

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	576
Number of Logic Elements/Cells	1368
Total RAM Bits	18432
Number of I/O	113
Number of Gates	30000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcs30xl-4tqg144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

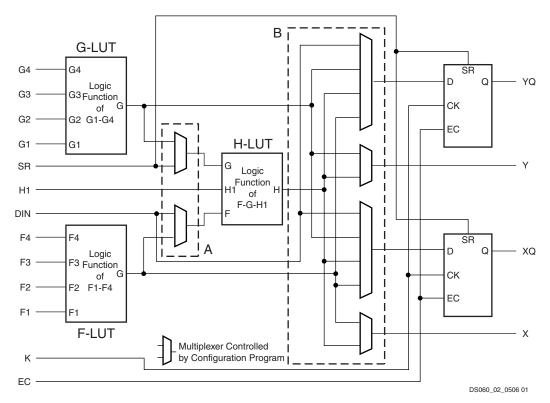


Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown)

A CLB can implement any of the following functions:

 Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables

Note: When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB.

- Any single function of five variables
- Any function of four variables together with some functions of six variables
- · Some functions of up to nine variables.

Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage.

Flip-Flops

Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay.

The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20.

Latches (Spartan-XL Family Only)

The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2.

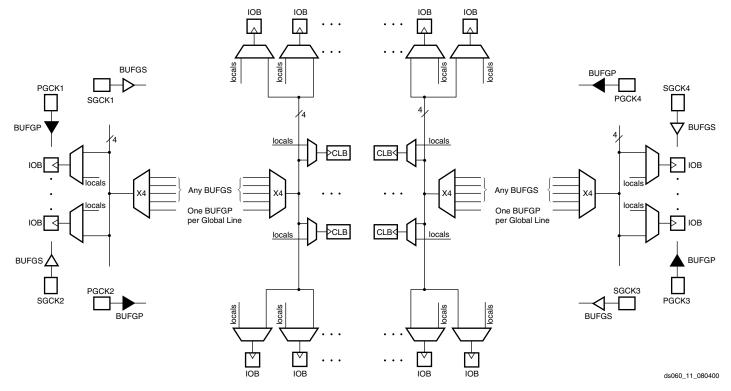


Figure 11: 5V Spartan Family Global Net Distribution

The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility.

The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets.

Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code.

Advanced Features Description

Distributed RAM

Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM).

Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA.

Memory Configuration Overview

There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB.

Table 8: CLB Memory Configurations

Mode	16 x 1	(16 x 1) x 2	32 x 1
Single-Port	√	√	V
Dual-Port	√	_	_

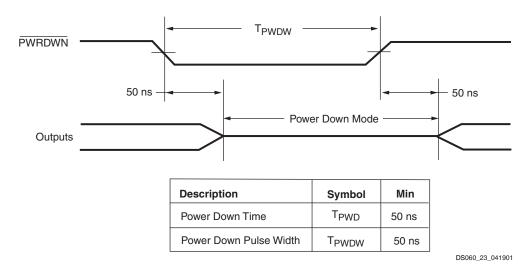


Figure 23: PWRDWN Pulse Timing

Power-down retains the configuration, but loses all data stored in the device flip-flops. All inputs are interpreted as Low, but the internal combinatorial logic is fully functional. Make sure that the combination of all inputs Low and all flip-flops set or reset in your design will not generate internal oscillations, or create permanent bus contention by activating internal bus drivers with conflicting data onto the same long line.

During configuration, the PWRDWN pin must be High. If the Power Down state is entered before or during configuration, the device will restart configuration once the PWRDWN signal is removed. Note that the configuration pins are affected by Power Down and may not reflect their normal function. If there is an external pull-up resistor on the DONE pin, it will be High during Power Down even if the device is not yet configured. Similarly, if PWRDWN is asserted before configuration is completed, the INIT pin will not indicate status information.

Note that the PWRDWN pin is not part of the Boundary Scan chain. Therefore, the Spartan-XL family has a separate set of BSDL files than the 5V Spartan family. Boundary scan logic is not usable during Power Down.

Configuration and Test

Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. Spartan/XL devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell

that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The Xilinx development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format.

Configuration Mode Control

5V Spartan devices have two configuration modes.

- MODE = 1 sets Slave Serial mode
- MODE = 0 sets Master Serial mode

3V Spartan-XL devices have three configuration modes.

- M1/M0 = 11 sets Slave Serial mode
- M1/M0 = 10 sets Master Serial mode
- M1/M0 = 0X sets Express mode

In addition to these modes, the device can be configured through the Boundary Scan logic (See "Configuration Through the Boundary Scan Pins" on page 37.).

