Welcome to **E-XFL.COM** **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 192 | | Number of Gates | 30000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 256-BBGA | | Supplier Device Package | 256-PBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xillinx/xcs30xl-4bg256c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **General Overview** Spartan series FPGAs are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources (routing channels), and surrounded by a perimeter of programmable Input/Output Blocks (IOBs), as seen in Figure 1. They have generous routing resources to accommodate the most complex interconnect patterns. The devices are customized by loading configuration data into internal static memory cells. Re-programming is possible an unlimited number of times. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. The FPGA can either actively read its configuration data from an external serial PROM (Master Serial mode), or the configuration data can be written into the FPGA from an external device (Slave Serial mode). Spartan series FPGAs can be used where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 50,000 systems per month. ---- Figure 1: Basic FPGA Block Diagram | T-1-1- | Ο. | Δ I D | Ot | | Functionality | |--------|-----|--------------|---------|---------|----------------| | םוחבו | ٠,٠ | | STORAGE | FIDMONT | FIIDCTIONSIITV | | | | | | | | | Mode | СК | EC | SR | D | Q | |------------------------|----|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | Flip-Flop | Х | Х | 1 | Х | SR | | Operation | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Operation (Spartan-XL) | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Q | #### Legend: | Χ | Don't care | |----|--| | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Figure 3: CLB Flip-Flop Functional Block Diagram #### **Clock Input** Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB. #### **Clock Enable** The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device. #### Set/Reset The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB. #### CLB Signal Flow Control In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y). Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source. Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT. #### **Control Signals** There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals. Figure 4: CLB Control Signal Interface The four internal control signals are: - EC: Enable Clock - SR: Asynchronous Set/Reset or H function generator Input 0 - DIN: Direct In or H function generator Input 2 - H1: H function generator Input 1. ### Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 6 shows a simplified functional block diagram of the Spartan/XL FPGA IOB. Figure 5: IOB Flip-Flop/Latch Functional Block Diagram ## IOB Input Signal Path The input signal to the IOB can be configured to either go directly to the routing channels (via I1 and I2 in Figure 6) or to the input register. The input register can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The functionality of this register is shown in Table 3, and a simplified block diagram of the register can be seen in Figure 5. Table 3: Input Register Functionality | Mode | CK | EC | D | Q | |--------------------|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Х | 0 | Х | Q | #### Legend: | X | Don't care. | |----|--| | ^ | | | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Table 4: Supported Sources for Spartan/XL Inputs | | Spartan
Inputs | | Spartan-XL
Inputs | |---|-------------------|-----------------|----------------------| | Source | 5V,
TTL | 5V,
CMOS | 3.3V
CMOS | | Any device, V _{CC} = 3.3V,
CMOS outputs | V | Unreli-
able | V | | Spartan family, V _{CC} = 5V,
TTL outputs | V | Data | V | | Any device, $V_{CC} = 5V$, TTL outputs $(V_{OH} \le 3.7V)$ | V | | V | | Any device, V _{CC} = 5V,
CMOS outputs | √ | V | √ (default
