

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

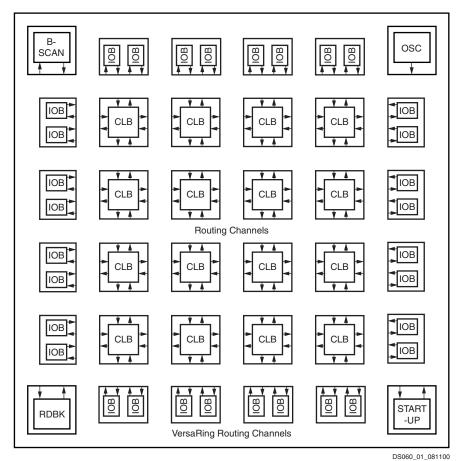
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	576
Number of Logic Elements/Cells	1368
Total RAM Bits	18432
Number of I/O	192
Number of Gates	30000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/xillinx/xcs30xl-4pq240c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


General Overview

Spartan series FPGAs are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources (routing channels), and surrounded by a perimeter of programmable Input/Output Blocks (IOBs), as seen in Figure 1. They have generous routing resources to accommodate the most complex interconnect patterns.

The devices are customized by loading configuration data into internal static memory cells. Re-programming is possible an unlimited number of times. The values stored in these

memory cells determine the logic functions and interconnections implemented in the FPGA. The FPGA can either actively read its configuration data from an external serial PROM (Master Serial mode), or the configuration data can be written into the FPGA from an external device (Slave Serial mode).

Spartan series FPGAs can be used where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 50,000 systems per month.

Figure 1: Basic FPGA Block Diagram

Spartan and Spartan-XL devices provide system clock rates exceeding 80 MHz and internal performance in excess of 150 MHz. In addition to the conventional benefit of high volume programmable logic solutions, Spartan series FPGAs also offer on-chip edge-triggered single-port and dual-port RAM, clock enables on all flip-flops, fast carry logic, and many other features.

The Spartan/XL families leverage the highly successful XC4000 architecture with many of that family's features and benefits. Technology advancements have been derived from the XC4000XLA process developments.

Logic Functional Description

The Spartan series uses a standard FPGA structure as shown in Figure 1, page 2. The FPGA consists of an array of configurable logic blocks (CLBs) placed in a matrix of routing channels. The input and output of signals is achieved through a set of input/output blocks (IOBs) forming a ring around the CLBs and routing channels.

- CLBs provide the functional elements for implementing the user's logic.
- IOBs provide the interface between the package pins and internal signal lines.
- Routing channels provide paths to interconnect the inputs and outputs of the CLBs and IOBs.

The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA.

Configurable Logic Blocks (CLBs)

The CLBs are used to implement most of the logic in an FPGA. The principal CLB elements are shown in the simplified block diagram in Figure 2. There are three look-up tables (LUT) which are used as logic function generators, two flip-flops and two groups of signal steering multiplexers. There are also some more advanced features provided by the CLB which will be covered in the **Advanced Features Description**, page 13.

Function Generators

Two 16 x 1 memory look-up tables (F-LUT and G-LUT) are used to implement 4-input function generators, each offering unrestricted logic implementation of any Boolean function of up to four independent input signals (F1 to F4 or G1 to G4). Using memory look-up tables the propagation delay is independent of the function implemented.

A third 3-input function generator (H-LUT) can implement any Boolean function of its three inputs. Two of these inputs are controlled by programmable multiplexers (see box "A" of Figure 2). These inputs can come from the F-LUT or G-LUT outputs or from CLB inputs. The third input always comes from a CLB input. The CLB can, therefore, implement certain functions of up to nine inputs, like parity checking. The three LUTs in the CLB can also be combined to do any arbitrarily defined Boolean function of five inputs.

Table 4: Supported Sources for Spartan/XL Inputs

	-	artan outs	Spartan-XL Inputs
Source	5V, TTL	5V, CMOS	3.3V CMOS
Any device, V _{CC} = 3.3V, CMOS outputs	V	Unreli- able	V
Spartan family, V _{CC} = 5V, TTL outputs	√	Data	V
Any device, $V_{CC} = 5V$, TTL outputs $(V_{OH} \le 3.7V)$	√		V
Any device, V _{CC} = 5V, CMOS outputs	√	V	√ (default mode)

Spartan-XL Family V_{CC} Clamping

Spartan-XL FPGAs have an optional clamping diode connected from each I/O to V_{CC} . When enabled they clampringing transients back to the 3.3V supply rail. This clamping action is required in 3.3V PCI applications. V_{CC} clamping is a global option affecting all I/O pins.

Spartan-XL devices are fully 5V TTL I/O compatible if V_{CC} clamping is not enabled. With V_{CC} clamping enabled, the Spartan-XL devices will begin to clamp input voltages to one diode voltage drop above V_{CC} . If enabled, TTL I/O compatibility is maintained but full 5V I/O tolerance is sacrificed. The user may select either 5V tolerance (default) or 3.3V PCI compatibility. In both cases negative voltage is clamped to one diode voltage drop below ground.

Spartan-XL devices are compatible with TTL, LVTTL, PCI 3V, PCI 5V and LVCMOS signalling. The various standards are illustrated in Table 5.

