Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 169 | | Number of Gates | 30000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs30-4pq208c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown) A CLB can implement any of the following functions: Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables **Note:** When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. - Any single function of five variables - Any function of four variables together with some functions of six variables - · Some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ### Flip-Flops Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay. The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20. ### Latches (Spartan-XL Family Only) The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2. DS060_10_081100 Figure 10: Programmable Switch Matrix ### **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. ### Longlines 12 Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19. ### I/O Routing Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines. ### **Global Nets and Buffers** The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect. - The 16 x 1 single-port configuration contains a RAM array with 16 locations, each one-bit wide. One 4-bit address decoder determines the RAM location for write and read operations. There is one input for writing data and one output for reading data, all at the selected address. - The (16 x 1) x 2 single-port configuration combines two 16 x 1 single-port configurations (each according to the preceding description). There is one data input, one data output and one address decoder for each array. These arrays can be addressed independently. - The 32 x 1 single-port configuration contains a RAM array with 32 locations, each one-bit wide. There is one data input, one data output, and one 5-bit address decoder. - The dual-port mode 16 x 1 configuration contains a RAM array with 16 locations, each one-bit wide. There are two 4-bit address decoders, one for each port. One port consists of an input for writing and an output for reading, all at a selected address. The other port consists of one output for reading from an independently selected address. The appropriate choice of RAM configuration mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Selection criteria include the following: Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port, and the 16 x 1 dual-port configurations each use one entire CLB, the 16 x 1 single-port configuration uses only one half of a CLB. Due to its simultaneous read/write capability, the dual-port RAM can transfer twice as much data as the single-port RAM, which permits only one data operation at any given time. CLB memory configuration options are selected by using the appropriate library symbol in the design entry. ### **Single-Port Mode** There are three CLB memory configurations for the single-port RAM: 16×1 , $(16 \times 1) \times 2$, and 32×1 , the functional organization of which is shown in Figure 12. The single-port RAM signals and the CLB signals (Figure 2, page 4) from which they are originally derived are shown in Table 9. Table 9: Single-Port RAM Signals | RAM Signal | Function | CLB Signal | | |------------------|-------------------------------|--------------------------------------|--| | D0 or D1 | Data In | DIN or H1 | | | A[3:0] | Address | F[4:1] or G[4:1] | | | A4 (32 x 1 only) | Address | H1 | | | WE | Write Enable | SR | | | WCLK | Clock | К | | | SPO | Single Port Out
(Data Out) | F _{OUT} or G _{OUT} | | #### Notes: - The (16 x 1) x 2 configuration combines two 16 x 1 single-port RAMs, each with its own independent address bus and data input. The same WE and WCLK signals are connected to both RAMs. - 2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the 32 x 1 configuration. Figure 12: Logic Diagram for the Single-Port RAM Writing data to the single-port RAM is essentially the same as writing to a data register. It is an edge-triggered (synchronous) operation performed by applying an address to the A inputs and data to the D input during the active edge of WCLK while WE is High. The timing relationships are shown in Figure 13. The High logic level on WE enables the input data register for writing. The active edge of WCLK latches the address, input data, and WE signals. Then, an internal write pulse is generated that loads the data into the memory cell. ## **On-Chip Oscillator** Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with process, $V_{\rm CC}$, and temperature. The output frequency falls between 4 MHz and 10 MHz. The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8-MHz clock, plus any two of 500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies can vary by as much as -50% or +25%. These signals can be accessed by placing the OSC4 library