mode) | #### Spartan-XL Family V_{CC} Clamping Spartan-XL FPGAs have an optional clamping diode connected from each I/O to V_{CC} . When enabled they clampringing transients back to the 3.3V supply rail. This clamping action is required in 3.3V PCI applications. V_{CC} clamping is a global option affecting all I/O pins. Spartan-XL devices are fully 5V TTL I/O compatible if V_{CC} clamping is not enabled. With V_{CC} clamping enabled, the Spartan-XL devices will begin to clamp input voltages to one diode voltage drop above V_{CC} . If enabled, TTL I/O compatibility is maintained but full 5V I/O tolerance is sacrificed. The user may select either 5V tolerance (default) or 3.3V PCI compatibility. In both cases negative voltage is clamped to one diode voltage drop below ground. Spartan-XL devices are compatible with TTL, LVTTL, PCI 3V, PCI 5V and LVCMOS signalling. The various standards are illustrated in Table 5. Table 5: I/O Standards Supported by Spartan-XL FPGAs | Signaling
Standard | VCC
Clamping | Output
Drive | V _{IH MAX} | V _{IH MIN} | V _{IL MAX} | V _{OH MIN} | V _{OL MAX} | |-----------------------|-----------------|-----------------|---------------------|------------------------|------------------------|------------------------|------------------------| | TTL | Not allowed | 12/24 mA | 5.5 | 2.0 | 0.8 | 2.4 | 0.4 | | LVTTL | OK | 12/24 mA | 3.6 | 2.0 | 0.8 | 2.4 | 0.4 | | PCI5V | Not allowed | 24 mA | 5.5 | 2.0 | 0.8 | 2.4 | 0.4 | | PCI3V | Required | 12 mA | 3.6 | 50% of V _{CC} | 30% of V _{CC} | 90% of V _{CC} | 10% of V _{CC} | | LVCMOS 3V | OK | 12/24 mA | 3.6 | 50% of V _{CC} | 30% of V _{CC} | 90% of V _{CC} | 10% of V _{CC} | # Additional Fast Capture Input Latch (Spartan-XL Family Only) The Spartan-XL family OB has an additional optional latch on the input. This latch is clocked by the clock used for the output flip-flop rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch. To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active High input flip-flop. ILFLX is a transparent Low Fast Capture latch followed by a transparent High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB. #### IOB Output Signal Path Output signals can be optionally inverted within the IOB, and can pass directly to the output buffer or be stored in an edge-triggered flip-flop and then to the output buffer. The functionality of this flip-flop is shown in Table 6. Table 6: Output Flip-Flop Functionality | Mode | Clock | Clock
Enable | Т | D | Q | |--------------------|-------|-----------------|----|---|----| | Power-Up
or GSR | Х | Х | 0* | Х | SR | | Flip-Flop | Х | 0 | 0* | Х | Q | | | | 1* | 0* | D | D | | | Х | Х | 1 | Х | Z | | | 0 | Х | 0* | Х | Q | #### Legend: | V | Don't care | |---|------------| | | | ___ Rising edge (clock not inverted). SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) Z 3-state Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram #### **CLB Interface** A block diagram of the CLB interface signals is shown in Figure 9. The input signals to the CLB are distributed evenly on all four sides providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. The exceptions are the clock (K) input and CIN/COUT signals. The K input is routed to dedicated global vertical lines as well as four single-length lines and is on the left side of the CLB. The CIN/COUT signals are routed through dedicated interconnects which do not interfere with the general routing structure. The output signals from the CLB are available to drive both vertical and horizontal channels. Figure 9: CLB Interconnect Signals #### **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each PSM consists of programmable pass transistors used to establish connections between the lines (see Figure 10). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. ## **Single-Length Lines** Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 10. Routing connectivity is shown in Figure 8. Single-length lines incur a delay whenever they go through a PSM. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. DS060_10_081100 Figure 10: Programmable Switch Matrix ## **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. ## Longlines 12 Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19. #### I/O Routing Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines. #### **Global Nets and Buffers** The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect. Figure 13: Data Write and Access Timing for RAM WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM. The WE input is active High and cannot be inverted within the CLB. Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO. ## **Dual-Port Mode** In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported. The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the Figure 14: Logic Diagram for the Dual-Port RAM Figure 16: Fast Carry Logic in Spartan/XL CLB Figure 20: Spartan/XL Boundary Scan Logic Even if the boundary scan symbol is used in a design, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. ## **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state. - TCK: Tie High or Low—do not toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note, "Boundary Scan in FPGA Devices." # Boundary Scan Enhancements (Spartan-XL Family Only) Spartan-XL devices have improved boundary scan functionality and performance in the following areas: **IDCODE:** The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The use of the IDCODE enables selective configuration dependent on the FPGA found. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 #### where c = the company code (49h for Xilinx) a = the array dimension in CLBs (ranges from 0Ah for XCS05XL to 1Ch for XCS40XL) f = the family code (02h for Spartan-XL family) v = the die version number Table 13: IDCODEs Assigned to Spartan-XL FPGAs | FPGA | IDCODE | |---------|-----------| | XCS05XL | 0040A093h | | XCS10XL | 0040E093h | | XCS20XL | 00414093h | | XCS30XL | 00418093h | | XCS40XL | 0041C093h | **Configuration State:** The configuration state is available to JTAG controllers. **Configuration Disable:** The JTAG port can be prevented from configuring the FPGA. **TCK Startup:** TCK can now be used to clock the start-up block in addition to other user clocks. **CCLK Holdoff:** Changed the requirement for Boundary Scan Configure or EXTEST to be issued prior to the release of INIT pin and CCLK cycling. **Reissue Configure:** The Boundary Scan Configure can be reissued to recover from an unfinished attempt to configure the device. **Bypass FF:** Bypass FF and IOB is modified to provide DRCLOCK only during BYPASS for the bypass flip-flop, and during EXTEST or SAMPLE/PRELOAD for the IOB register. ## Power-Down (Spartan-XL Family Only) All Spartan/XL devices use a combination of efficient segmented routing and advanced process technology to provide low power consumption under all conditions. The 3.3V Spartan-XL family adds a dedicated active Low power-down pin (PWRDWN) to reduce supply current to 100 μA typical. The PWRDWN pin takes advantage of one of the unused No Connect locations on the 5V Spartan device. The user must de-select the "5V Tolerant I/Os" option in the Configuration Options to achieve the specified Power Down current. The PWRDWN pin has a default internal pull-up resistor, allowing it to be left unconnected if unused. V_{CC} must continue to be supplied during Power-down, and configuration data is maintained. When the \overline{PWRDWN} pin is pulled Low, the input and output buffers are disabled. The inputs are internally forced to a logic Low level, including the MODE pins, DONE, CCLK, and \overline{TDO} , and all internal pull-up resistors are turned off. The $\overline{PROGRAM}$ pin is not affected by Power Down. The GSR net is asserted during Power Down, initializing all the flip-flops to their start-up state. PWRDWN has a minimum pulse width of 50 ns (Figure 23). On entering the Power-down state, the inputs will be disabled and the flip-flops set/reset, and then the outputs are disabled about 10 ns later. The user may prefer to assert the GTS or GSR signals before PWRDWN to affect the order of events. When the PWRDWN signal is returned High, the inputs will be enabled first, followed immediately by the release of the GSR signal initializing the flip-flops. About 10 ns later, the outputs will be enabled. Allow 50 ns after the release of PWRDWN before using the device. DS060 26 080400 | Symbol | | Description | Min | Max | Units | |------------------|------|-------------|-----|------|-------| | T _{DCC} | | DIN setup | 20 | - | ns | | T _{CCD} | | DIN hold | 0 | - | ns | | T _{CCO} | CCLK | DIN to DOUT | - | 30 | ns | | T _{CCH} | COLK | High time | 40 | - | ns | | T _{CCL} | | Low time | 40 | - | ns | | F _{CC} | | Frequency | - | 12.5 | MHz | #### Notes: Figure 26: Slave Serial Mode Programming Switching Characteristics ## **Express Mode (Spartan-XL Family Only)** Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers (Figure 27). A CCLK frequency of 1 MHz is equivalent to a 8 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking. A length count is not used in Express mode. Express mode must be specified as an option to the development system. The Express mode bitstream is not compatible with the other configuration modes (see Table 16, page 32.) Express mode is selected by a <0X> on the Mode pins (M1, M0). The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge (Figure 28). ## Pseudo Daisy Chain Multiple devices with different configurations can be configured in a pseudo daisy chain provided that all of the devices are in Express mode. Concatenated bitstreams are used to configure the chain of Express mode devices so that each device receives a separate header. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. Frame data is accepted only when CS1 is High and the device's configuration memory is not already full. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pull-up). The status pin DOUT is pulled Low after the header is received, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the next header and configuration data on the D0-D7 bus. The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using a development system option. The requirement that all DONE pins in a daisy chain be wired together applies only to Express mode, and only if all devices in the chain are to become active simultaneously. All Spartan-XL devices in Express mode are synchronized Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. DS060_28_080400 | Symbol | | Description | | Max | Units | |------------------|------|------------------------|----|-----|-------| | T _{IC} | | INIT (High) setup time | 5 | - | μs | | T _{DC} | | D0-D7 setup time | 20 | - | ns | | T _{CD} | CCLK | D0-D7 hold time | 0 | - | ns | | T _{CCH} | COLK | CCLK High time | 45 | - | ns | | T _{CCL} | | CCLK Low time | 45 | - | ns | | F _{CC} | | CCLK Frequency | - | 10 | MHz | #### Notes: Figure 28: Express Mode Programming Switching Characteristics ## **Setting CCLK Frequency** In Master mode, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for Spartan/XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for Spartan/XL devices. The frequency is changed to fast by an option when running the bitstream generation software. #### **Data Stream Format** The data stream ("bitstream") format is identical for both serial configuration modes, but different for the Spartan-XL family Express mode. In Express mode, the device becomes active when DONE goes High, therefore no length count is required. Additionally, CRC error checking is not supported in Express mode. The data stream format is shown in Table 16. Bit-serial data is read from left to right. Express mode data is shown with D0 at the left and D7 at the right. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones (or 24 fill bits, in Spartan-XL family Express mode). This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 17). Each frame begins with a start field and ends with an error check. In serial modes, a postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional start-up bytes to shift the last data through the chain. All start-up bytes are "don't cares". If not driven by the preceding DOUT, CS1 must remain High until the device is fully configured. Table 17: Spartan/XL Program Data | Device | XC | CS05 | XC | S10 | XC | S20 | XCS30 | | XCS40 | | |-------------------------------------|--------|-------------|--------|--------------|---------|--------------|---------|------------------|---------|-------------------| | Max System
Gates | 5,000 | | 10 | 0,000 20,000 | | 30,000 | | 40,000 | | | | CLBs
(Row x Col.) | | 00
x 10) | _ | 96
x 14) | | .00
x 20) | | 576
(24 x 24) | | '84
x 28) | | IOBs | | 80 | 1 | 12 | 1 | 60 | 1 | 92 | 20 |)5 ⁽⁴⁾ | | Part Number | XCS05 | XCS05XL | XCS10 | XCS10XL | XCS20 | XCS20XL | XCS30 | XCS30XL | XCS40 | XCS40XL | | Supply Voltage | 5V | 3.3V | | Bits per Frame | 126 | 127 | 166 | 167 | 226 | 227 | 266 | 267 | 306 | 307 | | Frames | 428 | 429 | 572 | 573 | 788 | 789 | 932 | 933 | 1,076 | 1,077 | | Program Data | 53,936 | 54,491 | 94,960 | 95,699 | 178,096 | 179,111 | 247,920 | 249,119 | 329,264 | 330,647 | | PROM Size (bits) | 53,984 | 54,544 | 95,008 | 95,752 | 178,144 | 179,160 | 247,968 | 249,168 | 329,312 | 330,696 | | Express Mode