Table 5: I/O Standards Supported by Spartan-XL FPGAs

Signaling Standard	VCC Clamping	Output Drive	V _{IH MAX}	V _{IH MIN}	V _{IL MAX}	V _{OH MIN}	V _{OL MAX}
TTL	Not allowed	12/24 mA	5.5	2.0	0.8	2.4	0.4
LVTTL	OK	12/24 mA	3.6	2.0	0.8	2.4	0.4
PCI5V	Not allowed	24 mA	5.5	2.0	0.8	2.4	0.4
PCI3V	Required	12 mA	3.6	50% of V _{CC}	30% of V _{CC}	90% of V _{CC}	10% of V _{CC}
LVCMOS 3V	OK	12/24 mA	3.6	50% of V _{CC}	30% of V _{CC}	90% of V _{CC}	10% of V _{CC}

Additional Fast Capture Input Latch (Spartan-XL Family Only)

The Spartan-XL family OB has an additional optional latch on the input. This latch is clocked by the clock used for the output flip-flop rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch.

To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active High input flip-flop. ILFLX is a transparent Low Fast Capture latch followed by a transparent High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB.

IOB Output Signal Path

Output signals can be optionally inverted within the IOB, and can pass directly to the output buffer or be stored in an edge-triggered flip-flop and then to the output buffer. The functionality of this flip-flop is shown in Table 6.

Table 6: Output Flip-Flop Functionality

Mode	Clock	Clock Enable	т	D	Q
Power-Up or GSR	Х	Х	0*	Х	SR
Flip-Flop	Х	0	0*	Х	Q
		1*	0*	D	D
	Х	Х	1	Х	Z
	0	Х	0*	Х	Q

Legend:

V	Don't care

___ Rising edge (clock not inverted).

SR Set or Reset value. Reset is default.

0* Input is Low or unconnected (default value)

1* Input is High or unconnected (default value)

Z 3-state

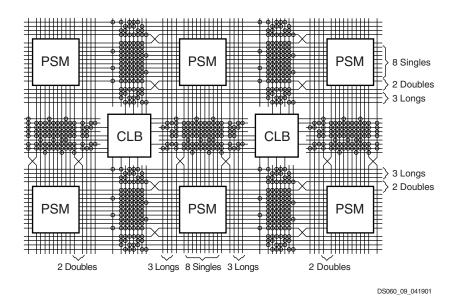


Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram

CLB Interface

A block diagram of the CLB interface signals is shown in Figure 9. The input signals to the CLB are distributed evenly on all four sides providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. The exceptions are the clock (K) input and CIN/COUT signals. The K input is routed to dedicated global vertical lines as well as four single-length lines and is on the left side of the CLB. The CIN/COUT signals are routed through dedicated interconnects which do not interfere with the general routing structure. The output signals from the CLB are available to drive both vertical and horizontal channels.

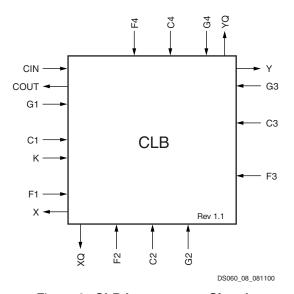


Figure 9: CLB Interconnect Signals

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each PSM consists of programmable pass transistors used to establish connections between the lines (see Figure 10).

For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix.

Single-Length Lines

Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 10. Routing connectivity is shown in Figure 8.

Single-length lines incur a delay whenever they go through a PSM. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one.

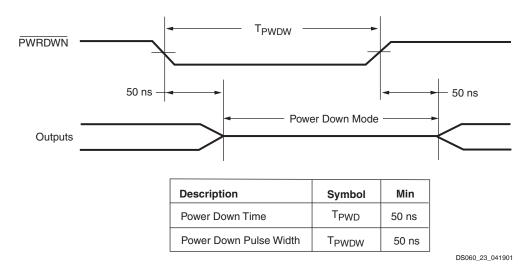


Figure 23: PWRDWN Pulse Timing

Power-down retains the configuration, but loses all data stored in the device flip-flops. All inputs are interpreted as Low, but the internal combinatorial logic is fully functional. Make sure that the combination of all inputs Low and all flip-flops set or reset in your design will not generate internal oscillations, or create permanent bus contention by activating internal bus drivers with conflicting data onto the same long line.

During configuration, the PWRDWN pin must be High. If the Power Down state is entered before or during configuration, the device will restart configuration once the PWRDWN signal is removed. Note that the configuration pins are affected by Power Down and may not reflect their normal function. If there is an external pull-up resistor on the DONE pin, it will be High during Power Down even if the device is not yet configured. Similarly, if PWRDWN is asserted before configuration is completed, the INIT pin will not indicate status information.

Note that the PWRDWN pin is not part of the Boundary Scan chain. Therefore, the Spartan-XL family has a separate set of BSDL files than the 5V Spartan family. Boundary scan logic is not usable during Power Down.

Configuration and Test

Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. Spartan/XL devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell

that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The Xilinx development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format.

Configuration Mode Control

5V Spartan devices have two configuration modes.

- MODE = 1 sets Slave Serial mode
- MODE = 0 sets Master Serial mode

3V Spartan-XL devices have three configuration modes.

- M1/M0 = 11 sets Slave Serial mode
- M1/M0 = 10 sets Master Serial mode
- M1/M0 = 0X sets Express mode

In addition to these modes, the device can be configured through the Boundary Scan logic (See "Configuration Through the Boundary Scan Pins" on page 37.).

The Mode pins are sampled prior to starting configuration to determine the configuration mode. After configuration, these pin are unused. The Mode pins have a weak pull-up resistor turned on during configuration. With the Mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the Mode pins can be left unconnected. If the Master Serial mode is desired, the MODE/M0 pin should be connected directly to GND, or through a pull-down resistor of 1 K Ω or less.

During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during con-

to the DONE pin. User I/Os for each device become active after the DONE pin for that device goes High. (The exact timing is determined by development system options.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device

in the chain has completed its configuration cycle. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured. Only devices supporting Express mode can be used to form an Express mode daisy chain.