element in a schematic or in HDL code. The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design. ### Global Signals: GSR and GTS ### Global Set/Reset A separate Global Set/Reset line, as shown in Figure 3, page 5 for the CLB and Figure 5, page 6 for the IOB, sets or clears each flip-flop during power-up, reconfiguration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network. Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, if in reset mode, it is reset by both SR and GSR. GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 19.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the GSR signal. Alternatively, GSR can be driven from any internal node. ### Global 3-State A separate Global 3-state line (GTS) as shown in Figure 6, page 7 forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. GTS does not compete with other routing resources; it uses a dedicated distribution network. GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. This is similar to what is shown in Figure 19 for GSR except the IBUF would be connected to GTS. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-state signal. Alternatively, GTS can be driven from any internal node. Figure 19: Symbols for Global Set/Reset ## **Boundary Scan** The "bed of nails" has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can embed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan compatible device. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two. The Spartan and Spartan-XL families implement IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section. By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in the Spartan/XL devices. The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note: "Boundary Scan in FPGA Devices." Even if the boundary scan symbol is used in a design, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. ### **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state. - TCK: Tie High or Low—do not toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note, "Boundary Scan in FPGA Devices." # Boundary Scan Enhancements (Spartan-XL Family Only) Spartan-XL devices have improved boundary scan functionality and performance in the following areas: **IDCODE:** The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The use of the IDCODE enables selective configuration dependent on the FPGA found. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 ### where c = the company code (49h for Xilinx) a = the array dimension in CLBs (ranges from 0Ah for XCS05XL to 1Ch for XCS40XL) f = the family code (02h for Spartan-XL family) v = the die version number Table 13: IDCODEs Assigned to Spartan-XL FPGAs | FPGA | IDCODE | |---------|-----------| | XCS05XL | 0040A093h | | XCS10XL | 0040E093h | | XCS20XL | 00414093h | | XCS30XL | 00418093h | | XCS40XL | 0041C093h | **Configuration State:** The configuration state is available to JTAG controllers. **Configuration Disable:** The JTAG port can be prevented from configuring the FPGA. **TCK Startup:** TCK can now be used to clock the start-up block in addition to other user clocks. **CCLK Holdoff:** Changed the requirement for Boundary Scan Configure or EXTEST to be issued prior to the release of INIT pin and CCLK cycling. **Reissue Configure:** The Boundary Scan Configure can be reissued to recover from an unfinished attempt to configure the device. **Bypass FF:** Bypass FF and IOB is modified to provide DRCLOCK only during BYPASS for the bypass flip-flop, and during EXTEST or SAMPLE/PRELOAD for the IOB register. ## Power-Down (Spartan-XL Family Only) All Spartan/XL devices use a combination of efficient segmented routing and advanced process technology to provide low power consumption under all conditions. The 3.3V Spartan-XL family adds a dedicated active Low power-down pin (PWRDWN) to reduce supply current to 100 μA typical. The PWRDWN pin takes advantage of one of the unused No Connect locations on the 5V Spartan device. The user must de-select the "5V Tolerant I/Os" option in the Configuration Options to achieve the specified Power Down current. The PWRDWN pin has a default internal pull-up resistor, allowing it to be left unconnected if unused. V_{CC} must continue to be supplied during Power-down, and configuration data is maintained. When the \overline{PWRDWN} pin is pulled Low, the input and output buffers are disabled. The inputs are internally forced to a logic Low level, including the MODE pins, DONE, CCLK, and \overline{TDO} , and all internal pull-up resistors are turned off. The $\overline{PROGRAM}$ pin is not