Welcome to **E-XFL.COM** Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 192 | | Number of Gates | 30000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 256-BBGA | | Supplier Device Package | 256-PBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs30-4bg256c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Spartan and Spartan-XL devices provide system clock rates exceeding 80 MHz and internal performance in excess of 150 MHz. In addition to the conventional benefit of high volume programmable logic solutions, Spartan series FPGAs also offer on-chip edge-triggered single-port and dual-port RAM, clock enables on all flip-flops, fast carry logic, and many other features. The Spartan/XL families leverage the highly successful XC4000 architecture with many of that family's features and benefits. Technology advancements have been derived from the XC4000XLA process developments. # **Logic Functional Description** The Spartan series uses a standard FPGA structure as shown in Figure 1, page 2. The FPGA consists of an array of configurable logic blocks (CLBs) placed in a matrix of routing channels. The input and output of signals is achieved through a set of input/output blocks (IOBs) forming a ring around the CLBs and routing channels. - CLBs provide the functional elements for implementing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. - Routing channels provide paths to interconnect the inputs and outputs of the CLBs and IOBs. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. # **Configurable Logic Blocks (CLBs)** The CLBs are used to implement most of the logic in an FPGA. The principal CLB elements are shown in the simplified block diagram in Figure 2. There are three look-up tables (LUT) which are used as logic function generators, two flip-flops and two groups of signal steering multiplexers. There are also some more advanced features provided by the CLB which will be covered in the **Advanced Features Description**, page 13. #### **Function Generators** Two 16 x 1 memory look-up tables (F-LUT and G-LUT) are used to implement 4-input function generators, each offering unrestricted logic implementation of any Boolean function of up to four independent input signals (F1 to F4 or G1 to G4). Using memory look-up tables the propagation delay is independent of the function implemented. A third 3-input function generator (H-LUT) can implement any Boolean function of its three inputs. Two of these inputs are controlled by programmable multiplexers (see box "A" of Figure 2). These inputs can come from the F-LUT or G-LUT outputs or from CLB inputs. The third input always comes from a CLB input. The CLB can, therefore, implement certain functions of up to nine inputs, like parity checking. The three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of five inputs. Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown) A CLB can implement any of the following functions: Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables **Note:** When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. - Any single function of five variables - Any function of four variables together with some functions of six variables - · Some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ### Flip-Flops Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay. The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20. ### Latches (Spartan-XL Family Only) The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2. | T-1-1- | Ο. | Δ I D | Ot | | Functionality | |--------|-----|--------------|---------|---------|----------------| | םוחבו | ٠,٠ | | STORAGE | FIDMONT | FIIDCTIONSIITV | | | | | | | | | Mode | СК | EC | SR | D | Q | |---------------------------|----|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | Flip-Flop | Х | Х | 1 | Х | SR | | Operation | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Operation
(Spartan-XL) | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Q | ### Legend: | Χ | Don't care | |----|--| | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Figure 3: CLB Flip-Flop Functional Block Diagram #### **Clock Input** Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB. #### **Clock Enable** The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device. #### Set/Reset The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB. ### CLB Signal Flow Control In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y). Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source. Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT. #### **Control Signals** There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals. Figure 20 is a diagram of the Spartan/XL FPGA boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. Spartan/XL devices can also be configured through the boundary scan logic. See **Configuration Through the Boundary Scan Pins**, page 37. # Data Registers The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out and 3-state Control. Non-IOB pins have appropriate partial bit population for In or Out only. PROGRAM, CCLK and DONE are not included in the boundary scan register. Each EXTEST CAPTURE-DR state captures all In, Out, and 3-state pins. The data register also includes the following non-pin bits: TDO.T, and TDO.O, which are
always bits 0 and 1 of the data register, respectively, and BSCANT.UPD, which is always the last bit of the data register. These three boundary scan bits are special-purpose Xilinx test signals. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA provides two additional data registers that can be specified using the BSCAN macro. The FPGA provides two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are the decodes of two user instructions. For these instructions, two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to be shifted out on TDO. The data register clock (BSCAN.DRCK) is available for control of test logic which the user may wish to implement with CLBs. The NAND of TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE). #### Instruction Set The Spartan/XL FPGA boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 12. Table 12: Boundary Scan Instructions | Ins | structi | on | Test | TDO | I/O Data | |-----|---------|----|--------------------------------|--------------------|------------| | 12 | l1 | 10 | Selected | Source | Source | | 0 | 0 | 0 | EXTEST | DR | DR | | 0 | 0 | 1 | SAMPLE/
PRELOAD | DR | Pin/Logic | | 0 | 1 | 0 | USER 1 | BSCAN.
TDO1 | User Logic | | 0 | 1 | 1 | USER 2 | BSCAN.