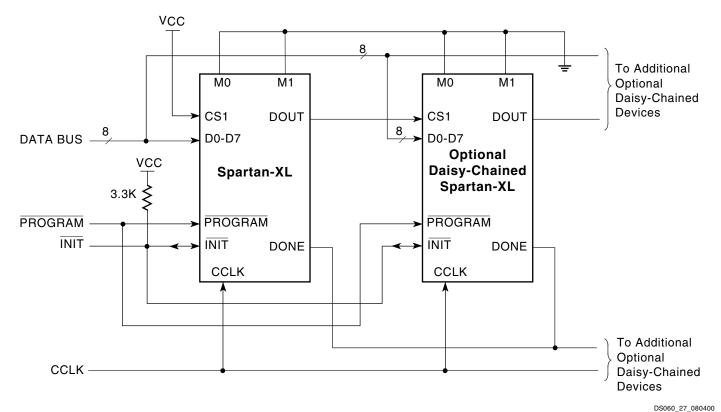


Figure 27: Express Mode Circuit Diagram

Readback

The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device.

Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs.

Although readback can be performed while the device is operating, for best results and to freeze a known capture state, it is recommended that the clock inputs be stopped until readback is complete.

Readback of Spartan-XL family Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes.

Spartan/XL FPGA Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, instantiate the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 32.

After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low)

of the first frame. The first two data bits of the first frame are always High.

Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low.

Readback Options

Readback options are: Readback Capture, Readback Abort, and Clock Select. They are set with the bitstream generation software.

Readback Capture

When the Readback Capture option is selected, the data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. RDBK.TRIG is located in the lower-left corner of the device.

When the Readback Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in Readback, since they directly overwrite the F and G function-table configuration of the CLB.

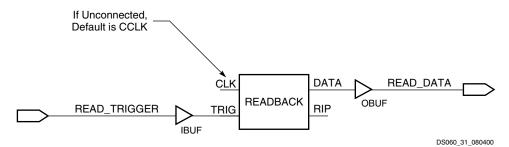


Figure 32: Readback Example

Readback Abort

When the Readback Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the Readback operation and prepares the logic to accept another trigger.

After an aborted Readback, additional clocks (up to one Readback clock per configuration frame) may be required to re-initialize the control logic. The status of Readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If Readback must be inhibited for security reasons, the Readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner.

Violating the Maximum High and Low Time Specification for the Readback Clock

The Readback clock has a maximum High and Low time specification. In some cases, this specification cannot be

met. For example, if a processor is controlling Readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification.

The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the Readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register.

The user must precisely calculate the location of the Readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 16 and Table 17.

Spartan Family CLB Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and expressed in nanoseconds unless otherwise noted.

	Decesiation -	-	4	-3		1
Symbol	Description	Min	Max	Min	Max	Units
Clocks						
T _{CH}	Clock High time	3.0	-	4.0	-	ns
T_{CL}	Clock Low time	3.0	-	4.0	-	ns
Combina	torial Delays		1	1	1	1
T _{ILO}	F/G inputs to X/Y outputs	-	1.2	-	1.6	ns
T _{IHO}	F/G inputs via H to X/Y outputs	-	2.0	-	2.7	ns
T _{HH1O}	C inputs via H1 via H to X/Y outputs	-	1.7	-	2.2	ns
CLB Fast	Carry Logic		1		1	
T _{OPCY}	Operand inputs (F1, F2, G1, G4) to C _{OUT}	-	1.7	-	2.1	ns
T _{ASCY}	Add/Subtract input (F3) to C _{OUT}	-	2.8	-	3.7	ns
T _{INCY}	Initialization inputs (F1, F3) to C _{OUT}	-	1.2	-	1.4	ns
T _{SUM}	C _{IN} through function generators to X/Y outputs	-	2.0	-	2.6	ns
T _{BYP}	C _{IN} to C _{OUT} , bypass function generators	-	0.5	-	0.6	ns
Sequentia	al Delays					
T _{CKO}	Clock K to Flip-Flop outputs Q	-	2.1	-	2.8	ns
Setup Tin	ne before Clock K					
T _{ICK}	F/G inputs	1.8	-	2.4	-	ns
T _{IHCK}	F/G inputs via H	2.9	-	3.9	-	ns
T _{HH1CK}	C inputs via H1 through H	2.3	-	3.3	-	ns
T _{DICK}	C inputs via DIN	1.3	-	2.0	-	ns
T _{ECCK}	C inputs via EC	2.0	-	2.6	-	ns
T _{RCK}	C inputs via S/R, going Low (inactive)	2.5	-	4.0	-	ns
Hold Time	e after Clock K		1		1	
	All Hold times, all devices	0.0	-	0.0	-	ns
Set/Reset	Direct					
T _{RPW}	Width (High)	3.0	-	4.0	-	ns
T _{RIO}	Delay from C inputs via S/R, going High to Q	-	3.0	-	4.0	ns
Global Se	et/Reset					
T_{MRW}	Minimum GSR pulse width	11.5	-	13.5	-	ns
T_{MRQ}	Delay from GSR input to any Q	See pa	ge 50 for T _{RI}	RI values per	device.	
F _{TOG}	Toggle Frequency (MHz) (for export control purposes)	-	166	-	125	MHz

Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted.