affected by Power Down. The GSR net is asserted during Power Down, initializing all the flip-flops to their start-up state. PWRDWN has a minimum pulse width of 50 ns (Figure 23). On entering the Power-down state, the inputs will be disabled and the flip-flops set/reset, and then the outputs are disabled about 10 ns later. The user may prefer to assert the GTS or GSR signals before PWRDWN to affect the order of events. When the PWRDWN signal is returned High, the inputs will be enabled first, followed immediately by the release of the GSR signal initializing the flip-flops. About 10 ns later, the outputs will be enabled. Allow 50 ns after the release of PWRDWN before using the device. DS060 26 080400 | Symbol | | Description | Min | Max | Units | |------------------|------|-------------|-----|------|-------| | T _{DCC} | | DIN setup | 20 | - | ns | | T _{CCD} | | DIN hold | 0 | - | ns | | T _{CCO} | CCLK | DIN to DOUT | - | 30 | ns | | T _{CCH} | COLK | High time | 40 | - | ns | | T _{CCL} | | Low time | 40 | - | ns | | F _{CC} | | Frequency | - | 12.5 | MHz | ### Notes: Figure 26: Slave Serial Mode Programming Switching Characteristics ## **Express Mode (Spartan-XL Family Only)** Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers (Figure 27). A CCLK frequency of 1 MHz is equivalent to a 8 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking. A length count is not used in Express mode. Express mode must be specified as an option to the development system. The Express mode bitstream is not compatible with the other configuration modes (see Table 16, page 32.) Express mode is selected by a <0X> on the Mode pins (M1, M0). The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before
the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge (Figure 28). ### Pseudo Daisy Chain Multiple devices with different configurations can be configured in a pseudo daisy chain provided that all of the devices are in Express mode. Concatenated bitstreams are used to configure the chain of Express mode devices so that each device receives a separate header. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. Frame data is accepted only when CS1 is High and the device's configuration memory is not already full. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pull-up). The status pin DOUT is pulled Low after the header is received, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the next header and configuration data on the D0-D7 bus. The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using a development system option. The requirement that all DONE pins in a daisy chain be wired together applies only to Express mode, and only if all devices in the chain are to become active simultaneously. All Spartan-XL devices in Express mode are synchronized Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. to the DONE pin. User I/Os for each device become active after the DONE pin for that device goes High. (The exact timing is determined by development system options.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device in the chain has completed its configuration cycle. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured. Only devices supporting Express mode can be used to form an Express mode daisy chain. Figure 27: Express Mode Circuit Diagram ---- Table 17: Spartan/XL Program Data | Device | XC | CS05 | XC | S10 | XCS20 | | XCS30 | | XC | S40 | |-------------------------------------|------------------|---------|------------------|---------|------------------|---------|---------|------------------|---------|-------------------| | Max System
Gates | 5, | 000 | 10,000 | | 20 | 20,000 | | 30,000 | | ,000 | | CLBs
(Row x Col.) | 100
(10 x 10) | | 196
(14 x 14) | | 400
(20 x 20) | | | 576
(24 x 24) | | '84
x 28) | | IOBs | 80 | | 112 | | 1 | 60 | 1 | 92 | 20 |)5 ⁽⁴⁾ | | Part Number | XCS05 | XCS05XL | XCS10 | XCS10XL | XCS20 | XCS20XL | XCS30 | XCS30XL | XCS40 | XCS40XL | | Supply Voltage | 5V | 3.3V | | Bits per Frame | 126 | 127 | 166 | 167 | 226 | 227 | 266 | 267 | 306 | 307 | | Frames | 428 | 429 | 572 | 573 | 788 | 789 | 932 | 933 | 1,076 | 1,077 | | Program Data | 53,936 | 54,491 | 94,960 | 95,699 | 178,096 | 179,111 | 247,920 | 249,119 | 329,264 | 330,647 | | PROM Size (bits) | 53,984 | 54,544 | 95,008 | 95,752 | 178,144 | 179,160 | 247,968 | 249,168 | 329,312 | 330,696 | | Express Mode
PROM Size
