devices and 3V Spartan-XL devices have different BSDL files. #### Including Boundary Scan in a Design If boundary scan is only to be used during configuration, no special elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 22. Figure 22: Boundary Scan Example Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. ## **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration. Note: Figure 25: Master/Slave Serial Mode Circuit Diagram DS060\_25\_061301 to the DONE pin. User I/Os for each device become active after the DONE pin for that device goes High. (The exact timing is determined by development system options.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device in the chain has completed its configuration cycle. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured. Only devices supporting Express mode can be used to form an Express mode daisy chain. Figure 27: Express Mode Circuit Diagram ---- Figure 30: Power-up Configuration Sequence #### Configuration The 0010 preamble code indicates that the following 24 bits represent the length count for serial modes. The length count is the total number of configuration clocks needed to load the complete configuration data. (Four additional configuration clocks are required to complete the configuration process, as discussed below.) After the preamble and the length count have been passed through to any device in the daisy chain, its DOUT is held High to prevent frame start bits from reaching any daisy-chained devices. In Spartan-XL family Express mode, the length count bits are ignored, and DOUT is held Low, to disable the next device in the pseudo daisy chain. A specific configuration bit, early in the first frame of a master device, controls the configuration-clock rate and can increase it by a factor of eight. Therefore, if a fast configuration clock is selected by the bitstream, the slower clock rate is used until this configuration bit is detected. Each frame has a start field followed by the frame-configuration data bits and a frame error field. If a frame data error is detected, the FPGA halts loading, and signals the error by pulling the open-drain INIT pin Low. After all configuration frames have been loaded into an FPGA using a serial mode, DOUT again follows the input data so that the remaining data is passed on to the next device. In Spartan-XL family Express mode, when the first device is fully programmed, DOUT goes High to enable the next device in the chain. #### Delaying Configuration After Power-Up There are two methods of delaying configuration after power-up: put a logic Low on the PROGRAM input, or pull the bidirectional INIT pin Low, using an open-collector (open-drain) driver. (See Figure 30.) A Low on the PROGRAM input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as PROGRAM is Low, the FPGA keeps clearing its configuration memory. When PROGRAM goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the INIT input is not externally held Low. Note that a Low on the PROGRAM input automatically forces a Low on the INIT output. The Spartan/XL FPGA PROGRAM pin has a permanent weak pull-up. Avoid holding $\overline{PROGRAM}$ Low for more than 500 $\mu s$ . The 500 $\mu s$ maximum limit is only a recommendation, not a requirement. The only effect of holding $\overline{PROGRAM}$ Low for more than 500 $\mu s$ is an increase