			Speed Grade				
				4	-3		_
Symbol	Single Port RAM	Size ⁽¹⁾	Min	Max	Min	Max	Units
Write Ope	eration						
T _{WCS}	Address write cycle time (clock K period)	16x2	8.0	-	11.6	-	ns
T _{WCTS}		32x1	8.0	-	11.6	-	ns
T_{WPS}	Clock K pulse width (active edge)	16x2	4.0	-	5.8	-	ns
T_{WPTS}		32x1	4.0	-	5.8	-	ns
T _{ASS}	Address setup time before clock K	16x2	1.5	-	2.0	-	ns
T _{ASTS}		32x1	1.5	-	2.0	-	ns
T _{AHS}	Address hold time after clock K	16x2	0.0	-	0.0	-	ns
T _{AHTS}		32x1	0.0	-	0.0	-	ns
T _{DSS}	DIN setup time before clock K	16x2	1.5	-	2.7	-	ns
T _{DSTS}		32x1	1.5	-	1.7	-	ns
T _{DHS}	DIN hold time after clock K	16x2	0.0	-	0.0	-	ns
T _{DHTS}		32x1	0.0	-	0.0	-	ns
T _{WSS}	WE setup time before clock K	16x2	1.5	-	1.6	-	ns
T _{WSTS}		32x1	1.5	-	1.6	-	ns
T _{WHS}	WE hold time after clock K	16x2	0.0	-	0.0	-	ns
T _{WHTS}		32x1	0.0	-	0.0	-	ns
T _{WOS}	Data valid after clock K	16x2	-	6.5	-	7.9	ns
T _{WOTS}		32x1	-	7.0	-	9.3	ns
Read Ope	ration			i.			1
T _{RC}	Address read cycle time	16x2	2.6	-	2.6	-	ns
T _{RCT}		32x1	3.8	-	3.8	-	ns
T _{ILO}	Data valid after address change (no Write	16x2	-	1.2	-	1.6	ns
T _{IHO}	Enable)	32x1	-	2.0	-	2.7	ns
T _{ICK}	Address setup time before clock K	16x2	1.8	-	2.4	-	ns
T _{IHCK}		32x1	2.9	-	3.9	-	ns

Notes:

^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.

Capacitive Load Factor

Figure 34 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 34 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

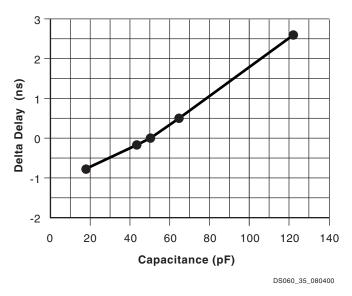


Figure 34: Delay Factor at Various Capacitive Loads

Spartan-XL Family DC Characteristics Over Operating Conditions

Symbol	Description	Min	Тур.	Max	Units	
V _{OH}	High-level output voltage @ $I_{OH} = -4.0 \text{ mA}, V_{C}$	2.4	-	-	V	
	High-level output voltage @ $I_{OH} = -500 \mu A$, (LV	gh-level output voltage @ I _{OH} = -500 μA, (LVCMOS)				V
V _{OL}	Low-level output voltage @ I _{OL} = 12.0 mA, V _{CO}	; min (LVTTL) ⁽¹⁾	-	-	0.4	V
	Low-level output voltage @ I _{OL} = 24.0 mA, V _{CO}	; min (LVTTL) ⁽²⁾	-	-	0.4	V
	Low-level output voltage @ I _{OL} = 1500 μA, (LV	Low-level output voltage @ I _{OL} = 1500 μA, (LVCMOS)				V
V _{DR}	Data retention supply voltage (below which cormay be lost)	Data retention supply voltage (below which configuration data may be lost)			-	V
I _{CCO}	Quiescent FPGA supply current ^(3,4)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
I _{CCPD}	Power Down FPGA supply current ^(3,5)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
IL	Input or output leakage current	1	-10	-	10	μΑ
C _{IN}	Input capacitance (sample tested)	-	-	10	pF	
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V (samp	0.02	-	0.25	mA	
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 3.3V (s	sample tested)	0.02	-	-	mA

Notes:

- With up to 64 pins simultaneously sinking 12 mA (default mode).
- 2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected).
- 3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option.
- With no output current loads, no active input resistors, and all package pins at V_{CC} or GND.
- 5. With PWRDWN active.

Supply Current Requirements During Power-On

Spartan-XL FPGAs require that a minimum supply current I_{CCPO} be provided to the V_{CC} lines for a successful power on. If more current is available, the FPGA can consume more than I_{CCPO} min., though this cannot adversely affect reliability.

A maximum limit for I_{CCPO} is not specified. Be careful when using foldback/crowbar supplies and fuses. It is possible to control the magnitude of I_{CCPO} by limiting the supply current available to the FPGA. A current limit below the trip level will avoid inadvertently activating over-current protection circuits.

Symbol	Description	Min	Max	Units
I _{CCPO}	Total V _{CC} supply current required during power-on	100	-	mA
T _{CCPO}	V _{CC} ramp time ^(2,3)	-	50	ms

Notes:

- 1. The I_{CCPO} requirement applies for a brief time (commonly only a few milliseconds) when V_{CC} ramps from 0 to 3.3V.
- 2. The ramp time is measured from GND to V_{CC} max on a fully loaded board.
- V_{CC} must not dip in the negative direction during power on.

Spartan-XL Family Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper-

ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading.

Spartan-XL Family Setup and Hold

			Speed		
			-5	-4	
Symbol	Description	Device	Max	Max	Units
Input Setup/H	old Times Using Global Clock and IFF				
T _{SUF} /T _{HF}	No Delay	XCS05XL	1.1/2.0	1.6/2.6	ns
		XCS10XL	1.0/2.2	1.5/2.8	ns
		XCS20XL	0.9/2.4	1.4/3.0	ns
		XCS30XL	0.8/2.6	1.3/3.2	ns
		XCS40XL	0.7/2.8	1.2/3.4	ns
T _{SU} /T _H	Full Delay	XCS05XL	3.9/0.0	5.1/0.0	ns
		XCS10XL	4.1/0.0	5.3/0.0	ns
		XCS20XL	4.3/0.0	5.5/0.0	ns
		XCS30XL	4.5/0.0	5.7/0.0	ns
		XCS40XL	4.7/0.0	5.9/0.0	ns

Notes:

- 1. IFF = Input Flip-Flop or Latch
- 2. Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per IOB/CLB.