TDO2 | User Logic | | 1 | 0 | 0 | READBACK | Readback
Data | Pin/Logic | | 1 | 0 | 1 | CONFIGURE | DOUT | Disabled | | 1 | 1 | 0 | IDCODE
(Spartan-XL
only) | IDCODE
Register | - | | 1 | 1 | 1 | BYPASS | Bypass
Register | - | #### Bit Sequence The bit sequence within each IOB is: In, Out, 3-state. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in the FPGA Editor), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 21. The device-specific pinout tables for the Spartan/XL devices include the boundary scan locations for each IOB pin. DS060 21 080400 Figure 21: Boundary Scan Bit Sequence BSDL (Boundary Scan Description Language) files for Spartan/XL devices are available on the Xilinx website in the File Download area. Note that the 5V Spartan devices and 3V Spartan-XL devices have different BSDL files. ## Including Boundary Scan in a Design If boundary scan is only to be used during configuration, no special elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 22. Figure 22: Boundary Scan Example Table 16: Spartan/XL Data Stream Formats | Data Type | Serial Modes
(D0) | Express Mode
(D0-D7)
(Spartan-XL only) | |--------------------------------|------------------------|--| | Fill Byte | 11111111b | FFFFh | | Preamble Code | 0010b | 11110010b | | Length Count | COUNT[23:0] | COUNT[23:0] ⁽¹⁾ | | Fill Bits | 1111b | - | | Field Check
Code | - | 11010010b | | Start Field | 0b | 11111110b ⁽²⁾ | | Data Frame | DATA[n-1:0] | DATA[n-1:0] | | CRC or Constant
Field Check | xxxx (CRC)
or 0110b | 11010010b | | Extend Write
Cycle | - | FFD2FFFFFh | | Postamble | 01111111b | - | | Start-Up Bytes ⁽³⁾ | FFh | FFFFFFFFFF | ### Legend: | Unshaded | Once per bitstream | |----------|---------------------| | Light | Once per data frame | | Dark | Once per device | #### Notes: - 1. Not used by configuration logic. - 2. 111111111b for XCS40XL only. - 3. Development system may add more start-up bytes. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The Spartan-XL family Express mode only supports non-CRC error checking. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading before DONE goes High, and the pulling down of the $\overline{\text{INIT}}$ pin. In Master serial mode, CCLK continues to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling V_{CC} . # Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 16. If a frame data error is detected during the loading of the FPGA, the configuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the INIT pin Low and goes into a Wait state. Table 17: Spartan/XL Program Data | Device | XC | CS05 | XC | S10 | XCS20 | | XCS30 | | XC | S40 | |-------------------------------------|--------|------------------|--------|------------------|---------|------------------|---------|------------------|---------|-------------------| | Max System
Gates | 5, | 000 | 10 | ,000 | 20,000 | | 30,000 | | 40 | ,000 | | CLBs
(Row x Col.) | | 100
(10 x 10) | | 196
(14 x 14) | | 400
(20 x 20) | | 576
(24 x 24) | | '84
x 28) | | IOBs | | 80 | 1 | 12 | 160 | | 1 | 92 | 20 |)5 ⁽⁴⁾ | | Part Number | XCS05 | XCS05XL | XCS10 | XCS10XL | XCS20 | XCS20XL | XCS30 | XCS30XL | XCS40 | XCS40XL | | Supply Voltage | 5V | 3.3V | | Bits per Frame | 126 | 127 | 166 | 167 | 226 | 227 | 266 | 267 | 306 | 307 | | Frames | 428 | 429 | 572 | 573 | 788 | 789 | 932 | 933 | 1,076 | 1,077 | | Program Data | 53,936 | 54,491 | 94,960 | 95,699 | 178,096 | 179,111 | 247,920 | 249,119 | 329,264 | 330,647 | | PROM Size (bits) | 53,984 | 54,544 | 95,008 | 95,752 | 178,144 | 179,160 | 247,968 | 249,168 | 329,312 | 330,696 | | Express Mode
PROM Size
(bits) | - | 79,072 | - | 128,488 | - | 221,056 | - | 298,696 | - | 387,856 | #### Notes: - Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device) Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device) Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte - 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. - 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits. - 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. Figure 29: Circuit for Generating CRC-16 # **Configuration Sequence** There are four major steps in the Spartan/XL FPGA power-up configuration sequence. - · Configuration Memory Clear - Initialization - Configuration - Start-up The full process is illustrated in Figure 30. # Configuration Memory Clear When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When V_{CC} reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms. The delay is four times as long when in Master Serial Mode to allow ample time for all slaves to reach a stable V_{CC} . When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain. This delay is applied only on power-up. It is not applied when reconfiguring an FPGA by pulsing the PROGRAM pin Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator. At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the