(bits) | - | 79,072 | - | 128,488 | - | 221,056 | - | 298,696 | - | 387,856 | ### Notes: - Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device) Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device) Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte - 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. - 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits. - 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. DS060_39_082801 Figure 31: Start-up Timing # **Configuration Through the Boundary Scan Pins** Spartan/XL devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input. - Wait for INIT to go High. - Sequence the boundary scan Test Access Port to the SHIFT-DR state. - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note, "Boundary Scan in FPGA Devices." This application note applies to Spartan and Spartan-XL devices. # **Readback Switching Characteristics Guidelines** The following guidelines reflect worst-case values over the recommended operating conditions. Figure 33: Spartan and Spartan-XL Readback Timing Diagram ## Spartan and Spartan-XL Readback Switching Characteristics | Symbol | | Description | Min | Max | Units | |-------------------|-----------|--|-----|-----|-------| | T _{RTRC} | rdbk.TRIG | rdbk.TRIG setup to initiate and abort Readback | 200 | - | ns | | T _{RCRT} | | rdbk.TRIG hold to initiate and abort Readback | 50 | - | ns | | T _{RCRD} | rdclk.l | rdbk.DATA delay | - | 250 | ns | | T _{RCRR} | | rdbk.RIP delay | - | 250 | ns | | T _{RCH} | | High time | 250 | 500 | ns | | T _{RCL} | | Low time | 250 | 500 | ns | ### Notes: - 1. Timing parameters apply to all speed grades. - 2. If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback. # Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (continued) All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted. # **Dual-Port RAM Synchronous (Edge-Triggered) Write Operation Characteristics** | | | | -4 | | -3 | | | |-------------------|---|---------------------|-----|-----|------|-----|-------| | Symbol | Dual Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Operati | | | | | | | | | T _{WCDS} | Address write cycle time (clock K period) | 16x1 | 8.0 | - | 11.6 | - | ns | | T _{WPDS} | Clock K pulse width (active edge) | 16x1 | 4.0 | - | 5.8 | - | ns | | T _{ASDS} | Address setup time before clock K | 16x1 | 1.5 | - | 2.1 | - | ns | | T _{AHDS} | Address hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{DSDS} | DIN setup time before clock K | 16x1 | 1.5 | - | 1.6 | - | ns | | T _{DHDS} | DIN hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WSDS} | WE setup time before clock K | 16x1 | 1.5 | - | 1.6 | - | ns | | T _{WHDS} | WE hold time after clock K | 16x1 | 0 | - | 0 | - | ns | | T _{WODS} | Data valid after clock K | 16x1 | - | 6.5 | - | 7.0 | ns | ### Notes: # Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Timing ^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing ### **Capacitive Load Factor** Figure 34 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 34 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control. Figure 34: Delay Factor at Various Capacitive Loads ## **Spartan Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays,
provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | - | 4 | - | 3 | | |--------------------|---|-------------|------|------|------|------|-------| | Symbol | Description | Device | Min | Max | Min | Max | Units | | Setup Tin | nes - TTL Inputs ⁽¹⁾ | | | • | • | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK), no delay | All devices | 1.6 | - | 2.1 | - | ns | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.5 | - | 2.0 | - | ns | | Hold Time | es | · | | | | | | | T _{IKEC} | Clock Enable (EC) to Clock (IK), no delay | All devices | 0.0 | - | 0.9 | - | ns | | | All Other Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | Propagat | ion Delays - TTL Inputs ⁽¹⁾ | , | | | | | | | T _{PID} | Pad to I1, I2 | All devices | - | 1.5 | - | 2.0 | ns | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.8 | - | 3.6 | ns | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 2.7 | - | 2.8 | ns | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 3.2 | - | 3.9 | ns | | Delay Ad | der for Input with Delay Option | | | I | I | II. | | | T _{Delay} | $T_{\text{ECIKD}} = T_{\text{ECIK}} + T_{\text{Delay}}$ | XCS05 | 3.6 | - | 4.0 | - | ns | | | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS10 | 3.7 | - | 4.1 | - | ns | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS20 | 3.8 | - | 4.2 | - | ns | | | | XCS30 | 4.5 | - | 5.0 | - | ns | | | | XCS40 | 5.5 | - | 5.5 | - | ns | | Global Se | et/Reset | | | I | I | II. | | | T_{MRW} | Minimum GSR pulse width | All devices | 11.5 | - | 13.5 | - | ns | | T _{RRI} | Delay from GSR input to any Q | XCS05 | - | 9.0 | - | 11.3 | ns | | | | XCS10 | - | 9.5 | - | 11.9 | ns | | | | XCS20 | - | 10.0 | - | 12.5 | ns | | | | XCS30 | - | 10.5 | - | 13.1 | ns | | | | XCS40 | - | 11.0 | - | 13.8 | ns | ### Notes: - 1. Delay adder for CMOS Inputs option: for -3 speed grade, add 0.4 ns; for -4 speed grade, add 0.2 ns. - 2. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 3. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted. | | | | | -5 | - | -4 | | |-------------------|---|---------------------|-----|-----|-----|-----|-------| | Symbol | Single Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Ope | ration | | | | | | | | T _{WCS} | Address write cycle time (clock K period) | 16x2 | 7.7 | - | 8.4 | - | ns | | T _{WCTS} | | 32x1 | 7.7 | - | 8.4 | - | ns | | T _{WPS} | Clock K pulse width (active edge) | 16x2 | 3.1 | - | 3.6 | - | ns | | T _{WPTS} | | 32x1 | 3.1 | - | 3.6 | - | ns | | T _{ASS} | Address setup time before clock K | 16x2 | 1.3 | - | 1.5 | - | ns | | T _{ASTS} | | 32x1 | 1.5 | - | 1.7 | - | ns | | T _{DSS} | DIN setup time before clock K | 16x2 | 1.5 | - | 1.7 | - | ns | | T _{DSTS} | | 32x1 | 1.8 | - | 2.1 | - | ns | | T _{WSS} | WE setup time before clock K | 16x2 | 1.4 | - | 1.6 | - | ns | | T _{WSTS} | | 32x1 | 1.3 | - | 1.5 | - | ns | | | All hold times after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{WOS} | Data valid after clock K | 32x1 | - | 4.5 | - | 5.3 | ns | | T _{WOTS} | | 16x2 | - | 5.4 | - | 6.3 | ns | | Read Ope | ration | • | 11 | 1 | | | 11 | | T _{RC} | Address read cycle time | 16x2 | 2.6 | - | 3.1 | - | ns | | T _{RCT} | | 32x1 | 3.8 | - | 5.5 | - | ns | | T _{ILO} | Data Valid after address change (no Write | 16x2 | - | 1.0 | - | 1.1 | ns | | T _{IHO} | Enable) | 32x1 | - | 1.7 | - | 2.0 | ns | | T _{ICK} | Address setup time before clock K | 16x2 | 0.6 | - | 0.7 | - | ns | | T _{IHCK} | | 32x1 | 1.3 | - | 1.6 | - | ns | | Notes: | | | | | | | | ### Notes: 56 ^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing. # **Spartan-XL Family Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper- ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. ## Spartan-XL Family Output Flip-Flop, Clock-to-Out | | | | Speed Grade | | | |--------------------|----------------------------|-------------|-------------|-----|----------| | | | | -5 | -4 | | | Symbol | Description | Device | Max | Max | Units | | Global Cl | ock to Output using OFF | ' | | ' | <u>'</u> | | T _{ICKOF} | Fast | XCS05XL | 4.6 | 5.2 | ns | | | | XCS10XL | 4.9 | 5.5 | ns | | | | XCS20XL | 5.2 | 5.8 | ns | | | | XCS30XL | 5.5 | 6.2 | ns | | | | XCS40XL | 5.8 | 6.5 | ns | | Slew Rate | Adjustment | 1 | | 1 | | | T_{SLOW} | For Output SLOW option add | All Devices | 1.5 | 1.7 | ns | #### Notes: - Output delays are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - 2. Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. - 3. OFF = Output Flip Flop # **Pin Descriptions** There are three types of pins in the Spartan/XL devices: - · Permanently dedicated pins - User I/O pins that can have special functions - Unrestricted user-programmable I/O pins. Before and during configuration, all outputs not used for the configuration process are 3-stated with the I/O pull-up resistor network activated. After configuration, if an IOB is unused it is configured as an input with the I/O pull-up resistor network remaining activated. Any user I/O can be configured to drive the Global Set/Reset net GSR or the global three-state net GTS. See **Global Signals: GSR and GTS**, page 20 for more information. Device pins for Spartan/XL devices are described in Table 18. Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options. Table 18: Pin Descriptions | Pin Name | I/O
During
Config. | I/O After
Config. | Pin Description | |------------------------|--------------------------|----------------------|---| | Permanently D | Dedicated P | ins | | | V _{CC} | Х | Х | Eight or more (depending on package) connections to the nominal +5V supply voltage (+3.3V for Spartan-XL devices). All must be connected, and each must be decoupled with a 0.01 –0.1 μ F capacitor to Ground. | | GND | Х | Х | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master mode and is an input in Slave mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on Spartan/XL devices, except during Readback. See Violating the Maximum High and Low Time Specification for the Readback Clock, page 39 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a bidirectional signal with an optional internal pull-up resistor. As an open-drain output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. | | | | | The optional pull-up resistor is selected as an option in the program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | I | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. | | | | | The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to VCC. | | MODE