Capacitive Load Factor

Figure 35 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 35 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

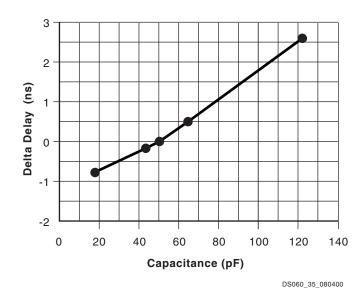


Figure 35: Delay Factor at Various Capacitive Loads

Table 18: Pin Descriptions (Continued)

	I/O		
Pin Name	During Config.	I/O After Config.	Pin Description
SGCK1 - SGCK4 (Spartan)	Weak Pull-up (except SGCK4	I or I/O	Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.
	is DOUT)		The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins.
GCK1 - GCK8 (Spartan-XL)	Weak Pull-up (except	I or I/O	Eight Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.
	GCK6 is DOUT)		The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol is automatically placed on one of these pins.
CS1 (Spartan-XL)	I	I/O	During Express configuration, CS1 is used as a serial-enable signal for daisy-chaining.
D0-D7 (Spartan-XL)	I	I/O	During Express configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins.
DIN	I	I/O	During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. After configuration, DIN is a user-programmable I/O pin.
DOUT	0	I/O	During Slave Serial or Master Serial configuration, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input.
			In Spartan-XL family Express mode, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.
			After configuration, DOUT is a user-programmable I/O pin.
Unrestricted L	Jser-Progra	mmable I/O	Pins
I/O	Weak Pull-up	I/O	These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor network that defines the logic level as High.

XCS10 and XCS10XL Device Pinouts

XCS10/XL Pad Name	PC84 ⁽⁴⁾	VQ100	CS144 ^(2,4)	TQ144	Bndry Scan
I/O	P80	P81	A10	P116	17
GND	-	-	C9	P118	-
I/O	-	-	B9	P119	20
I/O	-	-	A9	P120	23
I/O	P81	P82	D8	P121	26
I/O	P82	P83	C8	P122	29
I/O	-	P84	B8	P123	32
I/O	-	P85	A8	P124	35
I/O	P83	P86	B7	P125	38
I/O	P84	P87	A7	P126	41
GND	P1	P88	C7	P127	-

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- 3. The "PWRDWN" on the XCS10XL is not part of the Boundary Scan chain. For the XCS10XL, subtract 1 from all Boundary Scan numbers from GCK3 on (175 and higher).
- 4. PC84 and CS144 packages discontinued by PDN2004-01

Additional XCS10/XL Package Pins

TQ144								
		Not Cor	nected I	Pins				
P117	P117							
5/5/97								

CS144							
		Not Cor	nected I	Pins			
D9	D9						
4/28/99	4/28/99						

XCS20 and XCS20XL Device Pinouts

XCS20/XL					Bndry
Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Scan
VCC	P89	D7	P128	P183	-
I/O	P90	A6	P129	P184	62
I/O	P91	B6	P130	P185	65
I/O	P92	C6	P131	P186	68
I/O	P93	D6	P132	P187	71
I/O	-	-	-	P188	74
I/O	-	-	-	P189	77
I/O	P94	A5	P133	P190	80
I/O	P95	B5	P134	P191	83
VCC ⁽²⁾	-	-	-	P192	-
I/O	-	C5	P135	P193	86
I/O	-	D5	P136	P194	89
GND	-	A4	P137	P195	-
I/O	-	-	-	P196	92
I/O	-	-	-	P197	95
I/O	-	-	-	P198	98
I/O	-	-	-	P199	101
I/O	P96	B4	P138	P200	104
I/O	P97	C4	P139	P201	107
I/O	-	А3	P140	P204	110
I/O	-	B3	P141	P205	113
I/O	P98	C3	P142	P206	116

XCS20 and XCS20XL Device Pinouts

XCS20/XL	V0400	CS144 ^(2,4)	TO444	DOGGG	Bndry
Pad Name	VQ100		TQ144	PQ208	Scan
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P99	A2	P143	P207	119
VCC	P100	B2	P144	P208	-
GND	P1	A1	P1	P1	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	B1	P2	P2	122
I/O	P3	C2	P3	P3	125
I/O	-	C1	P4	P4	128
I/O	-	D4	P5	P5	131
I/O, TDI	P4	D3	P6	P6	134
I/O, TCK	P5	D2	P7	P7	137
I/O	-	-	-	P8	140
I/O	-	-	-	P9	143
I/O	-	-	-	P10	146
I/O	-	-	-	P11	149
GND	-	D1	P8	P13	-
I/O	-	E4	P9	P14	152
I/O	-	E3	P10	P15	155
I/O, TMS	P6	E2	P11	P16	158
I/O	P7	E1	P12	P17	161
VCC ⁽²⁾	-	-	-	P18	-
I/O	-	-	-	P19	164
I/O	-	-	-	P20	167

