Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 169 | | Number of Gates | 30000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs30xl-4pq208c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Output Multiplexer/2-Input Function Generator (Spartan-XL Family Only) The output path in the Spartan-XL family IOB contains an additional multiplexer not available in the Spartan family IOB. The multiplexer can also be configured as a 2-input function generator, implementing a pass gate, AND gate, OR gate, or XOR gate, with 0, 1, or 2 inverted inputs. When configured as a multiplexer, this feature allows two output signals to time-share the same output pad, effectively doubling the number of device outputs without requiring a larger, more expensive package. The select input is the pin used for the output flip-flop clock, OK. When the multiplexer is configured as a 2-input function generator, logic can be implemented within the IOB itself. Combined with a Global buffer, this arrangement allows very high-speed gating of a single signal. For example, a wide decoder can be implemented in CLBs, and its output gated with a Read or Write Strobe driven by a global buffer. The user can specify that the IOB function generator be used by placing special library symbols beginning with the letter "O." For example, a 2-input AND gate in the IOB function generator is called OAND2. Use the symbol input pin labeled "F" for the signal on the critical path. This signal is placed on the OK pin — the IOB input with the shortest delay to the function generator. Two examples are shown in Figure 7. Figure 7: AND and MUX Symbols in Spartan-XL IOB #### **Output Buffer** An active High 3-state signal can be used to place the output buffer in a high-impedance state, implementing 3-state outputs or bidirectional I/O. Under configuration control, the output (O) and output 3-state (T) signals can be inverted. The polarity of these signals is independently configured for each IOB (see Figure 6, page 7). An output can be configured as open-drain (open-collector) by tying the 3-state pin (T) to the output signal, and the input pin (I) to Ground. By default, a 5V Spartan device output buffer pull-up structure is configured as a TTL-like totem-pole. The High driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below $V_{CC}.$ Alternatively, the outputs can be globally configured as CMOS drivers, with additional p-channel pull-up transistors pulling to $V_{CC}.$ This option, applied using the bitstream generation software, applies to all outputs on the device. It is not individually programmable. All Spartan-XL device outputs are configured as CMOS drivers, therefore driving rail-to-rail. The Spartan-XL family outputs are individually programmable for 12 mA or 24 mA output drive. Any 5V Spartan device with its outputs configured in TTL mode can drive the inputs of any typical 3.3V device. Supported destinations for Spartan/XL device outputs are shown in Table 7. #### Three-State Register (Spartan-XL Family Only) Spartan-XL devices incorporate an optional register controlling the three-state enable in the IOBs. The use of the three-state control register can significantly improve output enable and disable time. #### **Output Slew Rate** The slew rate of each output buffer is, by default, reduced, to minimize power bus transients when switching non-critical signals. For critical signals, attach a FAST attribute or property to the output buffer or flip-flop. Spartan/XL devices have a feature called "Soft Start-up," designed to reduce ground bounce when all outputs are turned on simultaneously at the end of configuration. When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. Immediately following the initial activation of the I/O, the slew rate of the individual outputs is determined by the individual configuration option for each IOB. #### **Pull-up and Pull-down Network** Programmable pull-up and pull-down resistors are used for tying unused pins to V_{CC} or Ground to minimize power consumption and reduce noise sensitivity. The configurable pull-up resistor is a p-channel transistor that pulls to V_{CC} . The configurable pull-down resistor is an n-channel transistor that pulls to Ground. The value of these resistors is typically 20 K Ω – 100 K Ω (See "Spartan Family DC Characteristics Over Operating Conditions" on page 43.). Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram #### **CLB Interface** A block diagram of the CLB interface signals is shown in Figure 9. The input signals to the CLB are distributed evenly on all four sides providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. The exceptions are the clock (K) input and CIN/COUT signals. The K input is routed to dedicated global vertical lines as well as four single-length lines and is on the left side of the CLB. The CIN/COUT signals are routed through dedicated interconnects which do not interfere with the general routing structure. The output signals from the CLB are available to drive both vertical and horizontal channels. Figure 9: CLB Interconnect Signals #### **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each PSM consists of programmable pass transistors used to establish connections between the lines (see Figure 10). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. # **Single-Length Lines** Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 10. Routing connectivity is shown in Figure 8. Single-length lines incur a delay whenever they go through a PSM. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. Figure 11: 5V Spartan Family Global Net Distribution The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility. The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets. Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code. # **Advanced Features Description** #### **Distributed RAM** Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM). Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA. ## **Memory Configuration Overview** There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In