PROM Size
(bits) | - | 79,072 | - | 128,488 | - | 221,056 | - | 298,696 | - | 387,856 | #### Notes: - Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device) Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device) Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte - 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. - 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits. - 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. # **Readback Switching Characteristics Guidelines** The following guidelines reflect worst-case values over the recommended operating conditions. Figure 33: Spartan and Spartan-XL Readback Timing Diagram ## Spartan and Spartan-XL Readback Switching Characteristics | Symbol | | Description | Min | Max | Units | |-------------------|-----------|--|-----|-----|-------| | T _{RTRC} | rdbk.TRIG | rdbk.TRIG setup to initiate and abort Readback | 200 | - | ns | | T _{RCRT} | | rdbk.TRIG hold to initiate and abort Readback | 50 | - | ns | | T _{RCRD} | rdclk.l | rdbk.DATA delay | - | 250 | ns | | T _{RCRR} | | rdbk.RIP delay | - | 250 | ns | | T _{RCH} | | High time | 250 | 500 | ns | | T _{RCL} | | Low time | 250 | 500 | ns | #### Notes: - 1. Timing parameters apply to all speed grades. - 2. If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback. # **Configuration Switching Characteristics** ## **Master Mode** | Symbol | Description | Min | Max | Units | |-------------------|----------------------------|-----|------|-------------------| | T _{POR} | Power-on reset | 40 | 130 | ms | | T _{PI} | Program Latency | 30 | 200 | μs per CLB column | | T _{ICCK} | CCLK (output) delay | 40 | 250 | μs | | T _{CCLK} | CCLK (output) period, slow | 640 | 2000 | ns | | T _{CCLK} | CCLK (output) period, fast | 100 | 250 | ns | ## **Slave Mode** | Symbol | Description | Min | Max | Units | |-------------------|--------------------------------|-----|-----|-------------------| | T _{POR} | Power-on reset | 10 | 33 | ms | | T _{Pl} | Program latency | 30 | 200 | μs per CLB column | | T _{ICCK} | CCLK (input) delay (required) | 4 | - | μs | | T _{CCLK} | CCLK (input) period (required) | 80 | - | ns | ## **Spartan Family IOB Output Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted. | | | | -4 | | -3 | | 1 | |--------------------|--|-------------|------|------|------|------|-------| | Symbol | Description | Device | Min | Max | Min | Max | Units | | Clocks | | | | | | | | | T _{CH} | Clock High | All devices | 3.0 | - | 4.0 | - | ns | | T _{CL} | Clock Low | All devices | 3.0 | - | 4.0 | - | ns | | Propagation | Delays - TTL Outputs ^(1,2) | | | | | | | | T _{OKPOF} | Clock (OK) to Pad, fast | All devices | - | 3.3 | - | 4.5 | ns | | T _{OKPOS} | Clock (OK to Pad, slew-rate limited | All devices | - | 6.9 | - | 7.0 | ns | | T _{OPF} | Output (O) to Pad, fast | All devices | - | 3.6 | - | 4.8 | ns | | T _{OPS} | Output (O) to Pad, slew-rate limited | All devices | - | 7.2 | - | 7.3 | ns | | T _{TSHZ} | 3-state to Pad High-Z (slew-rate independent) | All devices | - | 3.0 | - | 3.8 | ns | | T _{TSONF} | 3-state to Pad active and valid, fast | All devices | - | 6.0 | - | 7.3 | ns | | T _{TSONS} | 3-state to Pad active and valid, slew-rate limited | All devices | - | 9.6 | - | 9.8 | ns | | Setup and H | old Times | | + | + | ! | - | | | T _{OOK} | Output (O) to clock (OK) setup time | All devices | 2.5 | - | 3.8 | - | ns | | T _{OKO} | Output (O) to clock (OK) hold time | All devices | 0.0 | - | 0.0 | - | ns | | T _{ECOK} | Clock Enable (EC) to clock (OK) setup time | All devices | 2.0 | - | 2.7 | - | ns | | T _{OKEC} | Clock Enable (EC) to clock (OK) hold time | All devices | 0.0 | - | 0.5 | - | ns | | Global Set/F | Reset | l | 1 | | | | | | T_{MRW} | Minimum GSR pulse width | All devices | 11.5 | | 13.5 | | ns | | T _{RPO} | Delay from GSR input to any Pad | XCS05 | - | 12.0 | - | 15.0 | ns | | | | XCS10 | - | 12.5 | - | 15.7 | ns | | | | XCS20 | - | 13.0 | - | 16.2 | ns | | | | XCS30 | - | 13.5 | - | 16.9 | ns | | | | XCS40 | - | 14.0 | - | 17.5 | ns | #### Notes: - 1. Delay adder for CMOS Outputs option (with fast slew rate option): for -3 speed grade, add 1.0 ns; for -4 speed grade, add 0.8 ns. - 2. Delay adder for CMOS Outputs option (with slow slew rate option): for -3 speed grade, add 2.0 ns; for -4 speed grade, add 1.5 ns. - 3. Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. - 4. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. ## **XCS20 and XCS20XL Device Pinouts** | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | |--|-------|------------------------|-------|-------|--------------------| | I/O | - | F4 | P13 | P21 | 170 | | I/O | P8 | F3 | P14 | P22 | 173 | | I/O | P9 | F2 | P15 | P23 | 176 | | I/O | P10 | F1 | P16 | P24 | 179 | | GND | P11 | G2 | P17 | P25 | - | | VCC | P12 | G1 | P18 | P26 | - | | I/O | P13 | G3 | P19 | P27 | 182 | | I/O | P14 | G4 | P20 | P28 | 185 | | I/O | P15 | H1 | P21 | P29 | 188 | | I/O | - | H2 | P22 | P30 | 191 | | I/O | - | - | - | P31 | 194 | | I/O | - | - | - | P32 | 197 | | VCC ⁽²⁾ | - | - | - | P33 | - | | I/O | P16 | H3 | P23 | P34 | 200 | | I/O | P17 | H4 | P24 | P35 | 203 | | I/O | - | J1 | P25 | P36 | 206 | | I/O | - | J2 | P26 | P37 | 209 | | GND | - | J3 | P27 | P38 | - | | I/O | - | - | - | P40 | 212 | | I/O | - | - | - | P41 | 215 | | I/O | - | - | - | P42 | 218 | | I/O | - | - | - | P43 | 221 | | I/O | P18 | J4 | P28 | P44 | 224 | | I/O | P19 | K1 | P29 | P45 | 227 | | I/O | - | K2 | P30 | P46 | 230 | | I/O | - | K3 | P31 | P47 | 233 | | I/O | P20 | L1 | P32 | P48 | 236 | | I/O,
SGCK2 ⁽¹⁾ ,
GCK2 ⁽²⁾ | P21 | L2 | P33 | P49 | 239 | | Not
Connected ⁽¹⁾
M1 ⁽²⁾ | P22 | L3 | P34 | P50 | 242 | | GND | P23 | M1 | P35 | P51 | - | | MODE ⁽¹⁾ ,
M0 ⁽²⁾ | P24 | M2 | P36 | P52 | 245 | | VCC | P25 | N1 | P37 | P53 | - | | Not
Connected ⁽¹⁾
PWRDWN ⁽²⁾ | P26 | N2 | P38 | P54 | 246 (1) | | I/O,
PGCK2 ⁽¹⁾ ,
GCK3 ⁽²⁾ | P27 | M3 | P39 | P55 | 247 (3) | | I/O (HDC) | P28 | N3 | P40 | P56 | 250 ⁽³⁾ | | I/O | - | K4 | P41 | P57 | 253 ⁽³⁾ | | I/O | - | L4 | P42 | P58 | 256 ⁽³⁾ | | I/O | P29 | M4 | P43 | P59 | 259 ⁽³⁾ | ## **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | | ONE DEV | | | Bndry | |---|-------|------------------------|-------|-------|--------------------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | I/O (LDC) | P30 | N4 | P44 | P60 | 262 ⁽³⁾ | | I/O | - | - | - | P61 | 265 ⁽³⁾ | | I/O | - | - | - | P62 | 268 ⁽³⁾ | | I/O | - | - | - | P63 | 271 ⁽³⁾ | | I/O | - | - | - | P64 | 274 ⁽³⁾ | | GND | - | K5 | P45 | P66 | - | | I/O | - | L5 | P46 | P67 | 277 (3) | | I/O | - | M5 | P47 | P68 | 280 (3) | | I/O | P31 | N5 | P48 | P69 | 283 ⁽³⁾ | | I/O | P32 | K6 | P49 | P70 | 286 ⁽³⁾ | | VCC ⁽²⁾ | - | - | - | P71 | - | | I/O | - | - | - | P72 | 289 ⁽³⁾ | | I/O | - | - | - | P73 | 292 ⁽³⁾ | | I/O | P33 | L6 | P50 | P74 | 295 ⁽³⁾ | | I/O | P34 | M6 | P51 | P75 | 298 ⁽³⁾ | | I/O | P35 | N6 | P52 | P76 | 301 ⁽³⁾ | | I/O (INIT) | P36 | M7 | P53 | P77 | 304 ⁽³⁾ | | VCC | P37 | N7 | P54 | P78 | - | | GND | P38 | L7 | P55 | P79 | - | | I/O | P39 | K7 | P56 | P80 | 307 ⁽³⁾ | | I/O | P40 | N8 | P57 | P81 | 310 ⁽³⁾ | | I/O | P41 | M8 | P58 | P82 | 313 ⁽³⁾ | | I/O | P42 | L8 | P59 | P83 | 316 ⁽³⁾ | | I/O | - | - | - | P84 | 319 ⁽³⁾ | | I/O | - | - | - | P85 | 322 (3) | | VCC ⁽²⁾ | - | - | - | P86 | - | | I/O | P43 | K8 | P60 | P87 | 325 ⁽³⁾ | | I/O | P44 | N9 | P61 | P88 | 328 (3) | | I/O | - | M9 | P62 | P89 | 331 ⁽³⁾ | | I/O | - | L9 | P63 | P90 | 334 ⁽³⁾ | | GND | - | K9 | P64 | P91 | - | | I/O | - | - | - | P93 | 337 ⁽³⁾ | | I/O | - | - | 1 | P94 | 340 ⁽³⁾ | | I/O | - | - | ı | P95 | 343 ⁽³⁾ | | I/O | - | - | ı | P96 | 346 ⁽³⁾ | | I/O | P45 | N10 | P65 | P97 | 349 ⁽³⁾ | | I/O | P46 | M10 | P66 | P98 | 352 ⁽³⁾ | | I/O | - | L10 | P67 | P99 | 355 ⁽³⁾ | | I/O | - | N11 | P68 | P100 | 358 ⁽³⁾ | | I/O | P47 | M11 | P69 | P101 | 361 ⁽³⁾ | | I/O,
SGCK3 ⁽¹⁾ ,
GCK4 ⁽²⁾ | P48 | L11 | P70 | P102 | 364 (3) | | GND | P49 | N12 | P71 | P103 | - | | DONE | P50 | M12 | P72 | P104 | - | | VCC | P51 | N13 | P73 | P105 | - | | | | | | | | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | - | - | P85 | P97 | U12 | T11 | 382 ⁽³⁾ | | I/O | - | - | - | P99 | V13 | U12 | 385 ⁽³⁾ | | I/O | - | - | - | P100 | Y14 | T12 | 388 (3) | | VCC | - | - | P86 | P101 | VCC ⁽⁴⁾ | W13 | - | | I/O | P43 | P60 | P87 | P102 | Y15 | V13 | 391 ⁽³⁾ | | I/O | P44 | P61 | P88 | P103 | V14 | U13 | 394 ⁽³⁾ | | I/O | - | P62 | P89 | P104 | W15 | T13 | 397 ⁽³⁾ | | I/O | - | P63 | P90 | P105 | Y16 | W14 | 400 (3) | | GND | - | P64 | P91 | P106 