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	F4	P13	P21	170
I/O	P8	F3	P14	P22	173
I/O	P9	F2	P15	P23	176
I/O	P10	F1	P16	P24	179
GND	P11	G2	P17	P25	-
VCC	P12	G1	P18	P26	-
I/O	P13	G3	P19	P27	182
I/O	P14	G4	P20	P28	185
I/O	P15	H1	P21	P29	188
I/O	-	H2	P22	P30	191
I/O	-	-	-	P31	194
I/O	-	-	-	P32	197
VCC ⁽²⁾	-	-	-	P33	-
I/O	P16	H3	P23	P34	200
I/O	P17	H4	P24	P35	203
I/O	-	J1	P25	P36	206
I/O	-	J2	P26	P37	209
GND	-	J3	P27	P38	-
I/O	-	-	-	P40	212
I/O	-	-	-	P41	215
I/O	-	-	-	P42	218
I/O	-	-	-	P43	221
I/O	P18	J4	P28	P44	224
I/O	P19	K1	P29	P45	227
I/O	-	K2	P30	P46	230
I/O	-	K3	P31	P47	233
I/O	P20	L1	P32	P48	236
I/O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾	P21	L2	P33	P49	239
Not Connected ⁽¹⁾ M1 ⁽²⁾	P22	L3	P34	P50	242
GND	P23	M1	P35	P51	-
MODE ⁽¹⁾ , M0 ⁽²⁾	P24	M2	P36	P52	245
VCC	P25	N1	P37	P53	-
Not Connected ⁽¹⁾ PWRDWN ⁽²⁾	P26	N2	P38	P54	246 (1)
I/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾	P27	M3	P39	P55	247 (3)
I/O (HDC)	P28	N3	P40	P56	250 ⁽³⁾
I/O	-	K4	P41	P57	253 ⁽³⁾
I/O	-	L4	P42	P58	256 ⁽³⁾
I/O	P29	M4	P43	P59	259 ⁽³⁾

XCS20 and XCS20XL Device Pinouts

XCS20/XL		ONE DEV			Bndry
Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Scan
I/O (LDC)	P30	N4	P44	P60	262 ⁽³⁾
I/O	-	-	-	P61	265 ⁽³⁾
I/O	-	-	-	P62	268 ⁽³⁾
I/O	-	-	-	P63	271 ⁽³⁾
I/O	-	-	-	P64	274 ⁽³⁾
GND	-	K5	P45	P66	-
I/O	-	L5	P46	P67	277 (3)
I/O	-	M5	P47	P68	280 (3)
I/O	P31	N5	P48	P69	283 ⁽³⁾
I/O	P32	K6	P49	P70	286 ⁽³⁾
VCC ⁽²⁾	-	-	-	P71	-
I/O	-	-	-	P72	289 ⁽³⁾
I/O	-	-	-	P73	292 ⁽³⁾
I/O	P33	L6	P50	P74	295 ⁽³⁾
I/O	P34	M6	P51	P75	298 ⁽³⁾
I/O	P35	N6	P52	P76	301 ⁽³⁾
I/O (INIT)	P36	M7	P53	P77	304 ⁽³⁾
VCC	P37	N7	P54	P78	-
GND	P38	L7	P55	P79	-
I/O	P39	K7	P56	P80	307 ⁽³⁾
I/O	P40	N8	P57	P81	310 ⁽³⁾
I/O	P41	M8	P58	P82	313 ⁽³⁾
I/O	P42	L8	P59	P83	316 ⁽³⁾
I/O	-	-	-	P84	319 ⁽³⁾
I/O	-	-	-	P85	322 (3)
VCC ⁽²⁾	-	-	-	P86	-
I/O	P43	K8	P60	P87	325 ⁽³⁾
I/O	P44	N9	P61	P88	328 (3)
I/O	-	M9	P62	P89	331 ⁽³⁾
I/O	-	L9	P63	P90	334 ⁽³⁾
GND	-	K9	P64	P91	-
I/O	-	-	-	P93	337 ⁽³⁾
I/O	-	-	1	P94	340 ⁽³⁾
I/O	-	-	ı	P95	343 ⁽³⁾
I/O	-	-	ı	P96	346 ⁽³⁾
I/O	P45	N10	P65	P97	349 ⁽³⁾
I/O	P46	M10	P66	P98	352 ⁽³⁾
I/O	-	L10	P67	P99	355 ⁽³⁾
I/O	-	N11	P68	P100	358 ⁽³⁾
I/O	P47	M11	P69	P101	361 ⁽³⁾
I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾	P48	L11	P70	P102	364 (3)
GND	P49	N12	P71	P103	-
DONE	P50	M12	P72	P104	-
VCC	P51	N13	P73	P105	-

Additional XCS20/XL Package Pins

	PQ208						
	Not Connected Pins						
P12	P12 P18 ⁽¹⁾ P33 ⁽¹⁾ P39 P65 P71 ⁽¹⁾						
P86 ⁽¹⁾	P92 P111 P121 ⁽¹⁾ P140 ⁽¹⁾ P144						
P165 P173 ⁽¹⁾ P192 ⁽¹⁾ P202 P203 -							
9/16/98							

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- The "PWRDWN" on the XCS20XL is not part of the Boundary Scan chain. For the XCS20XL, subtract 1 from all Boundary Scan numbers from GCK3 on (247 and higher).
- 4. CS144 package discontinued by PDN2004-01