the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB. Table 8: CLB Memory Configurations | Mode | 16 x 1 | (16 x 1) x 2 | 32 x 1 | |-------------|--------|--------------|--------| | Single-Port | √ | √ | V | | Dual-Port | √ | _ | _ | - The 16 x 1 single-port configuration contains a RAM array with 16 locations, each one-bit wide. One 4-bit address decoder determines the RAM location for write and read operations. There is one input for writing data and one output for reading data, all at the selected address. - The (16 x 1) x 2 single-port configuration combines two 16 x 1 single-port configurations (each according to the preceding description). There is one data input, one data output and one address decoder for each array. These arrays can be addressed independently. - The 32 x 1 single-port configuration contains a RAM array with 32 locations, each one-bit wide. There is one data input, one data output, and one 5-bit address decoder. - The dual-port mode 16 x 1 configuration contains a RAM array with 16 locations, each one-bit wide. There are two 4-bit address decoders, one for each port. One port consists of an input for writing and an output for reading, all at a selected address. The other port consists of one output for reading from an independently selected address. The appropriate choice of RAM configuration mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Selection criteria include the following: Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port, and the 16 x 1 dual-port configurations each use one entire CLB, the 16 x 1 single-port configuration uses only one half of a CLB. Due to its simultaneous read/write capability, the dual-port RAM can transfer twice as much data as the single-port RAM, which permits only one data operation at any given time. CLB memory configuration options are selected by using the appropriate library symbol in the design entry. #### **Single-Port Mode** There are three CLB memory configurations for the single-port RAM: 16×1 , $(16 \times 1) \times 2$, and 32×1 , the functional organization of which is shown in Figure 12. The single-port RAM signals and the CLB signals (Figure 2, page 4) from which they are originally derived are shown in Table 9. Table 9: Single-Port RAM Signals | RAM Signal | Function | CLB Signal | |------------------|-------------------------------|--------------------------------------| | D0 or D1 | Data In | DIN or H1 | | A[3:0] | Address | F[4:1] or G[4:1] | | A4 (32 x 1 only) | Address | H1 | | WE | Write Enable | SR | | WCLK | Clock | К | | SPO | Single Port Out
(Data Out) | F _{OUT} or G _{OUT} | #### Notes: - The (16 x 1) x 2 configuration combines two 16 x 1 single-port RAMs, each with its own independent address bus and data input. The same WE and WCLK signals are connected to both RAMs. - 2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the 32 x 1 configuration. Figure 12: Logic Diagram for the Single-Port RAM Writing data to the single-port RAM is essentially the same as writing to a data register. It is an edge-triggered (synchronous) operation performed by applying an address to the A inputs and data to the D input during the active edge of WCLK while WE is High. The timing relationships are shown in Figure 13. The High logic level on WE enables the input data register for writing. The active edge of WCLK latches the address, input data, and WE signals. Then, an internal write pulse is generated that loads the data into the memory cell. Figure 13: Data Write and Access Timing for RAM WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM. The WE input is active High and cannot be inverted within the CLB. Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO. # **Dual-Port Mode** In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported. The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the Figure 14: Logic Diagram for the Dual-Port RAM # **On-Chip Oscillator** Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with process, $V_{\rm CC}$, and temperature. The output frequency falls between 4 MHz and 10 MHz. The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8-MHz clock, plus any two of 500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies can vary by as much as -50% or +25%. These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code. The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design. ## Global Signals: GSR and GTS #### Global Set/Reset A separate Global Set/Reset line, as shown in Figure 3, page 5 for the CLB and Figure 5, page 6 for the IOB, sets or clears each flip-flop during power-up, reconfiguration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network. Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, if in reset mode, it is reset by both SR and GSR. GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 19.