$\overline{PROGRAM}$ pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the \overline{INIT} input. ### Initialization During initialization and configuration, user pins HDC, $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE provide status outputs for the system interface. The outputs $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE are held Low and HDC is held High starting at the initial application of power. The open drain $\overline{\text{INIT}}$ pin is released after the final initialization pass through the frame addresses. There is a deliberate delay before a Master-mode device recognizes an inactive $\overline{\text{INIT}}$. Two internal clocks after the $\overline{\text{INIT}}$ pin is recognized as High, the device samples the MODE pin to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded. ### Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Although readback can be performed while the device is operating, for best results and to freeze a known capture state, it is recommended that the clock inputs be stopped until readback is complete. Readback of Spartan-XL family Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes. Spartan/XL FPGA Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, instantiate the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 32. After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. ### Readback Options Readback options are: Readback Capture, Readback Abort, and Clock Select. They are set with the bitstream generation software. # **Readback Capture** When the Readback Capture option is selected, the data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. RDBK.TRIG is located in the lower-left corner of the device. When the Readback Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in Readback, since they directly overwrite the F and G function-table configuration of the CLB. Figure 32: Readback Example #### **Readback Abort** When the Readback Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the Readback operation and prepares the logic to accept another trigger. After an aborted Readback, additional clocks (up to one Readback clock per configuration frame) may be required to re-initialize the control logic. The status of Readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress. #### **Clock Select** CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If Readback must be inhibited for security reasons, the Readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner. # Violating the Maximum High and Low Time Specification for the Readback Clock The Readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling Readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification. The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements. Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the Readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register. The user must precisely calculate the location of the Readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 16 and Table 17. # **Spartan Family IOB Output Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted. | | | | -4 | | _ | 3 | | |--------------------|--|-------------|------|------|------|------|-------| | Symbol | Description | Device | Min | Max | Min | Max | Units | | Clocks | | | | | | | | | T _{CH} | Clock High | All devices | 3.0 | - | 4.0 | - | ns | | T _{CL} | Clock Low | All devices | 3.0 | - | 4.0 | - | ns | | Propagation | Delays - TTL Outputs ^(1,2) | | J. | .ll | II. | | | | T _{OKPOF} | Clock (OK) to Pad, fast | All devices | - | 3.3 | - | 4.5 | ns | | T _{OKPOS} | Clock (OK to Pad, slew-rate limited | All devices | - | 6.9 | - | 7.0 | ns | | T _{OPF} | Output (O) to Pad, fast | All devices | - | 3.6 | - | 4.8 | ns | | T _{OPS} | Output (O) to Pad, slew-rate limited | All devices | - | 7.2 | - | 7.3 | ns | | T _{TSHZ} | 3-state to Pad High-Z (slew-rate independent) | All devices | - | 3.0 | - | 3.8 | ns | | T _{TSONF} | 3-state to Pad active and valid, fast | All devices | - | 6.0 | - | 7.3 | ns | | T _{TSONS} | 3-state to Pad active and valid, slew-rate limited | All devices | - | 9.6 | - | 9.8 | ns | | Setup and H | lold Times | | + | ! | · | 1 | | | T _{OOK} | Output (O) to clock (OK) setup time | All devices | 2.5 | - | 3.8 | - | ns | | T _{OKO} | Output (O) to clock (OK) hold time | All devices | 0.0 | - | 0.0 | - | ns | | T _{ECOK} | Clock Enable (EC) to clock (OK) setup time | All devices | 2.0 | - | 2.7 | - | ns | | T _{OKEC} | Clock Enable (EC) to clock (OK) hold time | All devices | 0.0 | - | 0.5 | - | ns | | Global Set/F | Reset | | -11 | | | | | | T_{MRW} | Minimum GSR pulse width | All devices | 11.5 | | 13.5 | | ns | | T _{RPO} | Delay from GSR input to any Pad | XCS05 | - | 12.0 | - | 15.0 | ns | | | | XCS10 | - | 12.5 | - | 15.7 | ns | | | | XCS20 | - | 13.0 | - | 16.2 | ns | | | | XCS30 | - | 13.5 | - | 16.9 | ns | | | | XCS40 | - | 14.0 | - | 17.5 | ns | #### Notes: - 1. Delay adder for CMOS Outputs option (with fast slew rate option): for -3 speed grade, add 1.0 ns; for -4 speed grade, add 0.8 ns. - 2. Delay adder for CMOS Outputs option (with slow slew rate option): for -3 speed grade, add 2.0 ns; for -4 speed grade, add 1.5 ns. - 3. Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. - 4. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # Spartan-XL Family Global Buffer Switching Characteristic Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing
analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | Spee | | | |------------------|---|---------|------|-----|-------| | | | | -5 | -4 | | | Symbol | Description Device | | Max | Max | Units | | T _{GLS} | From pad through buffer, to any clock K | XCS05XL | 1.4 | 1.5 | ns | | | | XCS10XL | 1.7 | 1.8 | ns | | | | XCS20XL | 2.0 | 2.1 | ns | | | | XCS30XL | 2.3 | 2.5 | ns | | | | XCS40XL | 2.6 | 2.8 | ns | # **Spartan-XL Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and expressed in nanoseconds unless otherwise noted. | Symbol | | - | 5 | _ | | | |-------------------|--|---|-----|------|-----|-------| | | Description | Min | Max | Min | Max | Units | | Clocks | | | | | | | | T _{CH} | Clock High time | 2.0 | - | 2.3 | - | ns | | T _{CL} | Clock Low time | 2.0 | - | 2.3 | - | ns | | Combinato | orial Delays | | , | 1 | ı | | | T _{ILO} | F/G inputs to X/Y outputs | - | 1.0 | - | 1.1 | ns | | T _{IHO} | F/G inputs via H to X/Y outputs | - | 1.7 | - | 2.0 | ns | | T _{ITO} | F/G inputs via transparent latch to Q outputs | - | 1.5 | - | 1.8 | ns | | T _{HH1O} | C inputs via H1 via H to X/Y outputs | - | 1.5 | - | 1.8 | ns | | Sequentia | l Delays | * | | | , | | | T _{CKO} | Clock K to Flip-Flop or latch outputs Q | - | 1.2 | - | 1.4 | ns | | Setup Tim | e before Clock K | | | | ı | | | T _{ICK} | F/G inputs | 0.6 | - | 0.7 | - | ns | | T _{IHCK} | F/G inputs via H | 1.3 | - | 1.6 | - | ns | | Hold Time | after Clock K | * | | | , | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | Set/Reset | Direct | | | | | | | T _{RPW} | Width (High) | 2.5 | - | 2.8 | - | ns | | T _{RIO} | Delay from C inputs via S/R, going High to Q | - | 2.3 | - | 2.7 | ns | | Global Set | Reset | * | | | , | | | T_{MRW} | Minimum GSR Pulse Width | 10.5 | - | 11.5 | - | ns | | T_{MRQ} | Delay from GSR input to any Q | See page 60 for T _{RRI} values per device. | | | | | | F _{TOG} | Toggle Frequency (MHz) (for export control purposes) | - | 250 | - | 217 | MHz | # Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (cont.) All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted. | | | | - | 5 | - | -4 | | |-------------------|---|------|-----|-----|-----|-----|-------| | Symbol | Dual Port RAM | Size | Min | Max | Min | Max | Units | | Write Operat | Write Operation ⁽¹⁾ | | | | | | | | T _{WCDS} | Address write cycle time (clock K period) | 16x1 | 7.7 | - | 8.4 | - | ns | | T _{WPDS} | Clock K pulse width (active edge) | 16x1 | 3.1 | - | 3.6 | - | ns | | T _{ASDS} | Address setup time before clock K | 16x1 | 1.3 | - | 1.5 | - | ns | | T _{DSDS} | DIN setup time before clock K | 16x1 | 1.7 | - | 