XCS30 and XCS30XL Device Pinouts

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
VCC	P89	P128	P183	P212	VCC ⁽⁴⁾	C10	-
I/O	P90	P129	P184	P213	C10	D10	74
I/O	P91	P130	P185	P214	D10	E10	77
I/O	P92	P131	P186	P215	A9	A9	80
I/O	P93	P132	P187	P216	B9	В9	83
I/O	-	-	P188	P217	C9	C9	86
I/O	-	-	P189	P218	D9	D9	89
I/O	P94	P133	P190	P220	A8	A8	92
I/O	P95	P134	P191	P221	B8	B8	95
VCC	-	-	P192	P222	VCC ⁽⁴⁾	A7	-
I/O	-	-	-	P223	A6	B7	98
I/O	-	-	-	P224	C7	C7	101
I/O	-	P135	P193	P225	B6	D7	104
I/O	-	P136	P194	P226	A5	A6	107
GND	-	P137	P195	P227	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	P196	P228	C6	В6	110
I/O	-	-	P197	P229	B5	C6	113
I/O	-	-	P198	P230	A4	D6	116
I/O	-	-	P199	P231	C5	E6	119
I/O	P96	P138	P200	P232	B4	A 5	122
I/O	P97	P139	P201	P233	A3	C5	125
I/O	-	-	P202	P234	D5	B4	128
I/O	-	-	P203	P235	C4	C4	131
I/O	-	P140	P204	P236	В3	A3	134
I/O	-	P141	P205	P237	B2	A2	137
I/O	P98	P142	P206	P238	A2	В3	140
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P99	P143	P207	P239	СЗ	B2	143
VCC	P100	P144	P208	P240	VCC ⁽⁴⁾	A1	-
GND	P1	P1	P1	P1	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	P2	P2	P2	B1	C3	146
I/O	P3	P3	P3	P3	C2	C2	149
I/O	-	P4	P4	P4	D2	B1	152

XCS40 and XCS40XL Device Pinouts

	C540 and AC540XL Device Pinouts						
XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan		
I/O	P90	P105	Y16	W14	466 ⁽³⁾		
GND	P91	P106	GND ⁽⁴⁾	GND ⁽⁴⁾	-		
I/O	-	P107	V15	V14	469 ⁽³⁾		
I/O	P92	P108	W16	U14	472 ⁽³⁾		
I/O	P93	P109	Y17	T14	475 ⁽³⁾		
I/O	P94	P110	V16	R14	478 ⁽³⁾		
I/O	P95	P111	W17	W15	481 ⁽³⁾		
I/O	P96	P112	Y18	U15	484 (3)		
I/O	-	-	-	T15	487 ⁽³⁾		
I/O	-	-	-	W16	490 (3)		
I/O	P97	P113	U16	V16	493 (3)		
I/O	P98	P114	V17	U16	496 ⁽³⁾		
I/O	P99	P115	W18	W17	499 (3)		
I/O	P100	P116	Y19	W18	502 ⁽³⁾		
I/O	P101	P117	V18	V17	505 ⁽³⁾		
I/O,	P102	P118	W19	V18	508 ⁽³⁾		
SGCK3 ⁽¹⁾ ,							
GCK4 ⁽²⁾							
GND	P103	P119	GND ⁽⁴⁾	GND ⁽⁴⁾	-		
DONE	P104	P120	Y20	W19	-		
VCC	P105	P121	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-		
PROGRAM	P106	P122	V19	U18	-		
I/O (D7 ⁽²⁾)	P107	P123	U19	V19	511 ⁽³⁾		
I/O,	P108	P124	U18	U19	514 ⁽³⁾		
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾							
I/O	P109	P125	T17	T16	517 ⁽³⁾		
I/O	P110	P126	V20	T17	520 ⁽³⁾		
I/O	-	P127	U20	T18	523 ⁽³⁾		
I/O	P111	P128	T18	T19	526 ⁽³⁾		
I/O	_	-	-	R15	529 ⁽³⁾		
I/O	-	-	-	R17	523 ⁽³⁾		
I/O (D6 ⁽²⁾)	P112	P129	T19	R16	535 ⁽³⁾		
I/O	P113	P130	T20	R19	538 ⁽³⁾		
I/O	P114	P131	R18	P15	541 ⁽³⁾		
I/O	P115	P132	R19	P17	544 (3)		
I/O	P116	P133	R20	P18	547 ⁽³⁾		
I/O	P117	P134	P18	P16	550 ⁽³⁾		
GND	P118	P135	GND ⁽⁴⁾	GND ⁽⁴⁾	-		
I/O		P136	P20	P19	553 ⁽³⁾		
I/O	_	P137	N18	N17	556 ⁽³⁾		
I/O	P119	P138	N19	N18	559 ⁽³⁾		
I/O	P120	P139	N20	N19	562 ⁽³⁾		
VCC	P121	P140	VCC ⁽⁴⁾	VCC ⁽⁴⁾	502 ()		
I/O (D5 ⁽²⁾)	P122	P140	M17	M19	565 ⁽³⁾		
I/O (D3(=/)	P123	P141	M18	M17	568 ⁽³⁾		
"0	1 123	1 142	IVI I O	IVI I /	JU0 (°)		