in current, measured at about 40 mA in the XCS40XL. This increased current cannot damage the device. This applies only during reconfiguration, not during power-up. The $\overline{INIT}$ pin can also be held Low to delay reconfiguration, and the same characteristics apply as for the $\overline{PROGRAM}$ pin. Using an open-collector or open-drain driver to hold INIT Low before the beginning of configuration causes the FPGA #### Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Although readback can be performed while the device is operating, for best results and to freeze a known capture state, it is recommended that the clock inputs be stopped until readback is complete. Readback of Spartan-XL family Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes. Spartan/XL FPGA Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, instantiate the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 32. After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. #### Readback Options Readback options are: Readback Capture, Readback Abort, and Clock Select. They are set with the bitstream generation software. ## **Readback Capture** When the Readback Capture option is selected, the data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. RDBK.TRIG is located in the lower-left corner of the device. When the Readback Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in Readback, since they directly overwrite the F and G function-table configuration of the CLB. Figure 32: Readback Example #### **Readback Abort** When the Readback Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the Readback operation and prepares the logic to accept another trigger. After an aborted Readback, additional clocks (up to one Readback clock per configuration frame) may be required to re-initialize the control logic. The status of Readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress. #### **Clock Select** CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If Readback must be inhibited for security reasons, the Readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner. ## Violating the Maximum High and Low Time Specification for the Readback Clock The Readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling Readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification. The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements. Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the Readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register. The user must precisely calculate the location of the Readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 16 and Table 17. ## **Spartan Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and expressed in nanoseconds unless otherwise noted. | | | Speed Grade | | | | | |--------------------|------------------------------------------------------------------|-------------|---------------------------|---------------|---------|-------| | | Decesiation - | - | 4 | - | 3 | | | Symbol | Description | Min | Max | Min | Max | Units | | Clocks | | | | | | | | T <sub>CH</sub> | Clock High time | 3.0 | - | 4.0 | - | ns | | $T_{CL}$ | Clock Low time | 3.0 | - | 4.0 | - | ns | | Combina | torial Delays | | 1 | 1 | 1 | 1 | | T <sub>ILO</sub> | F/G inputs to X/Y outputs | - | 1.2 | - | 1.6 | ns | | T <sub>IHO</sub> | F/G inputs via H to X/Y outputs | - | 2.0 | - | 2.7 | ns | | T <sub>HH1O</sub> | C inputs via H1 via H to X/Y outputs | - | 1.7 | - | 2.2 | ns | | CLB Fast | Carry Logic | | 1 | | | | | T <sub>OPCY</sub> | Operand inputs (F1, F2, G1, G4) to C <sub>OUT</sub> | - | 1.7 | - | 2.1 | ns | | T <sub>ASCY</sub> | Add/Subtract input (F3) to C <sub>OUT</sub> | - | 2.8 | - | 3.7 | ns | | T <sub>INCY</sub> | Initialization inputs (F1, F3) to C <sub>OUT</sub> | - | 1.2 | - | 1.4 | ns | | T <sub>SUM</sub> | C <sub>IN</sub> through function generators to X/Y outputs | - | 2.0 | - | 2.6 | ns | | T <sub>BYP</sub> | C <sub>IN</sub> to C <sub>OUT</sub> , bypass function generators | - | 0.5 | - | 0.6 | ns | | Sequentia | al Delays | | | | | | | T <sub>CKO</sub> | Clock K to Flip-Flop outputs Q | - | 2.1 | - | 2.8 | ns | | Setup Tin | ne before Clock K | | | | | | | T <sub>ICK</sub> | F/G inputs | 1.8 | - | 2.4 | - | ns | | T <sub>IHCK</sub> | F/G inputs via H | 2.9 | - | 3.9 | - | ns | | T <sub>HH1CK</sub> | C inputs via H1 through H | 2.3 | - | 3.3 | - | ns | | T <sub>DICK</sub> | C inputs via DIN | 1.3 | - | 2.0 | - | ns | | T <sub>ECCK</sub> | C inputs via EC | 2.0 | - | 2.6 | - | ns | | T <sub>RCK</sub> | C inputs via S/R, going Low (inactive) | 2.5 | - | 4.0 | - | ns | | Hold Time | e after Clock K | | 1 | | 1 | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | Set/Reset | Direct | | | | | | | T <sub>RPW</sub> | Width (High) | 3.0 | - | 4.0 | - | ns | | T <sub>RIO</sub> | Delay from C inputs via S/R, going High to Q | - | 3.0 | - | 4.0 | ns | | Global Se | et/Reset | | | | | | | $T_{MRW}$ | Minimum GSR pulse width | 11.5 | - | 13.5 | - | ns | | $T_{MRQ}$ | Delay from GSR input to any Q | See pa | ge 50 for T <sub>RI</sub> | RI values per | device. | | | F <sub>TOG</sub> | Toggle Frequency (MHz) (for export control purposes) | - | 166 | - | 125 | MHz | #### **Capacitive Load Factor** Figure 34 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 34 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control. Figure 34: Delay Factor at Various Capacitive Loads ## **Spartan-XL Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and expressed in nanoseconds unless otherwise noted. | | | | Speed | Grade | | | |-------------------|------------------------------------------------------|-----------------------------------------------------|-------|-------|-----|-------| | | | - | 5 | -4 | | | | Symbol | Description | Min | Max | Min | Max | Units | | Clocks | | | | | | | | T <sub>CH</sub> | Clock High time | 2.0 | - | 2.3 | - | ns | | T <sub>CL</sub> | Clock Low time | 2.0 | - | 2.3 | - | ns | | Combinato | orial Delays | | , | 1 | ı | | | T <sub>ILO</sub> | F/G inputs to X/Y outputs | - | 1.0 | - | 1.1 | ns | | T <sub>IHO</sub> | F/G inputs via H to X/Y outputs | - | 1.7 | - | 2.0 | ns | | T <sub>ITO</sub> | F/G inputs via transparent latch to Q outputs | - | 1.5 | - | 1.8 | ns | | T <sub>HH1O</sub> | C inputs via H1 via H to X/Y outputs | - | 1.5 | - | 1.8 | ns | | Sequentia | l Delays | * | | | , | | | T <sub>CKO</sub> | Clock K to Flip-Flop or latch outputs Q | - | 1.2 | - | 1.4 | ns | | Setup Tim | e before Clock K | | , | | ı | | | T <sub>ICK</sub> | F/G inputs | 0.6 | - | 0.7 | - | ns | | T <sub>IHCK</sub> | F/G inputs via H | 1.3 | - | 1.6 | - | ns | | Hold Time | after Clock K | * | | | , | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | Set/Reset | Direct | | | | | | | T <sub>RPW</sub> | Width (High) | 2.5 | - | 2.8 | - | ns | | T <sub>RIO</sub> | Delay from C inputs via S/R, going High to Q | - | 2.3 | - | 2.7 | ns | | Global Set | Reset | * | | | , | | | $T_{MRW}$ | Minimum GSR Pulse Width | 10.5 | - | 11.5 | - | ns | | $T_{MRQ}$ | Delay from GSR input to any Q | See page 60 for T <sub>RRI</sub> values per device. | | | | | | F <sub>TOG</sub> | Toggle Frequency (MHz) (for export control purposes) | - | 250 | - | 217 | MHz | ## **Spartan-XL Family Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper- ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. ## Spartan-XL Family Output Flip-Flop, Clock-to-Out | | | | Speed Grade | | | |--------------------|----------------------------|-------------|-------------|-----|----------| | | | | -5 | -4 | | | Symbol | Description | Device | Max | Max | Units | | Global Cl | ock to Output using OFF | ' | | ' | <u>'</u> | | T <sub>ICKOF</sub> | Fast | XCS05XL | 4.6 | 5.2 | ns | | | | XCS10XL | 4.9 | 5.5 | ns | | | | XCS20XL | 5.2 | 5.8 | ns | | | | XCS30XL | 5.5 | 6.2 | ns | | | | XCS40XL | 5.8 | 6.5 | ns | | Slew Rate | Adjustment | 1 | | 1 | | | $T_{SLOW}$ | For Output SLOW option add | All Devices | 1.5 | 1.7 | ns | #### Notes: - Output delays are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - 2. Output timing is measured at ~50% V<sub>CC</sub> threshold with 50 pF external capacitive load. - 3. OFF = Output Flip Flop Table 18: Pin Descriptions (Continued) | | I/O | | | | | |-------------------------------------------------------------|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Pin Name | During<br>Config. | I/O After<br>Config. | Pin Description | | | | SGCK1 - Weak I or I/0 SGCK4 Pull-up (Spartan) (except SGCK4 | | | Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. | | | | | is DOUT) | | The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins. | | | | GCK1 -<br>GCK8<br>(Spartan-XL) | Weak<br>Pull-up<br>(except | I or I/O | Eight Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. | | | | | GCK6 is<br>DOUT) | | The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol is automatically placed on one of these pins. | | | | CS1<br>(Spartan-XL) | I | I/O | During Express configuration, CS1 is used as a serial-enable signal for daisy-chaining. | | | | D0-D7<br>(Spartan-XL) | I | I/O | During Express configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins. | | | | DIN | I | I/O | During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. After configuration, DIN is a user-programmable I/O pin. | | | | DOUT | 0 | I/O | During Slave Serial or Master Serial configuration, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input. | | | | | | | In Spartan-XL family Express mode, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices. | | | | | | | After configuration, DOUT is a user-programmable I/O pin. | | | | Unrestricted User-Programmable I/O Pins | | | | | | | I/O | Weak<br>Pull-up | I/O | These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor network that defines the logic level as High. | | | # **Device-Specific Pinout Tables** Device-specific tables include all packages for each Spartan and Spartan-XL device. They follow the pad locations around the die, and include boundary scan register locations. Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options. ## XCS05 and XCS05XL Device Pinouts | XCS05/XL | (A) | | Bndry | |--------------------------------------------------|---------------------|-------|-------| | Pad Name | PC84 <sup>(4)</sup> | VQ100 | Scan | | VCC | P2 | P89 | - | | I/O | P3 | P90 | 32 | | I/O | P4 | P91 | 35 | | I/O | - | P92 | 38 | | I/O | - | P93 | 41 | | I/O | P5 | P94 | 44 | | I/O | P6 | P95 | 47 | | I/O | P7 | P96 | 50 | | I/O | P8 | P97 | 53 | | I/O | P9 | P98 | 56 | | I/O, SGCK1 <sup>(1)</sup> , GCK8 <sup>(2)</sup> | P10 | P99 | 59 | | VCC | P11 | P100 | - | | GND | P12 | P1 | - | | I/O, PGCK1 <sup>(1)</sup> , GCK1 <sup>(2)</sup> | P13 | P2 | 62 | | I/O | P14 | P3 | 65 | | I/O, TDI | P15 | P4 | 68 | | I/O, TCK | P16 | P5 | 71 | | I/O, TMS | P17 | P6 | 74 | | I/O | P18 | P7 | 77 | | I/O | - | P8 | 83 | | I/O | P19 | P9 | 86 | | I/O | P20 | P10 | 89 | | GND | P21 | P11 | - | | VCC | P22 | P12 | - | | I/O | P23 | P13 | 92 | | I/O | P24 | P14 | 95 | | I/O | - | P15 | 98 | | I/O | P25 | P16 | 104 | | I/O | P26 | P17 | 107 | | I/O | P27 | P18 | 110 | | I/O | - | P19 | 113 | | I/O | P28 | P20 | 116 | | I/O, SGCK2 <sup>(1)</sup> , GCK2 <sup>(2)</sup> | P29 | P21 | 119 | | Not Connected <sup>(1)</sup> , M1 <sup>(2)</sup> | P30 | P22 | 122 | | GND | P31 | P23 | - | | MODE <sup>(1)</sup> , M0 <sup>(2)</sup> | P32 | P24 | 125 | | VCC | P33 | P25 | - | | 1 | 1 | | I. | ## **XCS05 and XCS05XL Device Pinouts** | XCS05/XL<br>Pad Name | PC84 <sup>(4)</sup> | VQ100 | Bndry<br>Scan | |-------------------------------------------------|---------------------|-------|--------------------| | Not Connected <sup>(1)</sup> , | P34 | P26 | 126 <sup>(1)</sup> | | PWRDWN <sup>(2)</sup> | | F20 | | | I/O, PGCK2 <sup>(1)</sup> , GCK3 <sup>(2)</sup> | P35 | P27 | 127 <sup>(3)</sup> | | I/O (HDC) | P36 | P28 | 130 <sup>(3)</sup> | | I/O | - | P29 | 133 <sup>(3)</sup> | | I/O (LDC) | P37 | P30 | 136 <sup>(3)</sup> | | I/O | P38 | P31 | 139 <sup>(3)</sup> | | I/O | P39 | P32 | 142 <sup>(3)</sup> | | I/O | - | P33 | 145 <sup>(3)</sup> | | I/O | - | P34 | 148 <sup>(3)</sup> | | I/O | P40 | P35 | 151 <sup>(3)</sup> | | I/O (ĪNĪT) | P41 | P36 | 154 <sup>(3)</sup> | | VCC | P42 | P37 | - | | GND | P43 | P38 | - | | I/O | P44 | P39 | 157 <sup>(3)</sup> | | I/O | P45 | P40 | 160 <sup>(3)</sup> | | I/O | - | P41 | 163 <sup>(3)</sup> | | I/O | - | P42 | 166 <sup>(3)</sup> | | I/O | P46 | P43 | 169 <sup>(3)</sup> | | I/O | P47 | P44 | 172 <sup>(3)</sup> | | I/O | P48 | P45 | 175 <sup>(3)</sup> | | I/O | P49 | P46 | 178 <sup>(3)</sup> | | I/O | P50 | P47 | 181 <sup>(3)</sup> | | I/O, SGCK3 <sup>(1)</sup> , GCK4 <sup>(2)</sup> | P51 | P48 | 184 <sup>(3)</sup> | | GND | P52 | P49 | - | | DONE | P53 | P50 | - | | VCC | P54 | P51 | - | | PROGRAM | P55 | P52 | - (0) | | I/O (D7 <sup>(2)</sup> ) | P56 | P53 | 187 <sup>(3)</sup> | | I/O, PGCK3 <sup>(1)</sup> , GCK5 <sup>(2)</sup> | P57 | P54 | 190 <sup>(3)</sup> | | I/O (D6 <sup>(2)</sup> ) | P58 | P55 | 193 <sup>(3)</sup> | | I/O | - | P56 | 196 <sup>(3)</sup> | | I/O (D5 <sup>(2)</sup> ) | P59 | P57 | 199 <sup>(3)</sup> | | I/O | P60 | P58 | 202 <sup>(3)</sup> | | I/O | - | P59 | 205 <sup>(3)</sup> | | I/O | - | P60 | 208 <sup>(3)</sup> | | I/O (D4 <sup>(2)</sup> ) | P61 | P61 | 211 <sup>(3)</sup> | | 1/0 | P62 | P62 | 214 <sup>(3)</sup> | | VCC | P63 | P63 | - | | GND | P64 | P64 | - | | I/O (D3 <sup>(2)</sup> ) | P65 | P65 | 217 <sup>(3)</sup> | | 