(Spartan) | I | Х | The Mode input(s) are sampled after INIT goes High to determine the configuration mode to be used. | | M0, M1
(Spartan-XL) | | | During configuration, these pins have a weak pull-up resistor. For the most popular configuration mode, Slave Serial, the mode pins can be left unconnected. For Master Serial mode, connect the Mode/M0 pin directly to system ground. | # **Device-Specific Pinout Tables** Device-specific tables include all packages for each Spartan and Spartan-XL device. They follow the pad locations around the die, and include boundary scan register
locations. Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options. ### XCS05 and XCS05XL Device Pinouts | XCS05/XL | (A) | | Bndry | |--|---------------------|-------|-------| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | Scan | | VCC | P2 | P89 | - | | I/O | P3 | P90 | 32 | | I/O | P4 | P91 | 35 | | I/O | - | P92 | 38 | | I/O | - | P93 | 41 | | I/O | P5 | P94 | 44 | | I/O | P6 | P95 | 47 | | I/O | P7 | P96 | 50 | | I/O | P8 | P97 | 53 | | I/O | P9 | P98 | 56 | | I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾ | P10 | P99 | 59 | | VCC | P11 | P100 | - | | GND | P12 | P1 | - | | I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾ | P13 | P2 | 62 | | I/O | P14 | P3 | 65 | | I/O, TDI | P15 | P4 | 68 | | I/O, TCK | P16 | P5 | 71 | | I/O, TMS | P17 | P6 | 74 | | I/O | P18 | P7 | 77 | | I/O | - | P8 | 83 | | I/O | P19 | P9 | 86 | | I/O | P20 | P10 | 89 | | GND | P21 | P11 | - | | VCC | P22 | P12 | - | | I/O | P23 | P13 | 92 | | I/O | P24 | P14 | 95 | | I/O | - | P15 | 98 | | I/O | P25 | P16 | 104 | | I/O | P26 | P17 | 107 | | I/O | P27 | P18 | 110 | | I/O | - | P19 | 113 | | I/O | P28 | P20 | 116 | | I/O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾ | P29 | P21 | 119 | | Not Connected ⁽¹⁾ , M1 ⁽²⁾ | P30 | P22 | 122 | | GND | P31 | P23 | - | | MODE ⁽¹⁾ , M0 ⁽²⁾ | P32 | P24 | 125 | | VCC | P33 | P25 | - | | 1 | 1 | | I. | ### **XCS05 and XCS05XL Device Pinouts** | XCS05/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | Bndry
Scan | |---|---------------------|-------|--------------------| | Not Connected ⁽¹⁾ , | P34 | P26 | 126 ⁽¹⁾ | | PWRDWN ⁽²⁾ | | F20 | | | I/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾ | P35 | P27 | 127 ⁽³⁾ | | I/O (HDC) | P36 | P28 | 130 ⁽³⁾ | | I/O | - | P29 | 133 ⁽³⁾ | | I/O (LDC) | P37 | P30 | 136 ⁽³⁾ | | I/O | P38 | P31 | 139 ⁽³⁾ | | I/O | P39 | P32 | 142 ⁽³⁾ | | I/O | - | P33 | 145 ⁽³⁾ | | I/O | - | P34 | 148 ⁽³⁾ | | I/O | P40 | P35 | 151 ⁽³⁾ | | I/O (ĪNĪT) | P41 | P36 | 154 ⁽³⁾ | | VCC | P42 | P37 | - | | GND | P43 | P38 | - | | I/O | P44 | P39 | 157 ⁽³⁾ | | I/O | P45 | P40 | 160 ⁽³⁾ | | I/O | - | P41 | 163 ⁽³⁾ | | I/O | - | P42 | 166 ⁽³⁾ | | I/O | P46 | P43 | 169 ⁽³⁾ | | I/O | P47 | P44 | 172 ⁽³⁾ | | I/O | P48 | P45 | 175 ⁽³⁾ | | I/O | P49 | P46 | 178 ⁽³⁾ | | I/O | P50 | P47 | 181 ⁽³⁾ | | I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾ | P51 | P48 | 184 ⁽³⁾ | | GND | P52 | P49 | - | | DONE | P53 | P50 | - | | VCC | P54 | P51 | - | | PROGRAM | P55 | P52 | - (0) | | I/O (D7 ⁽²⁾) | P56 | P53 | 187 ⁽³⁾ | | I/O, PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾ | P57 | P54 | 190 ⁽³⁾ | | I/O (D6 ⁽²⁾) | P58 | P55 | 193 ⁽³⁾ | | I/O | - | P56 | 196 ⁽³⁾ | | I/O (D5 ⁽²⁾) | P59 | P57 | 199 ⁽³⁾ | | I/O | P60 | P58 | 202 ⁽³⁾ | | I/O | - | P59 | 205 ⁽³⁾ | | I/O | - | P60 | 208 ⁽³⁾ | | I/O (D4 ⁽²⁾) | P61 | P61 | 211 ⁽³⁾ | | 1/0 | P62 | P62 | 214 ⁽³⁾ | | VCC | P63 | P63 | - | | GND | P64 | P64 | - | | I/O (D3 ⁽²⁾) | P65 | P65 | 217 ⁽³⁾ | | 1/0 | P66 | P66 | 220 ⁽³⁾ | | 1/0 | - | P67 | 223 ⁽³⁾ | | I/O (D2 ⁽²⁾) | P67 | P68 | 229(3) | | 1/0 | P68 | P69 | 232 ⁽³⁾ | | I/O (D1 ⁽²⁾) | P69 | P70 | 235 ⁽³⁾ | ## **XCS20 and XCS20XL Device Pinouts** | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | |--|-------|------------------------|-------|-------|--------------------| | I/O | - | F4 | P13 | P21 | 170 | | I/O | P8 | F3 | P14 | P22 | 173 | | I/O | P9 | F2 | P15 | P23 | 176 | | I/O | P10 | F1 | P16 | P24 | 179 | | GND | P11 | G2 | P17 | P25 | - | | VCC | P12 | G1 | P18 | P26 | - | | I/O | P13 | G3 | P19 | P27 | 182 | | I/O | P14 | G4 | P20 | P28 | 185 | | I/O | P15 | H1 | P21 | P29 | 188 | | I/O | - | H2 | P22 | P30 | 191 | | I/O | - | - | - | P31 | 194 | | I/O | - | - | - | P32 | 197 | | VCC ⁽²⁾ | - | - | - | P33 | - | | I/O | P16 | H3 | P23 | P34 | 200 | | I/O | P17 | H4 | P24 | P35 | 203 | | I/O | - | J1 | P25 | P36 | 206 | | I/O | - | J2 | P26 | P37 | 209 | | GND | - | J3 | P27 | P38 | - | | I/O | - | - | - | P40 | 212 | | I/O | - | - | - | P41 | 215 | | I/O | - | - | - | P42 | 218 | | I/O | - | - | - | P43 | 221 | | I/O | P18 | J4 | P28 | P44 | 224 | | I/O | P19 | K1 | P29 | P45 | 227 | | I/O | - | K2 | P30 | P46 | 230 | | I/O | - | K3 | P31 | P47 | 233 | | I/O | P20 | L1 | P32 | P48 | 236 | | I/O,