2.0 | - | ns | | T _{WSDS} | WE setup time before clock K | 16x1 | 1.4 | - | 1.6 | - | ns | | | All hold times after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WODS} | Data valid after clock K | 16x1 | - | 5.2 | - | 6.1 | ns | **Dual Port** #### Notes: **Single Port** # Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Timing # WCLK (K) T_{WHS} $\mathsf{T}_{\mathsf{WSS}}$ WE $\mathsf{T}_{\mathsf{DHS}}$ T_{DSS} DATA IN T_{ASS} TAHS **ADDRESS** TILO T_{ILO} $\mathsf{T}_{\mathsf{WOS}}$ **DATA OUT** OLD NEW DS060_34_011300 ^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing # **Spartan-XL Family IOB Output Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted. | | | | Speed Grade | | | | | |--------------------|---|-------------|-------------|------|------|------|-------| | | | | -5 -4 | | 4 | | | | Symbol | Description | Device | Min | Max | Min | Max | Units | | Propagation | Delays | | | | | | | | T _{OKPOF} | Clock (OK) to Pad, fast | All devices | - | 3.2 | - | 3.7 | ns | | T _{OPF} | Output (O) to Pad, fast | All devices | - | 2.5 | - | 2.9 | ns | | T _{TSHZ} | 3-state to Pad High-Z (slew-rate independent) | All devices | - | 2.8 | - | 3.3 | ns | | T _{TSONF} | 3-state to Pad active and valid, fast | All devices | - | 2.6 | - | 3.0 | ns | | T _{OFPF} | Output (O) to Pad via Output MUX, fast | All devices | - | 3.7 | - | 4.4 | ns | | T _{OKFPF} | Select (OK) to Pad via Output MUX, fast | All devices | - | 3.3 | - | 3.9 | ns | | T _{SLOW} | For Output SLOW option add | All devices | - | 1.5 | - | 1.7 | ns | | Setup and H | old Times | | , | | | | | | T _{OOK} | Output (O) to clock (OK) setup time | All devices | 0.5 | - | 0.5 | - | ns | | T _{OKO} | Output (O) to clock (OK) hold time | All devices | 0.0 | - | 0.0 | - | ns | | T _{ECOK} | Clock Enable (EC) to clock (OK) setup time | All devices | 0.0 | - | 0.0 | - | ns | | T _{OKEC} | Clock Enable (EC) to clock (OK) hold time | All devices | 0.1 | - | 0.2 | - | ns | | Global Set/R | eset | | | | | | | | T_{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | T _{RPO} | Delay from GSR input to any Pad | XCS05XL | - | 11.9 | - | 14.0 | ns | | | | XCS10XL | - | 12.4 | - | 14.5 | ns | | | | XCS20XL | - | 12.9 | - | 15.0 | ns | | | | XCS30XL | - | 13.9 | - | 16.0 | ns | | | | XCS40XL | - | 14.9 | - | 17.0 | ns | #### Notes: ^{1.} Output timing is measured at \sim 50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. ^{2.} Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # **Pin Descriptions** There are three types of pins in the Spartan/XL devices: - · Permanently dedicated pins - User I/O pins that can have special functions - Unrestricted user-programmable I/O pins. Before and during configuration, all outputs not used for the configuration process are 3-stated with the I/O pull-up resistor network activated. After configuration, if an IOB is unused it is configured as an input with the I/O pull-up resistor network remaining activated. Any user I/O can be configured to drive the Global Set/Reset net GSR or the global three-state net GTS. See **Global Signals: GSR and GTS**, page 20 for more information. Device pins for Spartan/XL devices are described in Table 18. Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options. Table 18: Pin Descriptions | Pin Name | I/O
During
Config. | I/O After
Config. | Pin Description | |------------------------|--------------------------|----------------------|---| | Permanently D | Dedicated P | ins | | | V _{CC} | Х | Х | Eight or more (depending on package) connections to the nominal +5V supply voltage (+3.3V for Spartan-XL devices). All must be connected, and each must be decoupled with a 0.01 –0.1 μ F capacitor to Ground. | | GND | Х | Х | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master mode and is an input in Slave mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on Spartan/XL devices, except during Readback. See Violating the Maximum High and Low Time Specification for the Readback Clock, page 39 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a
bidirectional signal with an optional internal pull-up resistor. As an open-drain output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. | | | | | The optional pull-up resistor is selected as an option in the program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | I | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. | | | | | The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to VCC. | | MODE