The Mode pins are sampled prior to starting configuration to determine the configuration mode. After configuration, these pin are unused. The Mode pins have a weak pull-up resistor turned on during configuration. With the Mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the Mode pins can be left unconnected. If the Master Serial mode is desired, the MODE/M0 pin should be connected directly to GND, or through a pull-down resistor of 1 K Ω or less.

During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during con-

to the DONE pin. User I/Os for each device become active after the DONE pin for that device goes High. (The exact timing is determined by development system options.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device

in the chain has completed its configuration cycle. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured. Only devices supporting Express mode can be used to form an Express mode daisy chain.

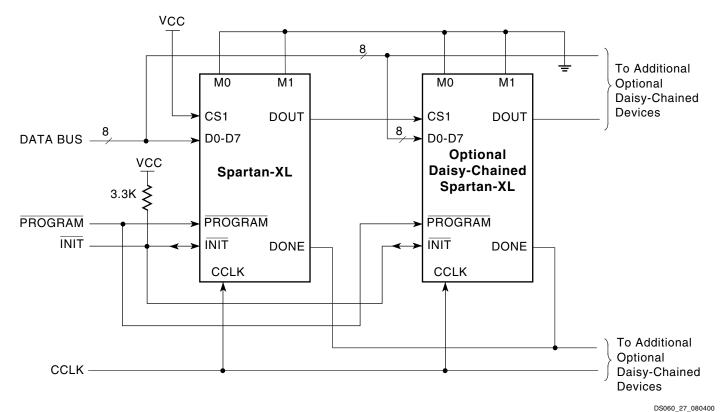


Figure 27: Express Mode Circuit Diagram

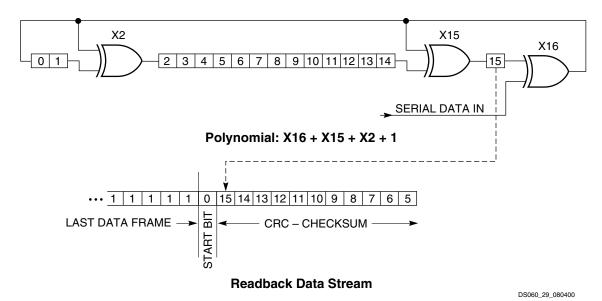


Figure 29: Circuit for Generating CRC-16

Configuration Sequence

There are four major steps in the Spartan/XL FPGA power-up configuration sequence.

- · Configuration Memory Clear
- Initialization
- Configuration
- Start-up

The full process is illustrated in Figure 30.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When V_{CC} reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms. The delay is four times as long when in Master Serial Mode to allow ample time for all slaves to reach a stable V_{CC} . When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain.

This delay is applied only on power-up. It is not applied when reconfiguring an FPGA by pulsing the PROGRAM pin

Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator.

At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the $\overline{PROGRAM}$ pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the \overline{INIT} input.

Initialization

During initialization and configuration, user pins HDC, $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE provide status outputs for the system interface. The outputs $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE are held Low and HDC is held High starting at the initial application of power.

The open drain $\overline{\text{INIT}}$ pin is released after the final initialization pass through the frame addresses. There is a deliberate delay before a Master-mode device recognizes an inactive $\overline{\text{INIT}}$. Two internal clocks after the $\overline{\text{INIT}}$ pin is recognized as High, the device samples the MODE pin to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded.

to wait after completing the configuration memory clear operation. When \overline{INIT} is no longer held Low externally, the device determines its configuration mode by capturing the state of the Mode pins, and is ready to start the configuration process. A master device waits up to an additional 300 μs to make sure that any slaves in the optional daisy chain have seen that \overline{INIT} is High.

For more details on Configuration, refer to the Xilinx Application Note "FPGA Configuration Guidelines" (XAPP090).

Start-Up

Start-up is the transition from the configuration process to the intended user operation. This transition involves a change from one clock source to another, and a change from interfacing parallel or serial configuration data where most outputs are 3-stated, to normal operation with I/O pins active in the user system. Start-up must make sure that the user logic 'wakes up' gracefully, that the outputs become active without causing contention with the configuration signals, and that the internal flip-flops are released from the Global Set/Reset (GSR) at the right time.

Start-Up Initiation

Two conditions have to be met in order for the start-up sequence to begin:

- The chip's internal memory must be full, and
- The configuration length count must be met, exactly.

In all configuration modes except Express mode, Spartan/XL devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration.

In Express mode, there is no length count. The start-up sequence for each device begins when the device has received its quota of configuration data. Wiring the DONE pins of several devices together delays start-up of all devices until all are fully configured.