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the GSR signal. Alternatively, GSR can be driven from any internal node. #### Global 3-State A separate Global 3-state line (GTS) as shown in Figure 6, page 7 forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. GTS does not compete with other routing resources; it uses a dedicated distribution network. GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. This is similar to what is shown in Figure 19 for GSR except the IBUF would be connected to GTS. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-state signal. Alternatively, GTS can be driven from any internal node. Figure 19: Symbols for Global Set/Reset # **Boundary Scan** The "bed of nails" has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can embed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan compatible device. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two. The Spartan and Spartan-XL families implement IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section. By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails
testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in the Spartan/XL devices. The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note: "Boundary Scan in FPGA Devices." figuration are shown in Table 14 and Table 15. Table 14: Pin Functions During Configuration (Spartan Family Only) | Configuration Mo | ode (MODE Pin) | | |------------------------|------------------------|-------------------| | Slave Serial
(High) | Master Serial
(Low) | User
Operation | | MODE (I) | MODE (I) | MODE | | HDC (High) | HDC (High) | I/O | | LDC (Low) | LDC (Low) | I/O | | ĪNIT | ĪNIT | I/O | | DONE | DONE | DONE | | PROGRAM (I) | PROGRAM (I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | | DIN (I) | DIN (I) | I/O | | DOUT | DOUT | SGCK4-I/O | | TDI | TDI | TDI-I/O | | TCK | TCK | TCK-I/O | | TMS | TMS | TMS-I/O | | TDO | TDO | TDO-(O) | | | | ALL OTHERS | #### Notes: - A shaded table cell represents the internal pull-up used before and during configuration. - (I) represents an input; (O) represents an output. - INIT is an open-drain output during configuration. Table 15: Pin Functions During Configuration (Spartan-XL Family Only) | CONFIGU | JRATION MODE | <m1:m0></m1:m0> | | |--------------------------|---------------------------|------------------|-------------------| | Slave
Serial
[1:1] | Master
Serial
[1:0] | Express
[0:X] | User
Operation | | M1 (High) (I) | M1 (High) (I) | M1(Low) (I) | M1 | | M0 (High) (I) | M0 (Low) (I) | M0 (I) | MO | | HDC (High) | HDC (High) | HDC (High) | I/O | | LDC (Low) | LDC (Low) | LDC (Low) | I/O | | ĪNIT | ĪNIT | ĪNIT | I/O | | DONE | DONE | DONE | DONE | | PROGRAM
(I) | PROGRAM
(I) | PROGRAM
(I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (I) | | | | DATA 7 (I) | I/O | | | | DATA 6 (I) | I/O | | | | DATA 5 (I) | I/O | | | | DATA 4 (I) | I/O | | | | DATA 3 (I) | I/O | | | | DATA 2 (I) | I/O | | | | DATA 1 (I) | I/O | | DIN (I) | DIN (I) | DATA 0 (I) | I/O | | DOUT | DOUT | DOUT | GCK6-I/O | | TDI | TDI | TDI | TDI-I/O | | TCK | TCK | TCK | TCK-I/O | | TMS | TMS | TMS | TMS-I/O | | TDO | TDO | TDO | TDO-(O) | | | | CS1 | I/O | | | | | ALL
OTHERS | - A shaded table cell represents the internal pull-up used before and during configuration. - (I) represents an input; (O) represents an output. INIT is an open-drain output during configuration. Table 17: Spartan/XL Program Data | Device | XC | CS05 | XC | S10 | XC | S20 | XC | S30 | XC | S40 | |-------------------------------------|--------|---------|--------|-------------|------------------|---------|---------|------------------|---------|-------------------| | Max System
Gates | 5, | 000 | 10 | ,000 | 20 | ,000 | 30 | ,000 | 40 | ,000 | | CLBs
(Row x Col.) | | | _ | 96
x 14) | 400
(20 x 20) | | | 576
(24 x 24) | | '84
x 28) | | IOBs | | 80 | 1 | 12 | 160 | | 1 | 92 | 20 |)5 ⁽⁴⁾ | | Part Number | XCS05 | XCS05XL | XCS10 | XCS10XL | XCS20 | XCS20XL | XCS30 | XCS30XL | XCS40 | XCS40XL | | Supply Voltage | 5V | 3.3V | | Bits per Frame | 126 | 127 | 166 | 167 | 226 | 227 | 266 | 267 | 306 | 307 | | Frames | 428 | 429 | 572 | 573 | 788 | 789 | 932 | 933 | 1,076 | 1,077 | | Program Data | 53,936 | 54,491 | 94,960 | 95,699 | 178,096 | 179,111 | 247,920 | 249,119 | 329,264 | 330,647 | | PROM Size (bits) | 53,984 | 54,544 | 95,008 | 95,752 | 178,144 | 179,160 | 247,968 | 249,168 | 329,312 | 330,696 | | Express Mode
PROM Size
(bits) | - | 79,072 | - | 128,488 | - | 221,056 | - | 298,696 | - | 387,856 | #### Notes: - Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device) Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device) Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte - 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. - 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits. - 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. # Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted. | | | | | 4 | - | 3 | - | |-------------------|---|---------------------|-----|-----|------|-----|-------| | Symbol | Single Port RAM | Size ⁽¹⁾ | Min | Max | Min | Max | Units | | Write Ope | eration | | | | | | | | T _{WCS} | Address write cycle time (clock K period) | 16x2 | 8.0 | - | 11.6 | - | ns | | T _{WCTS} | | 32x1 | 8.0 | - | 11.6 | - | ns | | T_{WPS} | Clock K pulse width (active edge) | 16x2 | 4.0 | - | 5.8 | - | ns | | T_{WPTS} | | 32x1 | 4.0 | - | 5.8 | - | ns | | T _{ASS} | Address setup time before clock K | 16x2 | 1.5 | - | 2.0 | - | ns | | T _{ASTS} | | 32x1 | 1.5 | - | 2.0 | - | ns | | T _{AHS} | Address hold time