(Spartan) | I | X | The Mode input(s) are sampled after INIT goes High to determine the configuration mode to be used. | | M0, M1
(Spartan-XL) | | | During configuration, these pins have a weak pull-up resistor. For the most popular configuration mode, Slave Serial, the mode pins can be left unconnected. For Master Serial mode, connect the Mode/M0 pin directly to system ground. | Table 18: Pin Descriptions (Continued) | Pin Name | I/O
During
Config. | I/O After
Config. | Pin Description | |-------------------------------|--------------------------|-----------------------|---| | PWRDWN | I | I | PWRDWN is an active Low input that forces the FPGA into the Power Down state and reduces power consumption. When PWRDWN is Low, the FPGA disables all I/O and initializes all flip-flops. All inputs are interpreted as Low independent of their actual level. VCC must be maintained, and the configuration data is maintained. PWRDWN halts configuration if asserted before or during configuration, and re-starts configuration when removed. When PWRDWN returns High, the FPGA becomes operational by first enabling the inputs and flip-flops and then enabling the outputs. PWRDWN has a default internal pull-up resistor. | | User I/O Pins | ı | - | | | TDO | Ο | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. | | | | | To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | | TDI, TCK,
TMS | I | I/O
or I
(JTAG) | If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed. | | | | | If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. In this case, they must be called out by special library elements. To use these pins, place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used. | | HDC | 0 | I/O | High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin. | | LDC | 0 | I/O | Low During Configuration (\overline{LDC}) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, \overline{LDC} is a user-programmable I/O pin. | | ĪNIT | I/O | I/O | Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω to 10 k Ω external pull-up resistor is recommended. | | | | | As an active Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High. | | | | | During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, \overline{INIT} is a user-programmable I/O pin. | | PGCK1 -
PGCK4
(Spartan) | Weak
Pull-up | I or I/O | Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O. | | | | | The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol is automatically placed on one of these pins. | # **XCS10 and XCS10XL Device Pinouts** | XCS10/XL | | | | XCS10/XL Bndry | | | | | | | | |--------------------------|---------------------|------------|------------------------|----------------|--------------------|--|--|--|--|--|--| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Scan | | | | | | | | VCC | P33 | P25 | N1 | P37 | - | | | | | | | | Not | P34 | P26 | N2 | P38 | 174 ⁽¹⁾ | | | | | | | | Connect- | | | | | | | | | | | | | ed ⁽¹⁾ | | | | | | | | | | | | | PWRDWN ⁽² | | | | | | | | | | | | |) | | | | | | | | | | | | | I/O, | P35 | P27 | М3 | P39 | 175 ⁽³⁾ | | | | | | | | PGCK2 ⁽¹⁾ | | | | | | | | | | | | | GCK3 ⁽²⁾ | D00 | Doo | NO | D.10 | 470 (3) | | | | | | | | I/O (HDC) | P36 | P28 | N3 | P40 | 178 ⁽³⁾ | | | | | | | | 1/0 | - | - | K4 | P41 | 181 ⁽³⁾ | | | | | | | | 1/0 | - | - | L4 | P42 | 184 ⁽³⁾ | | | | | | | | I/O (I DC) | -
D07 | P29 | M4 | P43 | 187 ⁽³⁾ | | | | | | | | I/O (LDC) | P37 | P30 | N4 | P44 | 190 ⁽³⁾ | | | | | | | | GND | - | - | K5 | P45 | 193 ⁽³⁾ | | | | | | | | I/O
I/O | - | - | L5
M5 | P46
P47 | 193 ⁽³⁾ | | | | | | | | | -
D00 | -
D01 | N5 | P47
P48 | 196 ⁽³⁾ | | | | | | | | I/O
I/O | P38 | P31
P32 | K6 | P46
P49 | 202 (3) | | | | | | | | I/O | P39 | P32 | L6 | P49
P50 | 202 (3) | | | | | | | | I/O | - | P33 | M6 | P50
P51 | 208 (3) | | | | | | | | I/O | -
D40 | P34 | N6 | P51 | 211 ⁽³⁾ | | | | | | | | | P40