1/0 | P66 | P66 | 220 <sup>(3)</sup> | | 1/0 | - | P67 | 223 <sup>(3)</sup> | | I/O (D2 <sup>(2)</sup> ) | P67 | P68 | 229(3) | | 1/0 | P68 | P69 | 232 <sup>(3)</sup> | | I/O (D1 <sup>(2)</sup> ) | P69 | P70 | 235 <sup>(3)</sup> | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL<br>Pad Name | VQ100 <sup>(5)</sup> | TQ144 | PQ208 | PQ240 | BG256 <sup>(5)</sup> | CS280 <sup>(2,5)</sup> | Bndry<br>Scan | |-------------------------------------------------|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | - | - | P85 | P97 | U12 | T11 | 382 <sup>(3)</sup> | | I/O | - | - | - | P99 | V13 | U12 | 385 <sup>(3)</sup> | | I/O | - | - | - | P100 | Y14 | T12 | 388 (3) | | VCC | - | - | P86 | P101 | VCC <sup>(4)</sup> | W13 | - | | I/O | P43 | P60 | P87 | P102 | Y15 | V13 | 391 <sup>(3)</sup> | | I/O | P44 | P61 | P88 | P103 | V14 | U13 | 394 <sup>(3)</sup> | | I/O | - | P62 | P89 | P104 | W15 | T13 | 397 <sup>(3)</sup> | | I/O | - | P63 | P90 | P105 | Y16 | W14 | 400 (3) | | GND | - | P64 | P91 | P106 | GND <sup>(4)</sup> | GND <sup>(4)</sup> | - | | I/O | - | - | - | P107 | V15 | V14 | 403 (3) | | I/O | - | - | P92 | P108 | W16 | U14 | 406 <sup>(3)</sup> | | I/O | - | - | P93 | P109 | Y17 | T14 | 409 (3) | | I/O | - | - | P94 | P110 | V16 | R14 | 412 (3) | | I/O | - | - | P95 | P111 | W17 | W15 | 415 <sup>(3)</sup> | | I/O | - | - | P96 | P112 | Y18 | U15 | 418 <sup>(3)</sup> | | I/O | P45 | P65 | P97 | P113 | U16 | V16 | 421 <sup>(3)</sup> | | I/O | P46 | P66 | P98 | P114 | V17 | U16 | 424 (3) | | I/O | - | P67 | P99 | P115 | W18 | W17 | 427 (3) | | I/O | - | P68 | P100 | P116 | Y19 | W18 | 430 (3) | | I/O | P47 | P69 | P101 | P117 | V18 | V17 | 433 (3) | | I/O, SGCK3 <sup>(1)</sup> , GCK4 <sup>(2)</sup> | P48 | P70 | P102 | P118 | W19 | V18 | 436 <sup>(3)</sup> | | GND | P49 | P71 | P103 | P119 | GND <sup>(4)</sup> | GND <sup>(4)</sup> | - | | DONE | P50 | P72 | P104 | P120 | Y20 | W19 | - | | VCC | P51 | P73 | P105 | P121 | VCC <sup>(4)</sup> | U17 | - | | PROGRAM | P52 | P74 | P106 | P122 | V19 | U18 | - | | I/O (D7 <sup>(2)</sup> ) | P53 | P75 | P107 | P123 | U19 | V19 | 439 (3) | | I/O, PGCK3 <sup>(1)</sup> , GCK5 <sup>(2)</sup> | P54 | P76 | P108 | P124 | U18 | U19 | 442 (3) | | I/O | - | P77 | P109 | P125 | T17 | T16 | 445 <sup>(3)</sup> | | I/O | - | P78 | P110 | P126 | V20 | T17 | 448 (3) | | I/O | - | - | - | P127 | U20 | T18 | 451 <sup>(3)</sup> | | I/O | - | - | P111 | P128 | T18 | T19 | 454 <sup>(3)</sup> | | I/O (D6 <sup>(2)</sup> ) | P55 | P79 | P112 | P129 | T19 | R16 | 457 <sup>(3)</sup> | | I/O | P56 | P80 | P113 | P130 | T20 | R19 | 460 <sup>(3)</sup> | | I/O | - | - | P114 | P131 | R18 | P15 | 463 <sup>(3)</sup> | | I/O | - | - | P115 | P132 | R19 | P17 | 466 <sup>(3)</sup> | | I/O | - | - | P116 | P133 | R20 | P18 | 469 <sup>(3)</sup> | | I/O | - | - | P117 | P134 | P18 | P16 | 472 <sup>(3)</sup> | | GND | - | P81 | P118 | P135 | GND <sup>(4)</sup> | GND <sup>(4)</sup> | - | | I/O | - | - | - | P136 | P20 | P19 | 475 <sup>(3)</sup> | | I/O | - | - | - | P137 | N18 | N17 | 478 <sup>(3)</sup> | | I/O | - | P82 | P119 | P138 | N19 | N18 | 481 <sup>(3)</sup> | | I/O | - | P83 | P120 | P139 | N20 | N19 | 484 (3) | | VCC | - | - | P121 | P140 | VCC <sup>(4)</sup> | N16 | - | | I/O (D5 <sup>(2)</sup> ) | P57 | P84 | P122 | P141 | M17 | M19 | 487 (3) | | I/O | P58 | P85 | P123 | P142 | M18 | M17 | 490 (3) | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL<br>Pad Name | VQ100 <sup>(5)</sup> | TQ144 | PQ208 | PQ240 | BG256 <sup>(5)</sup> | CS280 <sup>(2,5)</sup> | Bndry<br>Scan | |----------------------------------------------------------|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | - | - | P124 | P144 | M20 | L19 | 493 <sup>(3)</sup> | | I/O | - | - | P125 | P145 | L19 | L18 | 496 <sup>(3)</sup> | | I/O | P59 | P86 | P126 | P146 | L18 | L17 | 499 (3) | | I/O | P60 | P87 | P127 | P147 | L20 | L16 | 502 <sup>(3)</sup> | | I/O (D4 <sup>(2)</sup> ) | P61 | P88 | P128 | P148 | K20 | K19 | 505 <sup>(3)</sup> | | I/O | P62 | P89 | P129 | P149 | K19 | K18 | 508 <sup>(3)</sup> | | VCC | P63 | P90 | P130 | P150 | VCC <sup>(4)</sup> | K17 | - | | GND | P64 | P91 | P131 | P151 | GND <sup>(4)</sup> | GND <sup>(4)</sup> | - | | I/O (D3 <sup>(2)</sup> ) | P65 | P92 | P132 | P152 | K18 | K16 | 511 <sup>(3)</sup> | | I/O | P66 | P93 | P133 | P153 | K17 | K15 | 514 <sup>(3)</sup> | | I/O | P67 | P94 | P134 | P154 | J20 | J19 | 517 <sup>(3)</sup> | | I/O | - | P95 | P135 | P155 | J19 | J18 | 520 <sup>(3)</sup> | | I/O | - | - | P136 | P156 | J18 | J17 | 523 <sup>(3)</sup> | | I/O | - | - | P137 | P157 | J17 | J16 | 526 <sup>(3)</sup> | | I/O (D2 <sup>(2)</sup> ) | P68 | P96 | P138 | P159 | H19 | H17 | 529 <sup>(3)</sup> | | I/O | P69 | P97 | P139 | P160 | H18 | H16 | 532 <sup>(3)</sup> | | VCC | - | - | P140 | P161 | VCC <sup>(4)</sup> | G19 | - | | I/O | - | P98 | P141 | P162 | G19 | G18 | 535 <sup>(3)</sup> | | I/O | - | P99 | P142 | P163 | F20 | G17 | 538 <sup>(3)</sup> | | I/O | - | - | - | P164 | G18 | G16 | 541 <sup>(3)</sup> | | I/O | - | - | - | P165 | F19 | F19 | 544 <sup>(3)</sup> | | GND | - | P100 | P143 | P166 | GND <sup>(4)</sup> | GND <sup>(4)</sup> | - | | I/O | - | - | - | P167 | F18 | F18 | 547 <sup>(3)</sup> | | I/O | - | - | P144 | P168 | E19 | F17 | 550 <sup>(3)</sup> | | I/O | - | - | P145 | P169 | D20 | F16 | 553 <sup>(3)</sup> | | I/O | - | - | P146 | P170 | E18 | F15 | 556 <sup>(3)</sup> | | I/O | - | - | P147 | P171 | D19 | E19 | 559 <sup>(3)</sup> | | I/O | - | - | P148 | P172 | C20 | E17 | 562 <sup>(3)</sup> | | I/O (D1 <sup>(2)</sup> ) | P70 | P101 | P149 | P173 | E17 | E16 | 565 <sup>(3)</sup> | | I/O | P71 | P102 | P150 | P174 | D18 | D19 | 568 <sup>(3)</sup> | | I/O | - | P103 | P151 | P175 | C19 | C19 | 571 <sup>(3)</sup> | | I/O | - | P104 | P152 | P176 | B20 | B19 | 574 <sup>(3)</sup> | | I/O (D0 <sup>(2)</sup> , DIN) | P72 | P105 | P153 | P177 | C18 | C18 | 577 <sup>(3)</sup> | | /O, SGCK4 <sup>(1)</sup> , GCK6 <sup>(2)</sup><br>(DOUT) | P73 | P106 | P154 | P178 | B19 | B18 | 580 <sup>(3)</sup> | | CCLK | P74 | P107 | P155 | P179 | A20 | A19 | - | | VCC | P75 | P108 | P156 | P180 | VCC <sup>(4)</sup> | C17 | - | | O, TDO | P76 | P109 | P157 | P181 | A19 | B17 | 0 | | GND | P77 | P110 | P158 | P182 | GND <sup>(4)</sup> | GND <sup>(4)</sup> | - | | I/O | P78 | P111 | P159 | P183 | B18 | A18 | 2 | | /O, PGCK4 <sup>(1)</sup> , GCK7 <sup>(2)</sup> | P79 | P112 | P160 | P184 | B17 | A17 | 5 | | I/O | - | P113 | P161 | P185 | C17 | D16 | 8 | | I/O | - | P114 | P162 | P186 | D16 | C16 | 11 | | I/O (CS1) <sup>(2)</sup> | P80 | P115 | P163 | P187 | A18 | B16 | 14 | | I/O | P81 | P116 | P164 | P188 | A17 | A16 | 17 | | I/O | - | - | P165 | P189 | C16 | D15 | 20 |