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
I/O	-	-	-	M18	571 ⁽³⁾
I/O	-	-	M19	M16	574 ⁽³⁾
I/O	P124	P144	M20	L19	577 ⁽³⁾
I/O	P125	P145	L19	L18	580 ⁽³⁾
I/O	P126	P146	L18	L17	583 ⁽³⁾
I/O	P127	P147	L20	L16	586 ⁽³⁾
I/O (D4 ⁽²⁾)	P128	P148	K20	K19	589 ⁽³⁾
I/O	P129	P149	K19	K18	592 ⁽³⁾
VCC	P130	P150	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P131	P151	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O (D3 ⁽²⁾)	P132	P152	K18	K16	595 ⁽³⁾
I/O	P133	P153	K17	K15	598 ⁽³⁾
I/O	P134	P154	J20	J19	601 ⁽³⁾
I/O	P135	P155	J19	J18	604 ⁽³⁾
I/O	P136	P156	J18	J17	607 ⁽³⁾
I/O	P137	P157	J17	J16	610 ⁽³⁾
I/O	-	-	H20	H19	613 ⁽³⁾
I/O	-	-	-	H18	616 ⁽³⁾
I/O (D2 ⁽²⁾)	P138	P159	H19	H17	619 ⁽³⁾
I/O	P139	P160	H18	H16	622 ⁽³⁾
VCC	P140	P161	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	P141	P162	G19	G18	625 ⁽³⁾
I/O	P142	P163	F20	G17	628 ⁽³⁾
I/O	-	P164	G18	G16	631 ⁽³⁾
I/O	-	P165	F19	F19	634 ⁽³⁾
GND	P143	P166	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P167	F18	F18	637 ⁽³⁾
I/O	P144	P168	E19	F17	640 ⁽³⁾
I/O	P145	P169	D20	F16	643 ⁽³⁾
I/O	P146	P170	E18	F15	646 ⁽³⁾
I/O	P147	P171	D19	E19	649 ⁽³⁾
I/O	P148	P172	C20	E17	652 ⁽³⁾
I/O (D1 ⁽²⁾)	P149	P173	E17	E16	655 ⁽³⁾
I/O	P150	P174	D18	D19	658 ⁽³⁾
I/O	-	-	-	D18	661 ⁽³⁾
I/O	-	-	-	D17	664 ⁽³⁾
I/O	P151	P175	C19	C19	667 ⁽³⁾
I/O	P152	P176	B20	B19	670 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P153	P177	C18	C18	673 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P154	P178	B19	B18	676 ⁽³⁾
CCLK	P155	P179	A20	A19	-
VCC	P156	P180	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-

Product Availability

Table 19 shows the packages and speed grades for Spartan/XL devices. Table 20 shows the number of user I/Os available for each device/package combination.

Table 19: Component Availability Chart for Spartan/XL FPGAs

	Pins	84	100	144	144	208	240	256	280
	Туре	Plastic PLCC	Plastic VQFP	Chip Scale	Plastic TQFP	Plastic PQFP	Plastic PQFP	Plastic BGA	Chip Scale
Device	Code	PC84 ⁽³⁾	VQ100 ⁽³⁾	CS144 ⁽³⁾	TQ144	PQ208	PQ240	BG256 ⁽³⁾	CS280 ⁽³⁾
XCS05	-3	C(3)	C, I	-	-	-	-	-	-
AC303	-4	C(3)	С	-	-	-	-	-	-
XCS10	-3	C(3)	C, I	-	С	-	-	-	-
AUS10 -	-4	C(3)	С	-	С	-	-	-	-
XCS20	-3	-	С	-	C, I	C, I	-	-	-
۸0320	-4	-	С	-	С	С	-	-	-
XCS30	-3	-	C(3)	-	C, I	C, I	С	C(3)	-
XC530	-4	-	C(3)	-	С	С	С	C(3)	-
XCS40	-3	-	-	-	-	C, I	С	С	-
AU340	-4	-	-	-	-	С	С	С	-
XCS05XL	-4	C(3)	C, I	-	-	-	-	-	-
VC303VL	-5	C(3)	С	-	-	-	-	-	-
XCS10XL	-4	C(3)	C, I	C(3)	С	-	-	-	-
ACSTUAL -	-5	C(3)	С	C(3)	С	-	-	-	-
XCS20XL	-4	-	C, I	C(3)	C, I	C, I	-	-	-
AUGZUAL -	-5	-	С	C(3)	С	С	-	-	-
XCS30XL	-4	-	C, I	-	C, I	C, I	С	С	C(3)
AUGGUAL -	-5	-	С	-	С	С	С	С	C(3)
XCS40XL	-4	-	-	-	-	C, I	С	C, I	C(3)
703407L	-5	-	-	-	-	С	С	С	C(3)

Notes:

- 1. $C = Commercial T_J = 0^{\circ} to +85^{\circ}C$
- 2. I = Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$
- 3. PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01
- 4. Some Spartan-XL devices are available in Pb-free package options. The Pb-free packages insert a "G" in the package code. Contact Xilinx for availability.

Package Specifications

Package drawings and material declaration data sheets for the Spartan/XL devices can be found on the Xilinx website at:

www.xilinx.com/support/documentation/spartan-xl.htm#19687

Thermal data for the Spartan/XL packages can be found using the thermal query tool on the Xilinx website at:

www.xilinx.com/cgi-bin/thermal/thermal.pl

Revision History

The following table shows the revision history for this document.

Date	Version	Description
11/20/98	1.3	Added Spartan-XL specs and Power Down.
01/06/99	1.4	All Spartan-XL -4 specs designated Preliminary with no changes.
03/02/00	1.5	Added CS package, updated Spartan-XL specs to Final.
09/19/01	1.6	Reformatted, updated power specs, clarified configuration information. Removed T_{SOL} soldering information from Absolute Maximum Ratings table. Changed Figure 26: Slave Serial Mode Characteristics: T_{CCH} , T_{CCL} from 45 to 40 ns. Changed Master Mode Configuration Switching Characteristics: T_{CCLK} min. from 80 to 100 ns. Added Total Dist. RAM Bits to Table 1; added Start-Up, page 36 characteristics.
06/27/02	1.7	Clarified Express Mode pseudo daisy chain. Added new Industrial options. Clarified XCS30XL CS280 V _{CC} pinout.
06/26/08	1.8	Noted that PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, are discontinued by PDN2004-01. Extended description of recommended maximum delay of reconfiguration in Delaying Configuration After Power-Up, page 35. Added reference to Pb-free package options and provided link to Package Specifications, page 81. Updated links.
03/01/13	2.0	The products listed in this data sheet are obsolete. See XCN11010 for further information.