after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{AHTS} | 1 | 32x1 | 0.0 | - | 0.0 | - | ns | | T _{DSS} | DIN setup time before clock K | 16x2 | 1.5 | - | 2.7 | - | ns | | T _{DSTS} | | 32x1 | 1.5 | - | 1.7 | - | ns | | T _{DHS} | DIN hold time after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{DHTS} | | 32x1 | 0.0 | - | 0.0 | - | ns | | T _{WSS} | WE setup time before clock K | 16x2 | 1.5 | - | 1.6 | - | ns | | T _{WSTS} | | 32x1 | 1.5 | - | 1.6 | - | ns | | T _{WHS} | WE hold time after clock K | 16x2 | 0.0 | - | 0.0 | - | ns | | T _{WHTS} | | 32x1 | 0.0 | - | 0.0 | - | ns | | T _{WOS} | Data valid after clock K | 16x2 | - | 6.5 | - | 7.9 | ns | | T _{WOTS} | | 32x1 | - | 7.0 | - | 9.3 | ns | | Read Ope | ration | | | i. | | | 1 | | T _{RC} | Address read cycle time | 16x2 | 2.6 | - | 2.6 | - | ns | | T _{RCT} | | 32x1 | 3.8 | - | 3.8 | - | ns | | T _{ILO} | Data valid after address change (no Write | 16x2 | - | 1.2 | - | 1.6 | ns | | T _{IHO} | Enable) | 32x1 | - | 2.0 | - | 2.7 | ns | | T _{ICK} | Address setup time before clock K | 16x2 | 1.8 | - | 2.4 | - | ns | | T _{IHCK} | | 32x1 | 2.9 | - | 3.9 | - | ns | ^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing. # **Spartan Family Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more pre- cise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. # Spartan Family Output Flip-Flop, Clock-to-Out | | | | Speed | Grade | | |---------------------|---------------------------------------|-------------|-------|-------|-------| | | | | -4 | -3 | | | Symbol | Description | Device | Max | Max | Units | | Global Pri | mary Clock to TTL Output using OFF | | | ' | ' | | T _{ICKOF} | Fast | XCS05 | 5.3 | 8.7 | ns | | | | XCS10 | 5.7 | 9.1 | ns | | | | XCS20 | 6.1 | 9.3 | ns | | | | XCS30 | 6.5 | 9.4 | ns | | | | XCS40 | 6.8 | 10.2 | ns | | T _{ICKO} | Slew-rate limited | XCS05 | 9.0 | 11.5 | ns | | | | XCS10 | 9.4 | 12.0 | ns | | | | XCS20 | 9.8 | 12.2 | ns | | | | XCS30 | 10.2 | 12.8 | ns | | | | XCS40 | 10.5 | 12.8 | ns | | Global Sec | condary Clock to TTL Output using OFF | | | | | | T _{ICKSOF} | Fast | XCS05 | 5.8 | 9.2 | ns | | | | XCS10 | 6.2 | 9.6 | ns | | | | XCS20 | 6.6 | 9.8 | ns | | | | XCS30 | 7.0 | 9.9 | ns | | | | XCS40 | 7.3 | 10.7 | ns | | T _{ICKSO} | Slew-rate limited | XCS05 | 9.5 | 12.0 | ns | | | | XCS10 | 9.9 | 12.5 | ns | | | | XCS20 | 10.3 | 12.7 | ns | | | | XCS30 | 10.7 | 13.2 | ns | | | | XCS40 | 11.0 | 14.3 | ns | | Delay Add | er for CMOS Outputs Option | | | 1 | 1 | | T _{CMOSOF} | Fast | All devices | 0.8 | 1.0 | ns | | T_{CMOSO} | Slew-rate limited | All devices | 1.5 | 2.0 | ns | -
Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 34. - 3. OFF = Output Flip-Flop # **Spartan Family Pin-to-Pin Input Parameter Guidelines** All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper- ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. # Spartan Family Primary and Secondary Setup and Hold | | | | Speed | | | |-------------------------------------|---|--------|-----------|-----------|-------| | | | | -4 | -3 | | | Symbol | Description | Device | Min | Min | Units | | Input Setup/H | old Times Using Primary Clock and IFF | | | | | | T _{PSUF} /T _{PHF} | No Delay | XCS05 | 1.2 / 1.7 | 1.8 / 2.5 | ns | | | | XCS10 | 1.0 / 2.3 | 1.5 / 3.4 | ns | | | | XCS20 | 0.8 / 2.7 | 1.2 / 4.0 | ns | | | | XCS30 | 0.6 / 3.0 | 0.9 / 4.5 | ns | | | | XCS40 | 0.4 / 3.5 | 0.6 / 5.2 | ns | | T _{PSU} /T _{PH} | With Delay | XCS05 | 4.3 / 0.0 | 6.0 / 0.0 | ns | | | | XCS10 | 4.3 / 0.0 | 6.0 / 0.0 | ns | | | | XCS20 | 4.3 / 0.0 | 6.0 / 0.0 | ns | | | | XCS30 | 4.3 / 0.0 | 6.0 / 0.0 | ns | | | | XCS40 | 5.3 / 0.0 | 6.8 / 0.0 | ns | | Input Setup/H | old Times Using Secondary Clock and IFF | | | | | | T_{SSUF}/T_{SHF} | No Delay | XCS05 | 0.9 / 2.2 | 1.5 / 3.0 | ns | | | | XCS10 | 0.7 / 2.8 | 1.2 / 3.9 | ns | | | | XCS20 | 0.5 / 3.2 | 0.9 / 4.5 | ns | | | | XCS30 | 0.3 / 3.5 | 0.6 / 5.0 | ns | | | | XCS40 | 0.1 / 4.0 | 0.3 / 5.7 | ns | | T _{SSU} /T _{SH} | With Delay | XCS05 | 4.0 / 0.0 | 5.7 / 0.0 | ns | | | | XCS10 | 4.0 / 0.0 | 5.7 / 0.0 | ns | | | | XCS20 | 4.0 / 0.5 | 5.7 / 0.5 | ns | | | | XCS30 | 4.0 / 0.5 | 5.7 / 0.5 | ns | | | | XCS40 | 5.0 / 0.0 | 6.5 / 0.0 | ns | Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per IOB/CLB. ^{2.} IFF = Input Flip-flop or Latch # **Spartan Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | Symbol | | | -4 | | -3 | | 1 | |--------------------|---|-------------|------|------|------|------|-------| | | Description | Device | Min | Max | Min | Max | Units | | Setup Tin | nes - TTL Inputs ⁽¹⁾ | | | • | • | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK), no delay | All devices | 1.6 | - | 2.1 | - | ns | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.5 | - | 2.0 | - | ns | | Hold Time | es | · | | | | | | | T _{IKEC} | Clock Enable (EC) to Clock (IK), no delay | All devices | 0.0 | - | 0.9 | - | ns | | | All Other Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | Propagat | ion Delays - TTL Inputs ⁽¹⁾ | , | | | | | | | T _{PID} | Pad to I1, I2 | All devices | - | 1.5 | - | 2.0 | ns | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.8 | - | 3.6 | ns | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 2.7 | - | 2.8 | ns | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 3.2 | - | 3.9 | ns | | Delay Ad | der for Input with Delay Option | | | I | I | II. | | | T _{Delay} | $T_{\text{ECIKD}} = T_{\text{ECIK}} + T_{\text{Delay}}$ | XCS05 | 3.6 | - | 4.0 | - | ns | | | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS10 | 3.7 | - | 4.1 | - | ns | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS20 | 3.8 | - | 4.2 | - | ns | | | | XCS30 | 4.5 | - | 5.0 | - | ns | | | | XCS40 | 5.5 | - | 5.5 | - | ns | | Global Se | et/Reset | | | I | I | II. | | | T_{MRW} | Minimum GSR pulse width | All devices | 11.5 | - | 13.5 | - | ns | | T _{RRI} | Delay from GSR input to any Q | XCS05 | - | 9.0 | - | 11.3 | ns | | | | XCS10 | - | 9.5 | - | 11.9 | ns | | | | XCS20 | - | 10.0 | - | 12.5 | ns | | | | XCS30 | - | 10.5 | - | 13.1 | ns | | | | XCS40 | - | 11.0 | - | 13.8 | ns | - 1. Delay adder for CMOS Inputs option: for -3 speed grade, add 0.4 ns; for -4 speed grade, add 0.2 ns. - 2. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 3. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # **Spartan Family IOB Output Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted. | | | | - | 4 | - | 3 | | |--------------------|--|-------------|------|------|------|------|-------| | Symbol | Description | Device | Min | Max | Min | Max | Units | | Clocks | | | | | | | | | T _{CH} | Clock High | All devices | 3.0 | - | 4.0 | - | ns | | T _{CL} | Clock Low | All devices | 3.0 | - | 4.0 | - | ns | | Propagation | Delays - TTL Outputs ^(1,2) | | | | | | | | T _{OKPOF} | Clock (OK) to Pad, fast | All devices | - | 3.3 | - | 4.5 | ns | | T _{OKPOS} | Clock (OK to Pad, slew-rate limited | All devices | - | 6.9 | - | 7.0 | ns | | T _{OPF} | Output (O) to Pad, fast | All devices | - | 3.6 | - | 4.8 | ns | | T _{OPS} | Output (O) to Pad, slew-rate limited | All devices | - | 7.2 | - | 7.3 | ns | | T _{TSHZ} | 3-state to Pad High-Z (slew-rate independent) | All devices | - | 3.0 | - | 3.8 | ns | | T _{TSONF} | 3-state to Pad active and valid, fast | All devices | - | 6.0 | - | 7.3 | ns | | T _{TSONS} | 3-state to Pad active and valid, slew-rate limited | All devices | - | 9.6 | - | 9.8 | ns | | Setup and H | old Times | | + | + | ! | - | | | T _{OOK} | Output (O) to clock (OK) setup time | All devices | 2.5 | - | 3.8 | - | ns | | T _{OKO} | Output (O) to clock (OK) hold time | All devices | 0.0 | - | 0.0 | - | ns | | T _{ECOK} | Clock Enable (EC) to clock (OK) setup time | All devices | 2.0 | - | 2.7 | - | ns | | T _{OKEC} | Clock Enable (EC) to clock (OK) hold time | All devices | 0.0 | - | 0.5 | - | ns | | Global Set/F | Reset | l | 1 | | | | | | T_{MRW} | Minimum GSR pulse width | All devices | 11.5 | | 13.5 | | ns | | T _{RPO} | Delay from GSR input to any Pad | XCS05 | - | 12.0 | - | 15.0 | ns | | | | XCS10 | - | 12.5 | - | 15.7 | ns | | | | XCS20 | - | 13.0 | - | 16.2 | ns | | | | XCS30 | - | 13.5 | - | 16.9 | ns | | | | XCS40 | - | 14.0 | - | 17.5 | ns | - 1. Delay adder for CMOS Outputs option (with fast slew rate option): for -3 speed grade, add 1.0 ns; for -4 speed grade, add 0.8 ns. - 2. Delay adder for CMOS Outputs option (with slow slew rate option): for -3 speed grade, add 2.0 ns; for -4 speed grade, add 1.5 ns. - 3. Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. - 4. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # Spartan-XL Family Detailed Specifications ### **Definition of Terms** In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows: **Advance:** Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Values are subject to change. Use as estimates, not for production. Preliminary: Based on preliminary characterization. Further changes are not expected. Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final. Notwithstanding the definition of the above terms, all specifications are subject to change without notice. Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. # Spartan-XL Family Absolute Maximum Ratings⁽¹⁾ | Symbol | Descri | ption | Value | Units | |------------------|-----------------------------------|---|--------------------------|-------| | V _{CC} | Supply voltage relative to GND | | -0.5
to 4.0 | V | | V _{IN} | Input voltage relative to GND | 5V Tolerant I/O Checked ^(2, 3) | -0.5 to 5.5 | V | | | | Not 5V Tolerant I/Os ^(4, 5) | -0.5 to $V_{CC} + 0.5$ | V | | V _{TS} | Voltage applied to 3-state output | 5V Tolerant I/O Checked ^(2, 3) | -0.5 to 5.5 | V | | | | Not 5V Tolerant I/Os ^(4, 5) | -0.5 to $V_{CC} + 0.5$ | V | | T _{STG} | Storage temperature (ambient) | | -65 to +150 | °C | | T _J | Junction temperature | Plastic packages | +125 | °C | #### Notes: - Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability. - 2. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA and undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve. - 3. With 5V Tolerant I/Os selected, the Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to + 7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA. - 4. Without 5V Tolerant I/Os selected, the Maximum DC overshoot or undershoot must be limited to either 0.5V or 10 mA, whichever is easier to achieve. - 5. Without 5V Tolerant I/Os selected, the Maximum AC conditions are as follows; the device pins may undershoot to –2.0V or overshoot to V_{CC} + 2.