SGCK2 ⁽¹⁾ ,
GCK2 ⁽²⁾ | P21 | L2 | P33 | P49 | 239 | | Not
Connected ⁽¹⁾
M1 ⁽²⁾ | P22 | L3 | P34 | P50 | 242 | | GND | P23 | M1 | P35 | P51 | - | | MODE ⁽¹⁾ ,
M0 ⁽²⁾ | P24 | M2 | P36 | P52 | 245 | | VCC | P25 | N1 | P37 | P53 | - | | Not
Connected ⁽¹⁾
PWRDWN ⁽²⁾ | P26 | N2 | P38 | P54 | 246 (1) | | I/O,
PGCK2 ⁽¹⁾ ,
GCK3 ⁽²⁾ | P27 | M3 | P39 | P55 | 247 (3) | | I/O (HDC) | P28 | N3 | P40 | P56 | 250 ⁽³⁾ | | I/O | - | K4 | P41 | P57 | 253 ⁽³⁾ | | I/O | - | L4 | P42 | P58 | 256 ⁽³⁾ | | I/O | P29 | M4 | P43 | P59 | 259 ⁽³⁾ | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | | ONE DEV | | | Bndry | |---|-------|------------------------|-------|-------|--------------------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | I/O (LDC) | P30 | N4 | P44 | P60 | 262 ⁽³⁾ | | I/O | - | - | - | P61 | 265 ⁽³⁾ | | I/O | - | - | - | P62 | 268 ⁽³⁾ | | I/O | - | - | - | P63 | 271 ⁽³⁾ | | I/O | - | - | - | P64 | 274 ⁽³⁾ | | GND | - | K5 | P45 | P66 | - | | I/O | - | L5 | P46 | P67 | 277 (3) | | I/O | - | M5 | P47 | P68 | 280 (3) | | I/O | P31 | N5 | P48 | P69 | 283 ⁽³⁾ | | I/O | P32 | K6 | P49 | P70 | 286 ⁽³⁾ | | VCC ⁽²⁾ | - | - | - | P71 | - | | I/O | - | - | - | P72 | 289 ⁽³⁾ | | I/O | - | - | - | P73 | 292 ⁽³⁾ | | I/O | P33 | L6 | P50 | P74 | 295 ⁽³⁾ | | I/O | P34 | M6 | P51 | P75 | 298 ⁽³⁾ | | I/O | P35 | N6 | P52 | P76 | 301 ⁽³⁾ | | I/O (INIT) | P36 | M7 | P53 | P77 | 304 ⁽³⁾ | | VCC | P37 | N7 | P54 | P78 | - | | GND | P38 | L7 | P55 | P79 | - | | I/O | P39 | K7 | P56 | P80 | 307 ⁽³⁾ | | I/O | P40 | N8 | P57 | P81 | 310 ⁽³⁾ | | I/O | P41 | M8 | P58 | P82 | 313 ⁽³⁾ | | I/O | P42 | L8 | P59 | P83 | 316 ⁽³⁾ | | I/O | - | - | - | P84 | 319 ⁽³⁾ | | I/O | - | - | - | P85 | 322 (3) | | VCC ⁽²⁾ | - | - | - | P86 | - | | I/O | P43 | K8 | P60 | P87 | 325 ⁽³⁾ | | I/O | P44 | N9 | P61 | P88 | 328 (3) | | I/O | - | M9 | P62 | P89 | 331 ⁽³⁾ | | I/O | - | L9 | P63 | P90 | 334 ⁽³⁾ | | GND | - | K9 | P64 | P91 | - | | I/O | - | - | - | P93 | 337 ⁽³⁾ | | I/O | - | - | 1 | P94 | 340 ⁽³⁾ | | I/O | - | - | ı | P95 | 343 ⁽³⁾ | | I/O | - | - | ı | P96 | 346 ⁽³⁾ | | I/O | P45 | N10 | P65 | P97 | 349 ⁽³⁾ | | I/O | P46 | M10 | P66 | P98 | 352 ⁽³⁾ | | I/O | - | L10 | P67 | P99 | 355 ⁽³⁾ | | I/O | - | N11 | P68 | P100 | 358 ⁽³⁾ | | I/O | P47 | M11 | P69 | P101 | 361 ⁽³⁾ | | I/O,
SGCK3 ⁽¹⁾ ,
GCK4 ⁽²⁾ | P48 | L11 | P70 | P102 | 364 ⁽³⁾ | | GND | P49 | N12 | P71 | P103 | - | | DONE | P50 | M12 | P72 | P104 | - | | VCC | P51 | N13 | P73 | P105 | - | | | | | | | | ### **CS280** | VCC Pins | | | | | | | |-------------------------------------|-----|---------|-----------|-----|-----|--| | E5 | E7 | E8 | E9 | E11 | E12 | | | E13 | G5 | G15 | H5 | H15 | J5 | | | J15 | L5 | L15 | M5 | M15 | N5 | | | N15 | R7 | R8 | R9 | R11 | R12 | | | R13 | - | - | - | - | - | | | | | Not Cor | nected Pi | ns | | | | A4 | A12 | C8 | C12 | C15 | D1 | | | D2 | D5 | D8 | D17 | D18 | E15 | | | H2 | НЗ | H18 | H19 | L4 | M1 | | | M16 | M18 | R2 | R4 | R5 | R15 | | | R17 | T8 | T15 | U5 | V8 | V12 | | | W12 | W16 | - | - | - | - | | | Not Connected Pins (VCC in XCS40XL) | | | | | | | | B5 | B15 | E3 | E18 | R3 | R18 | | | V5 | V15 | - | - | - | - | | 5/21/02 # XCS40 and XCS40XL Device Pinouts | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | |----------------------|-------|-------|--------------------|------------------------|---------------| | VCC | P183 | P212 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | Juli | | | | | | | - | | I/O | P184 | P213 | C10 | D10 | 86 | | I/O | P185 | P214 | D10 | E10 | 89 | | I/O | P186 | P215 | A9 | A9 | 92 | | I/O | P187 | P216 | B9 | B9 | 95 | | I/O | P188 | P217 | C9 | C9 | 98 | | I/O | P189 | P218 | D9 | D9 | 101 | | I/O | P190 | P220 | A8 | A8 | 104 | | I/O | P191 | P221 | B8 | B8 | 107 | | I/O | - | - | C8 | C8 | 110 | | I/O | - | - | A7 | D8 | 113 | | VCC | P192 | P222 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | P223 | A6 | B7 | 116 | | I/O | - | P224 | C7 | C7 | 119 | | I/O | P193 | P225 | B6 | D7 | 122 | | I/O | P194 | P226 | A5 | A6 | 125 | | GND | P195 | P227 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P196 | P228 | C6 | B6 | 128 | | I/O | P197 | P229 | B5 | C6 | 131 | | I/O | P198 | P230 | A4 | D6 | 134 | | I/O | P199 | P231 | C5 | E6 | 137 | # XCS40 and XCS40XL Device Pinouts | XCS40/XL Device Piriouts | | | | | | |---|-------|-------|--------------------|------------------------|------| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | I/O | P200 | P232 | B4 | A5 | 140 | | I/O | P201 | P233 | A3 | C5 | 143 | | I/O | - | - | - | D5 | 146 | | I/O | - | - | - | A4 | 149 | | I/O | P202 | P234 | D5 | B4 | 152 | | I/O | P203 | P235 | C4 | C4 | 155 | | I/O | P204 | P236 | В3 | A3 | 158 | | I/O | P205 | P237 | B2 | A2 | 161 | | I/O | P206 | P238 | A2 | В3 | 164 | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P207 | P239 | C3 | B2 | 167 | | VCC | P208 | P240 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | GND | P1 | P1 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | P2 | B1 | C3 | 170 | | I/O | P3 | P3 | C2 | C2 | 173 | | I/O | P4 | P4 | D2 | B1 | 176 | | I/O | P5 | P5 | D3 | C1 | 179 | | I/O, TDI | P6 | P6 | E4 | D4 | 182 | | I/O, TCK | P7 | P7 | C1 | D3 | 185 | | I/O | - | - | - | D2 | 188 | | I/O | - | - | - | D1 | 191 | | I/O | P8 | P8 | D1 | E2 | 194 | | I/O | P9 | P9 | E3 | E4 | 197 | | I/O | P10 | P10 | E2 | E1 | 200 | | I/O | P11 | P11 | E1 | F5 | 203 | | I/O | P12 | P12 | F3 | F3 | 206 | | I/O | - | P13 | F2 | F2 | 209 | | GND | P13 | P14 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P14 | P15 | G3 | F4 | 212 | | I/O | P15 | P16 | G2 | F1 | 215 | | I/O, TMS | P16 | P17 | G1 | G3 | 218 | | I/O | P17 | P18 | Н3
| G2 | 221 | | VCC | P18 | P19 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | ı | P20 | H2 | G4 | 224 | | I/O | ı | P21 | H1 | H1 | 227 | | I/O | - | - | J4 | H3 | 230 | | I/O | - | - | J3 | H2 | 233 | | I/O | P19 | P23 | J2 | H4 | 236 | | I/O | P20 | P24 | J1 | J1 | 239 | | I/O | P21 | P25 | K2 | J2 | 242 | | I/O | P22 | P26 | K3 | J3 | 245 | | I/O | P23 | P27 | K1 | J4 | 248 | | I/O | P24 | P28 | L1 | K1 | 251 | ### XCS40 and XCS40XL Device Pinouts #### XCS40/XL **Bndry** CS280^(2,5) **Pad Name PQ208 PQ240 BG256** Scan GND GND⁽⁴⁾ GND⁽⁴⁾ P25 P29 VCC P26 P30 VCC⁽⁴⁾ VCC⁽⁴⁾ I/O P31 P27 L2 **K**3 254 I/O P28 P32 L3 K4 257 I/O P33 K5 P29 L4 260 I/O P30 P34 M1 L1 263 I/O P31 P35 M2 L2 266 I/O P32 P36 МЗ L3 269 I/O M4 L4 272 -I/O М1 275 I/O P38 N1 M2 278 I/O P39 N2 МЗ 281 VCC⁽⁴⁾ VCC⁽⁴⁾ VCC P33 P40 I/O P34 P41 Р1 N₁ 284 I/O P35 P42 P2 N2 287 I/O P36 P43 R1 N3 290 I/O P37 P44 P3 N4 293 **GND** P38 P45 GND⁽⁴⁾ GND⁽⁴⁾ I/O P46 T1 P1 296 I/O P39 P47 R3 P2 299 I/O P40 P48 T2 Р3 302 I/O P41 P49 U1 P4 305 I/O P42 P50 Т3 P5 308 I/O P43 P51 U2 R1 311 I/O R2 314 I/O R4 317 --I/O P44 P52 V1 T1 320 I/O P45 P53 T4 T2 323 P46 I/O U3 P54 Т3 326 I/O P47 P55 V2 U1 329 I/O P48 P56 W1 V1 332 I/O, P49 P57 V3 U2 335 SGCK2⁽¹⁾. GCK2 (2) Not P50 P58 W2 V2 338 Connected⁽¹⁾ $M1^{(2)}$ GND GND⁽⁴⁾ GND⁽⁴⁾ P51 P59 $MODE^{(1)}$. P52 P60 Υ1 W1 341 $M0^{(2)}$ VCC P53 P61 VCC(4) VCC⁽⁴⁾ 342(1) Not P54 P62 W3 V3 Connected⁽¹⁾ PWRDWN⁽²⁾ 343 (3) I/O, P55 P63 Y2 W2 PGCK2(1), GCK3⁽²⁾ ### XCS40 and XCS40XL Device Pinouts | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | |----------------------|-------|-------|--------------------|------------------------|--------------------| | I/O (HDC) | P56 | P64 | W4 | W3 | 346 ⁽³⁾ | | I/O | P57 | P65 | V4 | T4 | 349 ⁽³⁾ | | I/O | P58 | P66 | U5 | U4 | 352 ⁽³⁾ | | I/O | P59 | P67 | Y3 | V4 | 355 ⁽³⁾ | | I/O (LDC) | P60 | P68 | Y4 | W4 | 358 ⁽³⁾ | | I/O | - | - | - | R5 | 361 ⁽³⁾ | | I/O | - | - | - | U5 | 364 ⁽³⁾ | | I/O | P61 | P69 | V5 | T5 | 367 ⁽³⁾ | | I/O | P62 | P70 | W5 | W5 | 370 ⁽³⁾ | | I/O | P63 | P71 | Y5 | R6 | 373 ⁽³⁾ | | I/O | P64 | P72 | V6 | U6 | 376 ⁽³⁾ | | I/O | P65 | P73 | W6 | V6 | 379 ⁽³⁾ | | I/O | - | P74 | Y6 | T6 | 382 (3) | | GND | P66 | P75 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P67 | P76 | W7 | W6 | 385 (3) | | I/O | P68 | P77 | Y7 | U7 | 388 (3) | | I/O | P69 | P78 | V8 | V7 | 391 ⁽³⁾ | | I/O | P70 | P79 | W8 | W7 | 394 ⁽³⁾ | | VCC | P71 | P80 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | P72 | P81 | Y8 | W8 | 397 ⁽³⁾ | | I/O | P73 | P82 | U9 | U8 | 400 (3) | | I/O | - | - | V9 | V8 | 403 ⁽³⁾ | | I/O | - | - | W9 | T8 | 406 ⁽³⁾ | | I/O | - | P84 | Y9 | W9 | 409 (3) | | I/O | - | P85 | W10 | V9 | 412 ⁽³⁾ | | I/O | P74 | P86 | V10 | U9 | 415 ⁽³⁾ | | I/O | P75 | P87 | Y10 | T9 | 418 ⁽³⁾ | | I/O | P76 | P88 | Y11 | W10 | 421 ⁽³⁾ | | I/O (INIT) | P77 | P89 | W11 | V10 | 424 ⁽³⁾ | | VCC | P78 | P90 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | | GND | P79 | P91 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P80 | P92 | V11 | T10 | 427 ⁽³⁾ | | I/O | P81 | P93 | U11 | R10 | 430 ⁽³⁾ | | I/O | P82 | P94 | Y12 | W11 | 433 ⁽³⁾ | | I/O | P83 | P95 | W12 | V11 | 436 ⁽³⁾ | | I/O | P84 | P96 | V12 | U11 | 439 ⁽³⁾ | | I/O | P85 | P97 | U12 | T11 | 442 ⁽³⁾ | | I/O | - | - | Y13 | W12 | 445 ⁽³⁾ | | I/O | - | - | W13 | V12 | 448 ⁽³⁾ | | I/O | - | P99 | V13 | U12 | 451 ⁽³⁾ | | I/O | - | P100 | Y14 | T12 | 454 ⁽³⁾ | | VCC | P86 | P101 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | P87 | P102 | Y15 | V13 | 457 ⁽³⁾ | | I/O | P88 | P103 | V14 | U13 | 460 ⁽³⁾ | | I/O | P89 | P104 | W15 | T13 | 463 ⁽³⁾ |