Start-Up Events

The device can be programmed to control three start-up events.

- The release of the open-drain DONE output
- The termination of the Global Three-State and the change of configuration-related pins to the user function, activating all IOBs.
- The termination of the Global Set/Reset initialization of all CLB and IOB storage elements.

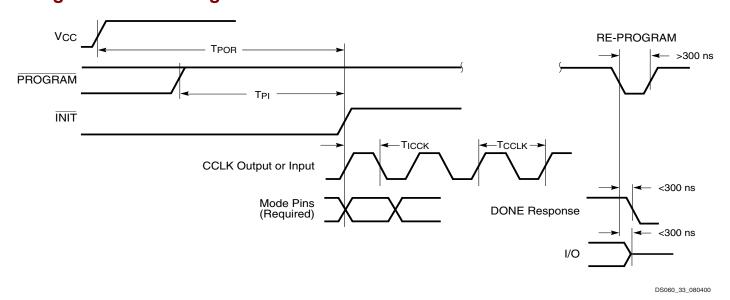
Figure 31 describes start-up timing in detail. The three events — DONE going High, the internal GSR being de-activated, and the user I/O going active — can all occur in any arbitrary sequence. This relative timing is selected by options in the bitstream generation software. Heavy lines in Figure 31 show the default timing. The thin lines indicate all other possible timing options. The start-up logic must be clocked until the "F" (Finished) state is reached.

The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. GSR is then released another clock period later to make sure that user operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 31, but the designer can modify it to meet particular requirements.

Start-Up Clock

Normally, the start-up sequence is controlled by the internal device oscillator (CCLK), which is asynchronous to the system clock. As a configuration option, they can be triggered by an on-chip user net called UCLK. This user net can be accessed by placing the STARTUP library symbol, and the start-up modes are known as UCLK_NOSYNC or UCLK_SYNC. This allows the device to wake up in synchronism with the user system.

DONE Pin


Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software.

The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to the start-up control logic. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK_SYNC or UCLK_SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. Express mode configuration always uses either CCLK_SYNC or UCLK_SYNC timing, while the other configuration modes can use any of the four timing sequences.

When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active.

Configuration Switching Characteristics

Master Mode

Symbol	Description	Min	Max	Units
T _{POR}	Power-on reset	40	130	ms
T _{PI}	Program Latency	30	200	μs per CLB column
T _{ICCK}	CCLK (output) delay	40	250	μs
T _{CCLK}	CCLK (output) period, slow	640	2000	ns
T _{CCLK}	CCLK (output) period, fast	100	250	ns

Slave Mode

Symbol	Description	Min	Max	Units
T _{POR}	Power-on reset	10	33	ms
T _{Pl}	Program latency	30	200	μs per CLB column
T _{ICCK}	CCLK (input) delay (required)	4	-	μs
T _{CCLK}	CCLK (input) period (required)	80	-	ns

Spartan Family Detailed Specifications

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

Notwithstanding the definition of the above terms, all specifications are subject to change without notice.

Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications.

Spartan Family Absolute Maximum Ratings(1)

Symbol	Description	Value	Units	
V _{CC}	Supply voltage relative to GND	-0.5 to +7.0	V	
V _{IN}	Input voltage relative to GND ^(2,3)	-0.5 to V _{CC} +0.5	V	
V _{TS}	Voltage applied to 3-state output ^(2,3)	-0.5 to V _{CC} +0.5	V	
T _{STG}	Storage temperature (ambient)	-65 to +150	°C	
T _J	Junction temperature	Plastic packages	+125	°C

Notes:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
 ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
 is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
- 2. Maximum DC overshoot (above V_{CC}) or undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve.
- 3. Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to +7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- 4. For soldering guidelines, see the Package Information on the Xilinx website.

Spartan Family Recommended Operating Conditions

Symbol	Description	Min	Max	Units	
V _{CC}	Supply voltage relative to GND, T _J = 0°C to +85°C	Commercial	4.75	5.25	V
	Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}^{(1)}$	Industrial	4.5	5.5	V
V _{IH}	High-level input voltage ⁽²⁾	TTL inputs	2.0	V_{CC}	V
		CMOS inputs	70%	100%	V_{CC}
V _{IL}	Low-level input voltage ⁽²⁾	TTL inputs	0	8.0	V
		CMOS inputs	0	20%	V_{CC}
T _{IN}	Input signal transition time	1	-	250	ns

Notes:

- At junction temperatures above those listed as Recommended Operating Conditions, all delay parameters increase by 0.35% per °C.
- 2. Input and output measurement thresholds are: 1.5V for TTL and 2.5V for CMOS.