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA. - 6. For soldering guidelines, see the Package Information on the Xilinx website. # **Spartan-XL Family Recommended Operating Conditions** | Symbol | Description | Min | Max | Units | | |-----------------|---|-----|------------------------|-------|---| | V_{CC} | Supply voltage relative to GND, T _J = 0°C to +85°C | 3.0 | 3.6 | V | | | | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C^{(1)}$ | 3.0 | 3.6 | V | | | V _{IH} | High-level input voltage ⁽²⁾ | | 50% of V _{CC} | 5.5 | V | | V _{IL} | Low-level input voltage ⁽²⁾ | 0 | 30% of V _{CC} | V | | | T _{IN} | Input signal transition time | - | 250 | ns | | - At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C. - Input and output measurement threshold is ~50% of V_{CC}. # **Spartan-XL Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | | Speed | Grade | | | |--------------------|---|-------------|------|-------|-------|------|-------| | | | | - | 5 | - | 4 | | | Symbol | Description | Device | Min | Max | Min | Max | Units | | Setup Tim | es | | | | | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK) | All devices | 0.0 | - | 0.0 | - | ns | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.0 | - | 1.2 | - | ns | | T _{POCK} | Pad to Fast Capture Latch Enable (OK), no delay | All devices | 0.7 | - | 0.8 | - | ns | | Hold Time | es | | | | • | | | | | All Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | Propagati | on Delays | | | | • | | | | T _{PID} | Pad to I1, I2 | All devices | - | 0.9 | - | 1.1 | ns | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.1 | - | 2.5 | ns | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 1.0 | - | 1.1 | ns | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 1.1 | - | 1.2 | ns | | Delay Add | ler for Input with Full Delay Option | | | | • | | | | T _{Delay} | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS05XL | 4.0 | - | 4.7 | - | ns | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS10XL | 4.8 | - | 5.6 | - | ns | | | | XCS20XL | 5.0 | - | 5.9 | - | ns | | | | XCS30XL | 5.5 | - | 6.5 | - | ns | | | | XCS40XL | 6.5 | - | 7.6 | - | ns | | Global Se | t/Reset | " | | ı | 1 | ı | i. | | T _{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | T _{RRI} | Delay from GSR input to any Q | XCS05XL | - | 9.0 | - | 10.5 | ns | | | | XCS10XL | - | 9.5 | - | 11.0 | ns | | | | XCS20XL | - | 10.0 | - | 11.5 | ns | | | | XCS30XL | - | 11.0 | - | 12.5 | ns | | | | XCS40XL | - | 12.0 | - | 13.5 | ns | - 1. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. Table 18: Pin Descriptions (Continued) | Pin Name | I/O
During
Config. | I/O After
Config. | Pin Description | |-------------------------------|--------------------------|-----------------------|---| | PWRDWN | I | I | PWRDWN is an active Low input that forces the FPGA into the Power Down state and reduces power consumption. When PWRDWN is Low, the FPGA disables all I/O and initializes all flip-flops. All inputs are interpreted as Low independent of their actual level. VCC must be maintained, and the configuration data is maintained. PWRDWN halts configuration if asserted before or during configuration, and re-starts configuration when removed. When PWRDWN returns High, the FPGA becomes operational by first enabling the inputs and flip-flops and then enabling the outputs. PWRDWN has a default internal pull-up resistor. | | User I/O Pins | ı | ave Special | Functions | | TDO | Ο | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. | | | | | To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | | TDI, TCK,
TMS | I | I/O
or I
(JTAG) | If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed. | | | | | If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. In this case, they must be called out by special library elements. To use these pins, place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used. | | HDC | 0 | I/O | High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin. | | LDC | 0 | I/O | Low During Configuration (\overline{LDC}) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, \overline{LDC} is a user-programmable I/O pin. | | ĪNIT | I/O | I/O | Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω to 10 k Ω external pull-up resistor is recommended. | | | | | As an active Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High. | | | | | During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, \overline{INIT} is a user-programmable I/O pin. | | PGCK1 -
PGCK4
(Spartan) | Weak
Pull-up | I or I/O | Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O. | | | | | The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol is automatically placed on one of these pins. | # **XCS10 and XCS10XL Device Pinouts** | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | |----------------------|---------------------|-------|------------------------|-------|---------------| | I/O | P80 | P81
| A10 | P116 | 17 | | GND | - | - | C9 | P118 | - | | I/O | - | - | B9 | P119 | 20 | | I/O | - | - | A9 | P120 | 23 | | I/O | P81 | P82 | D8 | P121 | 26 | | I/O | P82 | P83 | C8 | P122 | 29 | | I/O | - | P84 | B8 | P123 | 32 | | I/O | - | P85 | A8 | P124 | 35 | | I/O | P83 | P86 | B7 | P125 | 38 | | I/O | P84 | P87 | A7 | P126 | 41 | | GND | P1 | P88 | C7 | P127 | - | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS10XL is not part of the Boundary Scan chain. For the XCS10XL, subtract 1 from all Boundary Scan numbers from GCK3 on (175 and higher). - 4. PC84 and CS144 packages discontinued by PDN2004-01 # Additional XCS10/XL Package Pins | TQ144 | | | | | | | | | | | | |--------|--------------------|---|---|---|---|--|--|--|--|--|--| | | Not Connected Pins | | | | | | | | | | | | P117 | - | - | - | - | - | | | | | | | | 5/5/97 | 5/5/97 | | | | | | | | | | | | CS144 | | | | | | | | | | | |---------|--------------------|---|---|---|---|--|--|--|--|--| | | Not Connected Pins | | | | | | | | | | | D9 | - | - | - | - | - | | | | | | | 4/28/99 | 4/28/99 | | | | | | | | | | # XCS20 