P41 | P35 | M7 | P52 | 211 ⁽³⁾ | | | | | | | | I/O (INIT) VCC | P42 | P37 | N7 | P54 | 214 (9) | | | | | | | | GND | P43 | P38 | L7 | P55 | - | | | | | | | | I/O | P44 | P39 | K7 | P56 | 217 ⁽³⁾ | | | | | | | | I/O | P45 | P40 | N8 | P57 | 220 (3) | | | | | | | | I/O | 1 43 | P41 | M8 | P58 | 223 (3) | | | | | | | | I/O | _ | P42 | L8 | P59 | 226 ⁽³⁾ | | | | | | | | I/O | P46 | P43 | K8 | P60 | 229 (3) | | | | | | | | I/O | P47 | P44 | N9 | P61 | 232 (3) | | | | | | | | I/O | - | - | M9 | P62 | 235 (3) | | | | | | | | I/O | _ | - | L9 | P63 | 238 (3) | | | | | | | | GND | _ | _ | K9 | P64 | - | | | | | | | | I/O | P48 | P45 | N10 | P65 | 241 ⁽³⁾ | | | | | | | | I/O | P49 | P46 | M10 | P66 | 244 (3) | | | | | | | | I/O | - | - | L10 | P67 | 247 ⁽³⁾ | | | | | | | | I/O | - | - | N11 | P68 | 250 ⁽³⁾ | | | | | | | | I/O | P50 | P47 | M11 | P69 | 253 ⁽³⁾ | | | | | | | | I/O, | P51 | P48 | L11 | P70 | 256 ⁽³⁾ | | | | | | | | SGCK3 ⁽¹⁾ | | | | | | | | | | | | | GCK4 ⁽²⁾ | | | | | | | | | | | | | GND | P52 | P49 | N12 | P71 | - | | | | | | | | DONE | P53 | P50 | M12 | P72 | - | | | | | | | | VCC | P54 | P51 | N13 | P73 | - | | | | | | | | PROGRAM | P55 | P52 | M13 | P74 | - | | | | | | | | I/O (D7 ⁽²⁾) | P56 | P53 | L12 | P75 | 259 ⁽³⁾ | | | | | | | # **XCS10 and XCS10XL Device Pinouts** | XCS10/XL | (4) | | (0.4) | | Bndry | |---|---------------------|-------|------------------------|-------|--------------------| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Scan | | I/O, | P57 | P54 | L13 | P76 | 262 ⁽³⁾ | | PGCK3 ⁽¹⁾
GCK5 ⁽²⁾ | | | | | | | I/O | - | - | K10 | P77 | 265 ⁽³⁾ | | I/O | - | - | K11 | P78 | 268 ⁽³⁾ | | I/O (D6 ⁽²⁾) | P58 | P55 | K12 | P79 | 271 ⁽³⁾ | | I/O | - | P56 | K13 | P80 | 274 (3) | | GND | - | - | J10 | P81 | - | | I/O | - | - | J11 | P82 | 277 (3) | | I/O | - | - | J12 | P83 | 280 (3) | | I/O (D5 ⁽²⁾) | P59 | P57 | J13 | P84 | 283 ⁽³⁾ | | I/O | P60 | P58 | H10 | P85 | 286 ⁽³⁾ | | I/O | - | P59 | H11 | P86 | 289 ⁽³⁾ | | I/O | - | P60 | H12 | P87 | 292 ⁽³⁾ | | I/O (D4 ⁽²⁾) | P61 | P61 | H13 | P88 | 295 ⁽³⁾ | | I/O | P62 | P62 | G12 | P89 | 298 ⁽³⁾ | | VCC | P63 | P63 | G13 | P90 | - | | GND | P64 | P64 | G11 | P91 | - | | I/O (D3 ⁽²⁾) | P65 | P65 | G10 | P92 | 301 ⁽³⁾ | | I/O | P66 | P66 | F13 | P93 | 304 ⁽³⁾ | | I/O | - | P67 | F12 | P94 | 307 ⁽³⁾ | | I/O | - | - | F11 | P95 | 310 ⁽³⁾ | | I/O (D2 ⁽²⁾) | P67 | P68 | F10 | P96 | 313 ⁽³⁾ | | I/O | P68 | P69 | E13 | P97 | 316 ⁽³⁾ | | I/O | - | - | E12 | P98 | 319 ⁽³⁾ | | I/O | - | - | E11 | P99 | 322 (3) | | GND | - | - | E10 | P100 | - | | I/O (D1 ⁽²⁾) | P69 | P70 | D13 | P101 | 325 ⁽³⁾ | | I/O | P70 | P71 | D12 | P102 | 328 (3) | | I/O | - | - | D11 | P103 | 331 ⁽³⁾ | | I/O | - | - | C13 | P104 | 334 ⁽³⁾ | | I/O (D0 ⁽²⁾ ,
DIN) | P71 | P72 | C12 | P105 | 337 ⁽³⁾ | | I/O, | P72 | P73 | C11 | P106 | 340 (3) | | SGCK4 ⁽¹⁾ | | | | | | | GCK6 ⁽²⁾ | | | | | | | (DOUT) | | | | | | | CCLK | P73 | P74 | B13 | P107 | - | | VCC | P74 | P75 | B12 | P108 | - | | O, TDO | P75 | P76 | A13 | P109 | 0 | | GND | P76 | P77 | A12 | P110 | - | | I/O | P77 | P78 | B11 | P111 | 2 | |
I/O, | P78 | P79 | A11 | P112 | 5 | | PGCK4 ⁽¹⁾ | | | | | | | GCK7 ⁽²⁾ | | | D10 | D110 | 0 | | 1/0 | - | - | D10 | P113 | 8 | | 1/0 | -
D70 | - | C10 | P114 | 11 | | I/O (CS1 ⁽²⁾) | P79 | P80 | B10 | P115 | 14 | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | P18 | P28 | P44 | P52 | V1 | T1 | 272 | | I/O | P19 | P29 | P45 | P53 | T4 | T2 | 275 | | I/O | - | P30 | P46 | P54 | U3 | T3 | 278 | | I/O | - | P31 | P47 | P55 | V2 | U1 | 281 | | I/O | P20 | P32 | P48 | P56 | W1 | V1 | 284 | | O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾ | P21 | P33 | P49 | P57 | V3 | U2 | 287 | | Not Connected ⁽¹⁾ , M1 ⁽²⁾ | P22 | P34 | P50 | P58 | W2 | V2 | 290 | | GND | P23 | P35 | P51 | P59 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | MODE ⁽¹⁾ , M0 ⁽²⁾ | P24 | P36 | P52 | P60 | Y1 | W1 | 293 | | VCC | P25 | P37 | P53 | P61 | VCC ⁽⁴⁾ | U3 | - | | Not Connected ⁽¹⁾ , PWRDWN ⁽²⁾ | P26 | P38 | P54 | P62 | W3 | V3 | 294 (1) | | /O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾ | P27 | P39 | P55 | P63 | Y2 | W2 | 295 ⁽³⁾ | | I/O (HDC) | P28 | P40 | P56 | P64 | W4 | W3 | 298 (3) | | I/O | - | P41 | P57 | P65 | V4 | T4 | 301 ⁽³⁾ | | I/O | - | P42 | P58 | P66 | U5 | U4 | 304 ⁽³⁾ | | I/O | P29 | P43 | P59 | P67 | Y3 | V4 | 307 (3) | | I/O (LDC) | P30 | P44 | P60 | P68 | Y4 | W4 | 310 ⁽³⁾ | | I/O | - | - | P61 | P69 | V5 | T5 | 313 ⁽³⁾ | | I/O | - | - | P62 | P70 | W5 | W5 | 316 ⁽³⁾ | | I/O | - | - | P63 | P71 | Y5 | R6 | 319 ⁽³⁾ | | I/O | - | - | P64 | P72 | V6 | U6 | 322 (3) | | I/O | - | - | P65 | P73 | W6 | V6 | 325 ⁽³⁾ | | I/O | - | - | - | P74 | Y6 | T6 | 328 (3) | | GND | - | P45 | P66 | P75 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P46 | P67 | P76 | W7 | W6 | 331 ⁽³⁾ | | I/O | - | P47 | P68 | P77 | Y7 | U7 | 334 (3) | | I/O | P31 | P48 | P69 | P78 | V8 | V7 | 337 ⁽³⁾ | | I/O | P32 | P49 | P70 | P79 | W8 | W7 | 340 (3) | | VCC | - | - | P71 | P80 | VCC ⁽⁴⁾ | T7 | - | | I/O | - | - | P72 | P81 | Y8 | W8 | 343 (3) | | I/O | - | - | P73 | P82 | U9 | U8 | 346 ⁽³⁾ | | I/O | - | - | - | P84 | Y9 | W9 | 349 (3) | | I/O | - | - | - | P85 | W10 | V9 | 352 ⁽³⁾ | | I/O | P33 | P50 | P74 | P86 | V10 | U9 | 355 ⁽³⁾ | | I/O | P34 | P51 | P75 | P87 | Y10 | T9 | 358 ⁽³⁾ | | I/O | P35 | P52 | P76 | P88 | Y11 | W10 | 361 ⁽³⁾ | | I/O (INIT) | P36 | P53 | P77 | P89 | W11 | V10 | 364 ⁽³⁾ | | VCC | P37 | P54 | P78 | P90 | VCC ⁽⁴⁾ | U10 | - | | GND | P38 | P55 | P79 | P91 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | 1/0 | P39 | P56 | P80 | P92 | V11 | T10 | 367 ⁽³⁾ | | I/O | P40 | P57 | P81 | P93 | U11 | R10 | 370 ⁽³⁾ | | I/O | P41 | P58 | P82 | P94 | Y12 | W11 | 373 (3) | | I/O | P42 | P59 | P83 | P95 | W12 | V11 | 376 ⁽³⁾ | | I/O | - | - | P84 | P96 | V12 | U11 | 379 (3) | # XCS40 and XCS40XL Device Pinouts | XCS40/XL | | | | 00000(2 F) | Bndry | |---|-------|-------|--------------------|------------------------|-------| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | O, TDO | P157 | P181 | A19 | B17 | 0 | | GND | P158 | P182 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P159 | P183 | B18 | A18 | 2 | | I/O,
PGCK4 ⁽¹⁾ ,
GCK7 ⁽²⁾ | P160 | P184 | B17 | A17 | 5 | | I/O | P161 | P185 | C17 | D16 | 8 | | I/O | P162 | P186 | D16 | C16 | 11 | | I/O (CS1 ⁽²⁾) | P163 | P187 | A18 | B16 | 14 | | I/O | P164 | P188 | A17 | A16 | 17 | | I/O | - | - | - | E15 | 20 | | I/O | - | - | - | C15 | 23 | | I/O | P165 | P189 | C16 | D15 | 26 | | I/O | - | P190 | B16 | A15 | 29 | | I/O | P166 | P191 | A16 | E14 | 32 | | I/O | P167 | P192 | C15 | C14 | 35 | | I/O | P168 | P193 | B15 | B14 | 38 | | I/O | P169 | P194 | A15 | D14 | 41 | | GND | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P171 | P197 | B14 | A14 | 44 | | I/O | P172 | P198 | A14 | C13 | 47 | | I/O | - | P199 | C13 | B13 | 50 | | I/O | - | P200 | B13 | A13 | 53 | | VCC | P173 | P201 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | - | A13 | A12 | 56 | | I/O | - | - | D12 | C12 | 59 | | I/O | P174 | P202 | C12 | B12 | 62 | | I/O | P175 | P203 | B12 | D12 | 65 | | I/O | P176 | P205 | A12 | A11 | 68 | | I/O | P177 | P206 | B11 | B11 | 71 | | I/O | P178 | P207 | C11 | C11 | 74 | | I/O | P179 | P208 | A11 | D11 | 77 | | I/O | P180 | P209 | A10 | A10 | 80 | | I/O | P181 | P210 | B10 | B10 | 83 | | GND | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | 2/8/00 | • | • | • | • | | ### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS40XL is not part of the Boundary Scan chain. For the XCS40XL, subtract 1 from all Boundary Scan numbers from GCK3 on (343 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - CS280 package discontinued by <u>PDN2004-01</u> # Additional XCS40/XL Package Pins #### **PQ240** | | GND Pins | | | | | | | | |------|--------------------|-----|-----|------|------|--|--|--| | P22 | P37 | P83 | P98 | P143 | P158 | | | | | P204 | P219 | - | - | - | - | | | | | | Not Connected Pins | | | | | | | | | P195 | - | - | - | - | - | | | | 2/12/98 #### **BG256** | | VCC Pins | | | | | | | | |-----|----------|-----|------|-----|-----|--|--|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | | | E20 | F1 | F4 | F17 | G4 | G17 | | | | | K4 | L17 | P4 | P17 | P19 | R2 | | | | | R4 | R17 | U6 | U7 | U10 | U14 | | | | | U15 | V7 | W20 | - | - | - | | | | | | | GND | Pins | | | | | | | A1 | B7 | D4 | D8 | D13 | D17 | | | | | G20 | H4 | H17 | N3 | N4 | N17 | | | | | U4 | U8 | U13 | U17 | W14 | - | | | | 6/17/97 ## **CS280** | VCC Pins | | | | | | | |----------|-----|-----|------|-----|-----|--| | A1 | A7 | B5 | B15 | C10 | C17 | | | D13 | E3 | E18 | G1 | G19 | K2 | | | K17 | M4 | N16 | R3 | R18 | T7 | | | U3 | U10 | U17 | V5 | V15 | W13 | | | | | GND | Pins | | | | | E5 | E7 | E8 | E9 | E11 | E12 | | | E13 | G5 | G15 | H5 | H15 | J5 | | | J15 | L5 | L15 | M5 | M15 | N5 | | | N15 | R7 | R8 | R9 | R11 | R12 | | | R13 | - | - | - | - | - | | 5/19/99