Spartan Family CLB Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and expressed in nanoseconds unless otherwise noted.

		Speed Grade				
	Decesiation -	-	4	-3		1
Symbol	Description	Min	Max	Min	Max	Units
Clocks						
T _{CH}	Clock High time	3.0	-	4.0	-	ns
T_{CL}	Clock Low time	3.0	-	4.0	-	ns
Combina	torial Delays		1	1	1	1
T _{ILO}	F/G inputs to X/Y outputs	-	1.2	-	1.6	ns
T _{IHO}	F/G inputs via H to X/Y outputs	-	2.0	-	2.7	ns
T _{HH1O}	C inputs via H1 via H to X/Y outputs	-	1.7	-	2.2	ns
CLB Fast	Carry Logic		1		1	
T _{OPCY}	Operand inputs (F1, F2, G1, G4) to C _{OUT}	-	1.7	-	2.1	ns
T _{ASCY}	Add/Subtract input (F3) to C _{OUT}	-	2.8	-	3.7	ns
T _{INCY}	Initialization inputs (F1, F3) to C _{OUT}	-	1.2	-	1.4	ns
T _{SUM}	C _{IN} through function generators to X/Y outputs	-	2.0	-	2.6	ns
T _{BYP}	C _{IN} to C _{OUT} , bypass function generators	-	0.5	-	0.6	ns
Sequentia	al Delays					
T _{CKO}	Clock K to Flip-Flop outputs Q	-	2.1	-	2.8	ns
Setup Tin	ne before Clock K					
T _{ICK}	F/G inputs	1.8	-	2.4	-	ns
T _{IHCK}	F/G inputs via H	2.9	-	3.9	-	ns
T _{HH1CK}	C inputs via H1 through H	2.3	-	3.3	-	ns
T _{DICK}	C inputs via DIN	1.3	-	2.0	-	ns
T _{ECCK}	C inputs via EC	2.0	-	2.6	-	ns
T _{RCK}	C inputs via S/R, going Low (inactive)	2.5	-	4.0	-	ns
Hold Time	e after Clock K		1			
	All Hold times, all devices	0.0	-	0.0	-	ns
Set/Reset	Direct					
T _{RPW}	Width (High)	3.0	-	4.0	-	ns
T _{RIO}	Delay from C inputs via S/R, going High to Q	-	3.0	-	4.0	ns
Global Se	et/Reset					
T_{MRW}	Minimum GSR pulse width	11.5	-	13.5	-	ns
T_{MRQ}	Delay from GSR input to any Q	See pa	ge 50 for T _{RI}	RI values per	device.	
F _{TOG}	Toggle Frequency (MHz) (for export control purposes)	-	166	-	125	MHz

Spartan Family Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more pre-

cise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report.

Spartan Family Output Flip-Flop, Clock-to-Out

			Speed Grade		
			-4	-3	
Symbol	Description	Device	Max	Max	Units
Global Pri	mary Clock to TTL Output using OFF			'	'
T _{ICKOF}	Fast	XCS05	5.3	8.7	ns
		XCS10	5.7	9.1	ns
		XCS20	6.1	9.3	ns
		XCS30	6.5	9.4	ns
		XCS40	6.8	10.2	ns
T _{ICKO}	Slew-rate limited	XCS05	9.0	11.5	ns
		XCS10	9.4	12.0	ns
		XCS20	9.8	12.2	ns
		XCS30	10.2	12.8	ns
		XCS40	10.5	12.8	ns
Global Sec	condary Clock to TTL Output using OFF				
T _{ICKSOF}	Fast	XCS05	5.8	9.2	ns
		XCS10	6.2	9.6	ns
		XCS20	6.6	9.8	ns
		XCS30	7.0	9.9	ns
		XCS40	7.3	10.7	ns
T _{ICKSO}	Slew-rate limited	XCS05	9.5	12.0	ns
		XCS10	9.9	12.5	ns
		XCS20	10.3	12.7	ns
		XCS30	10.7	13.2	ns
		XCS40	11.0	14.3	ns
Delay Add	er for CMOS Outputs Option			1	1
T _{CMOSOF}	Fast	All devices	0.8	1.0	ns
T_{CMOSO}	Slew-rate limited	All devices	1.5	2.0	ns

Notes:

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 34.
- 3. OFF = Output Flip-Flop

Capacitive Load Factor

Figure 34 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 34 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

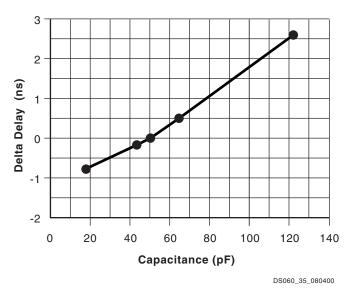


Figure 34: Delay Factor at Various Capacitive Loads

Spartan-XL Family Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper-

ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading.