and XCS20XL Device Pinouts | XCS20/XL | | | | | Bndry | |--------------------|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | VCC | P89 | D7 | P128 | P183 | - | | I/O | P90 | A6 | P129 | P184 | 62 | | I/O | P91 | B6 | P130 | P185 | 65 | | I/O | P92 | C6 | P131 | P186 | 68 | | I/O | P93 | D6 | P132 | P187 | 71 | | I/O | - | - | - | P188 | 74 | | I/O | - | - | - | P189 | 77 | | I/O | P94 | A5 | P133 | P190 | 80 | | I/O | P95 | B5 | P134 | P191 | 83 | | VCC ⁽²⁾ | - | - | - | P192 | - | | I/O | - | C5 | P135 | P193 | 86 | | I/O | - | D5 | P136 | P194 | 89 | | GND | - | A4 | P137 | P195 | - | | I/O | - | - | - | P196 | 92 | | I/O | - | - | - | P197 | 95 | | I/O | - | - | - | P198 | 98 | | I/O | - | - | - | P199 | 101 | | I/O | P96 | B4 | P138 | P200 | 104 | | I/O | P97 | C4 | P139 | P201 | 107 | | I/O | - | А3 | P140 | P204 | 110 | | I/O | - | B3 | P141 | P205 | 113 | | I/O | P98 | C3 | P142 | P206 | 116 | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | V0400 | CS144 ^(2,4) | TO444 | DOGGG | Bndry | |---|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | | TQ144 | PQ208 | Scan | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P99 | A2 | P143 | P207 | 119 | | VCC | P100 | B2 | P144 | P208 | - | | GND | P1 | A1 | P1 | P1 | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | B1 | P2 | P2 | 122 | | I/O | P3 | C2 | P3 | P3 | 125 | | I/O | - | C1 | P4 | P4 | 128 | | I/O | - | D4 | P5 | P5 | 131 | | I/O, TDI | P4 | D3 | P6 | P6 | 134 | | I/O, TCK | P5 | D2 | P7 | P7 | 137 | | I/O | - | - | - | P8 | 140 | | I/O | - | - | - | P9 | 143 | | I/O | - | - | - | P10 | 146 | | I/O | - | - | - | P11 | 149 | | GND | - | D1 | P8 | P13 | - | | I/O | - | E4 | P9 | P14 | 152 | | I/O | - | E3 | P10 | P15 | 155 | | I/O, TMS | P6 | E2 | P11 | P16 | 158 | | I/O | P7 | E1 | P12 | P17 | 161 | | VCC ⁽²⁾ | - | - | - | P18 | - | | I/O | - | - | - | P19 | 164 | | I/O | - | - | - | P20 | 167 | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | |--|-------|------------------------|-------|-------|--------------------| | I/O | - | F4 | P13 | P21 | 170 | | I/O | P8 | F3 | P14 | P22 | 173 | | I/O | P9 | F2 | P15 | P23 | 176 | | I/O | P10 | F1 | P16 | P24 | 179 | | GND | P11 | G2 | P17 | P25 | - | | VCC | P12 | G1 | P18 | P26 | - | | I/O | P13 | G3 | P19 | P27 | 182 | | I/O | P14 | G4 | P20 | P28 | 185 | | I/O | P15 | H1 | P21 | P29 | 188 | | I/O | - | H2 | P22 | P30 | 191 | | I/O | - | - | - | P31 | 194 | | I/O | - | - | - | P32 | 197 | | VCC ⁽²⁾ | - | - | - | P33 | - | | I/O | P16 | H3 | P23 | P34 | 200 | | I/O | P17 | H4 | P24 | P35 | 203 | | I/O | - | J1 | P25 | P36 | 206 | | I/O | - | J2 | P26 | P37 | 209 | | GND | - | J3 | P27 | P38 | - | | I/O | - | - | - | P40 | 212 | | I/O | - | - | - | P41 | 215 | | I/O | - | - | - | P42 | 218 | | I/O | - | - | - | P43 | 221 | | I/O | P18 | J4 | P28 | P44 | 224 | | I/O | P19 | K1 | P29 | P45 | 227 | | I/O | - | K2 | P30 | P46 | 230 | | I/O | - | K3 | P31 | P47 | 233 | | I/O | P20 | L1 | P32 | P48 | 236 | | I/O,
SGCK2 ⁽¹⁾ ,
GCK2 ⁽²⁾ | P21 | L2 | P33 | P49 | 239 | | Not
Connected ⁽¹⁾
M1 ⁽²⁾ | P22 | L3 | P34 | P50 | 242 | | GND | P23 | M1 | P35 | P51 | - | | MODE ⁽¹⁾ ,
M0 ⁽²⁾ | P24 | M2 | P36 | P52 | 245 | | VCC | P25 | N1 | P37 | P53 | - | | Not
Connected ⁽¹⁾
PWRDWN ⁽²⁾ | P26 | N2 | P38 | P54 | 246 (1) | | I/O,
PGCK2 ⁽¹⁾ ,
GCK3 ⁽²⁾ | P27 | M3 | P39 | P55 | 247 (3) | | I/O (HDC) | P28 | N3 | P40 | P56 | 250 ⁽³⁾ | | I/O | - | K4 | P41 | P57 | 253 ⁽³⁾ | | I/O | - | L4 | P42 | P58 | 256 ⁽³⁾ | | I/O | P29 | M4 | P43 | P59 | 259 ⁽³⁾ | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | | ONE DCV | | | Bndry | |---|-------|------------------------|-------|-------|--------------------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | I/O (LDC) | P30 | N4 | P44 | P60 | 262 ⁽³⁾ | | I/O | - | - | - | P61 | 265 ⁽³⁾ | | I/O | - | - | - | P62 | 268 ⁽³⁾ | | I/O | - | - | - | P63 | 271 ⁽³⁾ | | I/O | - | - | - | P64 | 274 ⁽³⁾ | | GND | - | K5 | P45 | P66 | - | | I/O | - | L5 | P46 | P67 | 277 (3) | | I/O | - | M5 | P47 | P68 | 280 (3) | | I/O | P31 | N5 | P48 | P69 | 283 ⁽³⁾ | | I/O | P32 | K6 | P49 | P70 | 286 ⁽³⁾ | | VCC ⁽²⁾ | - | - | - | P71 | - | | I/O | - | - | - | P72 | 289 ⁽³⁾ | | I/O | - | - | - | P73 | 292 ⁽³⁾ | | I/O | P33 | L6 | P50 | P74 | 295 ⁽³⁾ | | I/O | P34 | M6 | P51 | P75 | 298 ⁽³⁾ | | I/O | P35 | N6 | P52 | P76 | 301 ⁽³⁾ | | I/O (INIT) | P36 | M7 | P53 | P77 | 304 ⁽³⁾ | | VCC | P37 | N7 | P54 | P78 | - | | GND | P38 | L7 | P55 | P79 | - | | I/O | P39 | K7 | P56 | P80 | 307 ⁽³⁾ | | I/O | P40 | N8 | P57 | P81 | 310 ⁽³⁾ | | I/O | P41 | M8 | P58 | P82 | 313 ⁽³⁾ | | I/O | P42 | L8 | P59 | P83 | 316 ⁽³⁾ | | I/O | - | - | - | P84 | 319 ⁽³⁾ | | I/O | - | - | - | P85 | 322 (3) | | VCC ⁽²⁾ | - | - | - | P86 | - | | I/O | P43 | K8 | P60 | P87 | 325 ⁽³⁾ | | I/O | P44 | N9 | P61 | P88 | 328 (3) | | I/O | - | M9 | P62 | P89 | 331 ⁽³⁾ | | I/O | - | L9 | P63 | P90 | 334 ⁽³⁾ | | GND | - | K9 | P64 | P91 | - | | I/O | - | - | - | P93 | 337 ⁽³⁾ | | I/O | - | - | 1 | P94 | 340 ⁽³⁾ | | I/O | - | - | 1 | P95 | 343 ⁽³⁾ | | I/O | - | - | ı | P96 | 346 ⁽³⁾ | | I/O | P45 | N10 | P65 | P97 | 349 ⁽³⁾ | | I/O | P46 | M10 | P66 | P98 | 352 ⁽³⁾ | | I/O | - | L10 | P67 | P99 | 355 ⁽³⁾ | | I/O | - | N11 | P68 | P100 | 358 ⁽³⁾ | | I/O | P47 | M11 | P69 | P101 | 361 ⁽³⁾ | | I/O,
SGCK3 ⁽¹⁾ ,