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | - | P107 | V15 | V14 | 403 (3) | | I/O | - | - | P92 | P108 | W16 | U14 | 406 ⁽³⁾ | | I/O | - | - | P93 | P109 | Y17 | T14 | 409 (3) | | I/O | - | - | P94 | P110 | V16 | R14 | 412 ⁽³⁾ | | I/O | - | - | P95 | P111 | W17 | W15 | 415 ⁽³⁾ | | I/O | - | - | P96 | P112 | Y18 | U15 | 418 ⁽³⁾ | | I/O | P45 | P65 | P97 | P113 | U16 | V16 | 421 ⁽³⁾ | | I/O | P46 | P66 | P98 | P114 | V17 | U16 | 424 (3) | | I/O | - | P67 | P99 | P115 | W18 | W17 | 427 (3) | | I/O | - | P68 | P100 | P116 | Y19 | W18 | 430 (3) | | I/O | P47 | P69 | P101 | P117 | V18 | V17 | 433 (3) | | I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾ | P48 | P70 | P102 | P118 | W19 | V18 | 436 ⁽³⁾ | | GND | P49 | P71 | P103 | P119 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | DONE | P50 | P72 | P104 | P120 | Y20 | W19 | - | | VCC | P51 | P73 | P105 | P121 | VCC ⁽⁴⁾ | U17 | - | | PROGRAM | P52 | P74 | P106 | P122 | V19 | U18 | - | | I/O (D7 ⁽²⁾) | P53 | P75 | P107 | P123 | U19 | V19 | 439 (3) | | I/O, PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾ | P54 | P76 | P108 | P124 | U18 | U19 | 442 (3) | | I/O | - | P77 | P109 | P125 | T17 | T16 | 445 ⁽³⁾ | | I/O | - | P78 | P110 | P126 | V20 | T17 | 448 (3) | | I/O | - | - | - | P127 | U20 | T18 | 451 ⁽³⁾ | | I/O | - | - | P111 | P128 | T18 | T19 | 454 ⁽³⁾ | | I/O (D6 ⁽²⁾) | P55 | P79 | P112 | P129 | T19 | R16 | 457 ⁽³⁾ | | I/O | P56 | P80 | P113 | P130 | T20 | R19 | 460 ⁽³⁾ | | I/O | - | - | P114 | P131 | R18 | P15 | 463 ⁽³⁾ | | I/O | - | - | P115 | P132 | R19 | P17 | 466 ⁽³⁾ | | I/O | - | - | P116 | P133 | R20 | P18 | 469 ⁽³⁾ | | I/O | - | - | P117 | P134 | P18 | P16 | 472 ⁽³⁾ | | GND | - | P81 | P118 | P135 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | - | P136 | P20 | P19 | 475 ⁽³⁾ | | I/O | - | - | - | P137 | N18 | N17 | 478 ⁽³⁾ | | I/O | - | P82 | P119 | P138 | N19 | N18 | 481 ⁽³⁾ | | I/O | - | P83 | P120 | P139 | N20 | N19 | 484 (3) | | VCC | - | - | P121 | P140 | VCC ⁽⁴⁾ | N16 | - | | I/O (D5 ⁽²⁾) | P57 | P84 | P122 | P141 | M17 | M19 | 487 ⁽³⁾ | | I/O | P58 | P85 | P123 | P142 | M18 | M17 | 490 (3) | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |--|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | - | - | P124 | P144 | M20 | L19 | 493 ⁽³⁾ | | I/O | - | - | P125 | P145 | L19 | L18 | 496 ⁽³⁾ | | I/O | P59 | P86 | P126 | P146 | L18 | L17 | 499 (3) | | I/O | P60 | P87 | P127 | P147 | L20 | L16 | 502 ⁽³⁾ | | I/O (D4 ⁽²⁾) | P61 | P88 | P128 | P148 | K20 | K19 | 505 ⁽³⁾ | | I/O | P62 | P89 | P129 | P149 | K19 | K18 | 508 ⁽³⁾ | | VCC | P63 | P90 | P130 | P150 | VCC ⁽⁴⁾ | K17 | - | | GND | P64 | P91 | P131 | P151 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O (D3 ⁽²⁾) | P65 | P92 | P132 | P152 | K18 | K16 | 511 ⁽³⁾ | | I/O | P66 | P93 | P133 | P153 | K17 | K15 | 514 ⁽³⁾ | | I/O | P67 | P94 | P134 | P154 | J20 | J19 | 517 ⁽³⁾ | | I/O | - | P95 | P135 | P155 | J19 | J18 | 520 ⁽³⁾ | | I/O | - | - | P136 | P156 | J18 | J17 | 523 ⁽³⁾ | | I/O | - | - | P137 | P157 | J17 | J16 | 526 ⁽³⁾ | | I/O (D2 ⁽²⁾) | P68 | P96 | P138 | P159 | H19 | H17 | 529 ⁽³⁾ | | I/O | P69 | P97 | P139 | P160 | H18 | H16 | 532 ⁽³⁾ | | VCC | - | - | P140 | P161 | VCC ⁽⁴⁾ | G19 | - | | I/O | - | P98 | P141 | P162 | G19 | G18 | 535 ⁽³⁾ | | I/O | - | P99 | P142 | P163 | F20 | G17 | 538 ⁽³⁾ | | I/O | - | - | - | P164 | G18 | G16 | 541 ⁽³⁾ | | I/O | - | - | - | P165 | F19 | F19 | 544 ⁽³⁾ | | GND | - | P100 | P143 | P166 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | - | - | P167 | F18 | F18 | 547 ⁽³⁾ | | I/O | - | - | P144 | P168 | E19 | F17 | 550 ⁽³⁾ | | I/O | - | - | P145 | P169 | D20 | F16 | 553 ⁽³⁾ | | I/O | - | - | P146 | P170 | E18 | F15 | 556 ⁽³⁾ | | I/O | - | - | P147 | P171 | D19 | E19 | 559 ⁽³⁾ | | I/O | - | - | P148 | P172 | C20 | E17 | 562 ⁽³⁾ | | I/O (D1 ⁽²⁾) | P70 | P101 | P149 | P173 | E17 | E16 | 565 ⁽³⁾ | | I/O | P71 | P102 | P150 | P174 | D18 | D19 | 568 ⁽³⁾ | | I/O | - | P103 | P151 | P175 | C19 | C19 | 571 ⁽³⁾ | | I/O | - | P104 | P152 | P176 | B20 | B19 | 574 ⁽³⁾ | | I/O (D0 ⁽²⁾ , DIN) | P72 | P105 | P153 | P177 | C18 | C18 | 577 ⁽³⁾ | | /O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾
(DOUT) | P73 | P106 | P154 | P178 | B19 | B18 | 580 ⁽³⁾ | | CCLK | P74 | P107 | P155 | P179 | A20 | A19 | - | | VCC | P75 | P108 | P156 | P180 | VCC ⁽⁴⁾ | C17 | - | | O, TDO | P76 | P109 | P157 | P181 | A19 | B17 | 0 | | GND | P77 | P110 | P158 | P182 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P78 | P111 | P159 | P183 | B18 | A18 | 2 | | /O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾ | P79 | P112 | P160 | P184 | B17 | A17 | 5 | | I/O | - | P113 | P161 | P185 | C17 | D16 | 8 | | I/O | - | P114 | P162 | P186 | D16 | C16 | 11 | | I/O (CS1) ⁽²⁾ | P80 | P115 | P163 | P187 | A18 | B16 | 14 | | I/O | P81 | P116 | P164 | P188 | A17 | A16 | 17 | | I/O | - | - | P165 | P189 | C16 | D15 | 20 | #### **CS280** | | VCC Pins | | | | | | | | | |-----|-------------------------------------|---------|-----------|-----|-----|--|--|--|--| | E5 | E7 | E8 | E9 | E11 | E12 | | | | | | E13 | G5 | G15 | H5 | H15 | J5 | | | | | | J15 | L5 | L15 | M5 | M15 | N5 | | | | | | N15 | R7 | R8 | R9 | R11 | R12 | | | | | | R13 | - | - | - | - | - | | | | | | | | Not Cor | nected Pi | ns | | | | | | | A4 | A12 | C8 | C12 | C15 | D1 | | | | | | D2 | D5 | D8 | D17 | D18 | E15 | | | | | | H2 | НЗ | H18 | H19 | L4 | M1 | | | | | | M16 | M18 | R2 | R4 | R5 | R15 | | | | | | R17 | T8 | T15 | U5 | V8 | V12 | | | | | | W12 | W16 | - | - | - | - | | | | | | | Not Connected Pins (VCC in XCS40XL) | | | | | | | | | | B5 | B15 | E3 | E18 | R3 | R18 | | | | | | V5 | V15 | - | - | - | - | | | | | 5/21/02 ## XCS40 and XCS40XL Device Pinouts | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | |----------------------|-------|-------|--------------------|------------------------|---------------| | VCC | P183 | P212 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | Juli | | | | | | | - | | I/O | P184 | P213 | C10 | D10 | 86 | | I/O | P185 | P214 | D10 | E10 | 89 | | I/O | P186 | P215 | A9 | A9 | 92 | | I/O | P187 | P216 | B9 | B9 | 95 | | I/O | P188 | P217 | C9 | C9 | 98 | | I/O | P189 | P218 | D9 | D9 | 101 | | I/O | P190 | P220 | A8 | A8 | 104 | | I/O | P191 | P221 | B8 | B8 | 107 | | I/O | - | - | C8 | C8 | 110 | | I/O | - | - | A7 | D8 | 113 | | VCC | P192 | P222 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | P223 | A6 | B7 | 116 | | I/O | - | P224 | C7 | C7 | 119 | | I/O | P193 | P225 | B6 | D7 | 122 | | I/O | P194 | P226 | A5 | A6 | 125 | | GND | P195 | P227 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P196 | P228 | C6 | B6 | 128 | | I/O | P197 | P229 | B5 | C6 | 131 | | I/O | P198 | P230 | A4 | D6 | 134 | | I/O | P199 | P231 | C5 | E6 | 137 | # **XCS40 and XCS40XL Device Pinouts** | XCS40/XL | 1 XOO+ | ONL DO | 741001 | | Bndry | |---|--------|--------|--------------------|------------------------|-------| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | I/O | P200 | P232 | B4 | A5 | 140 | | I/O | P201 | P233 | A3 | C5 | 143 | | I/O | - | 1 | - | D5 | 146 | | I/O | - | 1 | - | A4 | 149 | | I/O | P202 | P234 | D5 | B4 | 152 | | I/O | P203 | P235 | C4 | C4 | 155 | | I/O | P204 | P236 | B3 | A3 | 158 | | I/O | P205 | P237 | B2 | A2 | 161 | | I/O | P206 | P238 | A2 | В3 | 164 | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P207 | P239 | C3 | B2 | 167 | | VCC | P208 | P240 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | GND | P1 | P1 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | P2 | B1 | C3 | 170 | | I/O | P3 | P3 | C2 | C2 | 173 | | I/O | P4 | P4 | D2 | B1 | 176 | | I/O | P5 | P5 | D3 | C1 | 179 | | I/O, TDI | P6 | P6 | E4 | D4 | 182 | | I/O, TCK | P7 | P7 | C1 | D3 | 185 | | I/O | - | - | - | D2 | 188 | | I/O | - | - | - | D1 | 191 | | I/O | P8 | P8 | D1 | E2 | 194 | | I/O | P9 | P9 | E3 | E4 | 197 | | I/O | P10 | P10 | E2 | E1 | 200 | | I/O | P11 | P11 | E1 | F5 | 203 | | I/O | P12 | P12 | F3 | F3 | 206 | | I/O | - | P13 | F2 | F2 | 209 | | GND | P13 | P14 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P14 | P15 | G3 | F4 | 212 | | I/O | P15 | P16 | G2 | F1 | 215 | | I/O, TMS | P16 | P17 | G1 | G3 | 218 | | I/O | P17 | P18 | НЗ | G2 | 221 | | VCC | P18 | P19 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | P20 | H2 | G4 | 224 | | I/O | - | P21 | H1 | H1 | 227 | | I/O | - | - | J4 | H3 | 230 | | I/O | - | - | J3 | H2 | 233 | | I/O | P19 | P23 | J2 | H4 | 236 | | I/O | P20 | P24 | J1 | J1 | 239 | | I/O | P21 | P25 | K2 | J2 | 242 | | I/O | P22 | P26 | K3 | J3 | 245 | | I/O | P23 | P27 | K1 | J4 | 248 | | I/O | P24 | P28 | L1 | K1 | 251 |