GCK4 ⁽²⁾ | P48 | L11 | P70 | P102 | 364 (3) | | GND | P49 | N12 | P71 | P103 | - | | DONE | P50 | M12 | P72 | P104 | - | | VCC | P51 | N13 | P73 | P105 | - | | | | | | | | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | P18 | P28 | P44 | P52 | V1 | T1 | 272 | | I/O | P19 | P29 | P45 | P53 | T4 | T2 | 275 | | I/O | - | P30 | P46 | P54 | U3 | T3 | 278 | | I/O | - | P31 | P47 | P55 | V2 | U1 | 281 | | I/O | P20 | P32 | P48 | P56 | W1 | V1 | 284 | | O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾ | P21 | P33 | P49 | P57 | V3 | U2 | 287 | | Not Connected ⁽¹⁾ , M1 ⁽²⁾ | P22 | P34 | P50 | P58 | W2 | V2 | 290 | | GND | P23 | P35 | P51 | P59 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | MODE ⁽¹⁾ , M0 ⁽²⁾ | P24 | P36 | P52 | P60 | Y1 | W1 | 293 | | VCC | P25 | P37 | P53 | P61 | VCC ⁽⁴⁾ | U3 | - | | Not Connected ⁽¹⁾ , PWRDWN ⁽²⁾ | P26 | P38 | P54 | P62 | W3 | V3 | 294 (1) | | /O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾ | P27 | P39 | P55 | P63 | Y2 | W2 | 295 ⁽³⁾ | | I/O (HDC) | P28 | P40 | P56 | P64 | W4 | W3 | 298 (3) | | I/O | - | P41 | P57 | P65 | V4 | T4 | 301 ⁽³⁾ | | I/O | - | P42 | P58 | P66 | U5 | U4 | 304 ⁽³⁾ | | I/O | P29 | P43 | P59 | P67 | Y3 | V4 | 307 (3) | | I/O (LDC) | P30 | P44 | P60 | P68 | Y4 | W4 | 310 ⁽³⁾ | | I/O | - | - | P61 | P69 | V5 | T5 | 313 ⁽³⁾ | | I/O | - | - | P62 | P70 | W5 | W5 | 316 ⁽³⁾ | | I/O | - | - | P63 | P71 | Y5 | R6 | 319 ⁽³⁾ | | I/O | - | - | P64 | P72 | V6 | U6 | 322 (3) | | I/O | - | - | P65 | P73 | W6 | V6 | 325 ⁽³⁾ | | I/O | - | - | - | P74 | Y6 | T6 | 328 (3) | | GND | - | P45 | P66 | P75 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P46 | P67 | P76 | W7 | W6 | 331 ⁽³⁾ | | I/O | - | P47 | P68 | P77 | Y7 | U7 | 334 (3) | | I/O | P31 | P48 | P69 | P78 | V8 | V7 | 337 (3) | | I/O | P32 | P49 | P70 | P79 | W8 | W7 | 340 (3) | | VCC | - | - | P71 | P80 | VCC ⁽⁴⁾ | T7 | - | | I/O | - | - | P72 | P81 | Y8 | W8 | 343 (3) | | I/O | - | - | P73 | P82 | U9 | U8 | 346 ⁽³⁾ | | I/O | - | - | - | P84 | Y9 | W9 | 349 (3) | | I/O | - | - | - | P85 | W10 | V9 | 352 ⁽³⁾ | | I/O | P33 | P50 | P74 | P86 | V10 | U9 | 355 ⁽³⁾ | | I/O | P34 | P51 | P75 | P87 | Y10 | T9 | 358 ⁽³⁾ | | I/O | P35 | P52 | P76 | P88 | Y11 | W10 | 361 ⁽³⁾ | | I/O (INIT) | P36 | P53 | P77 | P89 | W11 | V10 | 364 ⁽³⁾ | | VCC | P37 | P54 | P78 | P90 | VCC ⁽⁴⁾ | U10 | - | | GND | P38 | P55 | P79 | P91 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P39 | P56 | P80 | P92 | V11 | T10 | 367 ⁽³⁾ | | I/O | P40 | P57 | P81 | P93 | U11 | R10 | 370 (3) | | I/O | P41 | P58 | P82 | P94 | Y12 | W11 | 373 (3) | | I/O | P42 | P59 | P83 | P95 | W12 | V11 | 376 ⁽³⁾ | | I/O | - | - | P84 | P96 | V12 | U11 | 379 (3) | # XCS40 and XCS40XL Device Pinouts | XCS40/XL | | | | 00000(2 F) | Bndry | |---|-------|-------|--------------------|------------------------|-------| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | O, TDO | P157 | P181 | A19 | B17 | 0 | | GND | P158 | P182 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P159 | P183 | B18 | A18 | 2 | | I/O,
PGCK4 ⁽¹⁾
,
GCK7 ⁽²⁾ | P160 | P184 | B17 | A17 | 5 | | I/O | P161 | P185 | C17 | D16 | 8 | | I/O | P162 | P186 | D16 | C16 | 11 | | I/O (CS1 ⁽²⁾) | P163 | P187 | A18 | B16 | 14 | | I/O | P164 | P188 | A17 | A16 | 17 | | I/O | - | - | - | E15 | 20 | | I/O | - | - | - | C15 | 23 | | I/O | P165 | P189 | C16 | D15 | 26 | | I/O | - | P190 | B16 | A15 | 29 | | I/O | P166 | P191 | A16 | E14 | 32 | | I/O | P167 | P192 | C15 | C14 | 35 | | I/O | P168 | P193 | B15 | B14 | 38 | | I/O | P169 | P194 | A15 | D14 | 41 | | GND | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P171 | P197 | B14 | A14 | 44 | | I/O | P172 | P198 | A14 | C13 | 47 | | I/O | - | P199 | C13 | B13 | 50 | | I/O | - | P200 | B13 | A13 | 53 | | VCC | P173 | P201 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | - | A13 | A12 | 56 | | I/O | - | - | D12 | C12 | 59 | | I/O | P174 | P202 | C12 | B12 | 62 | | I/O | P175 | P203 | B12 | D12 | 65 | | I/O | P176 | P205 | A12 | A11 | 68 | | I/O | P177 | P206 | B11 | B11 | 71 | | I/O | P178 | P207 | C11 | C11 | 74 | | I/O | P179 | P208 | A11 | D11 | 77 | | I/O | P180 | P209 | A10 | A10 | 80 | | I/O | P181 | P210 | B10 | B10 | 83 | | GND | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | 2/8/00 | | | | | | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS40XL is not part of the Boundary Scan chain. For the XCS40XL, subtract 1 from all Boundary Scan numbers from GCK3 on (343 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - CS280 package discontinued by <u>PDN2004-01</u> # Additional XCS40/XL Package Pins #### **PQ240** | GND Pins | | | | | | | | |--------------------|------|-----|-----|------|------|--|--| | P22 | P37 | P83 | P98 | P143 | P158 | | | | P204 | P219 | - | - | - | - | | | | Not Connected Pins | | | | | | | | | P195 | - | - | - | - | - | | | 2/12/98 #### **BG256** | VCC Pins | | | | | | | |----------|-----|-----|-----|-----|-----|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | E20 | F1 | F4 | F17 | G4 | G17 | | | K4 | L17 | P4 | P17 | P19 | R2 | | | R4 | R17 | U6 | U7 | U10 | U14 | | | U15 | V7 | W20 | - | - | - | | | GND Pins | | | | | | | | A1 | B7 | D4 | D8 | D13 | D17 | | | G20 | H4 | H17 | N3 | N4 | N17 | | | U4 | U8 | U13 | U17 | W14 | - | | 6/17/97 ## **CS280** | VCC Pins | | | | | | | | |----------|-----|-----|-----|-----|-----|--|--| | A1 | A7 | B5 | B15 | C10 | C17 | | | | D13 | E3 | E18 | G1 | G19 | K2 | | | | K17 | M4 | N16 | R3 | R18 | T7 | | | | U3 | U10 | U17 | V5 | V15 | W13 | | | | GND Pins | | | | | | | | | E5 | E7 | E8 | E9 | E11 | E12 | | | | E13 | G5 | G15 | H5 | H15 | J5 | | | | J15 | L5 | L15 | M5 | M15 | N5 | | | | N15 | R7 | R8 | R9 | R11 | R12 | | | | R13 | - | - | - | - | - | | | 5/19/99