Spartan-XL Family Setup and Hold

			Speed				
			-5	-4			
Symbol	Description	Device	Max	Max	Units		
Input Setup/Hold Times Using Global Clock and IFF							
T _{SUF} /T _{HF}	No Delay	XCS05XL	1.1/2.0	1.6/2.6	ns		
		XCS10XL	1.0/2.2	1.5/2.8	ns		
		XCS20XL	0.9/2.4	1.4/3.0	ns		
		XCS30XL	0.8/2.6	1.3/3.2	ns		
		XCS40XL	0.7/2.8	1.2/3.4	ns		
T _{SU} /T _H	Full Delay	XCS05XL	3.9/0.0	5.1/0.0	ns		
		XCS10XL	4.1/0.0	5.3/0.0	ns		
		XCS20XL	4.3/0.0	5.5/0.0	ns		
		XCS30XL	4.5/0.0	5.7/0.0	ns		
		XCS40XL	4.7/0.0	5.9/0.0	ns		

Notes:

- 1. IFF = Input Flip-Flop or Latch
- 2. Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per IOB/CLB.

Capacitive Load Factor

Figure 35 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay. Figure 35 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

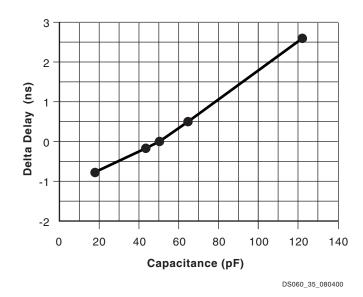


Figure 35: Delay Factor at Various Capacitive Loads

Pin Descriptions

There are three types of pins in the Spartan/XL devices:

- · Permanently dedicated pins
- User I/O pins that can have special functions
- Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the configuration process are 3-stated with the I/O pull-up resistor network activated. After configuration, if an IOB is unused it is configured as an input with the I/O pull-up resistor network remaining activated.

Any user I/O can be configured to drive the Global Set/Reset net GSR or the global three-state net GTS. See **Global Signals: GSR and GTS**, page 20 for more information.

Device pins for Spartan/XL devices are described in Table 18.

Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options.

Table 18: Pin Descriptions

Pin Name	I/O During Config.	I/O After Config.	Pin Description
Permanently D	Dedicated P	ins	
V _{CC}	Х	Х	Eight or more (depending on package) connections to the nominal +5V supply voltage (+3.3V for Spartan-XL devices). All must be connected, and each must be decoupled with a 0.01 –0.1 μ F capacitor to Ground.
GND	Х	Х	Eight or more (depending on package type) connections to Ground. All must be connected.
CCLK	I or O	I	During configuration, Configuration Clock (CCLK) is an output in Master mode and is an input in Slave mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on Spartan/XL devices, except during Readback. See Violating the Maximum High and Low Time Specification for the Readback Clock, page 39 for an explanation of this exception.
DONE	I/O	0	DONE is a bidirectional signal with an optional internal pull-up resistor. As an open-drain output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs.
			The optional pull-up resistor is selected as an option in the program that creates the configuration bitstream. The resistor is included by default.
PROGRAM	I	I	PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT.
			The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to VCC.
MODE (Spartan)	I	X	The Mode input(s) are sampled after INIT goes High to determine the configuration mode to be used.
M0, M1 (Spartan-XL)			During configuration, these pins have a weak pull-up resistor. For the most popular configuration mode, Slave Serial, the mode pins can be left unconnected. For Master Serial mode, connect the Mode/M0 pin directly to system ground.

Table 18: Pin Descriptions (Continued)

	I/O					
Pin Name	During Config.	I/O After Config.	Pin Description			
SGCK1 - SGCK4 (Spartan)	Weak Pull-up (except SGCK4	I or I/O	Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.			
	is DOUT)		The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins.			
GCK1 - GCK8 (Spartan-XL)	Weak Pull-up (except	I or I/O	Eight Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.			
	GCK6 is DOUT)		The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol is automatically placed on one of these pins.			
CS1 (Spartan-XL)	I	I/O	During Express configuration, CS1 is used as a serial-enable signal for daisy-chaining.			
D0-D7 (Spartan-XL)	I	I/O	During Express configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins.			
DIN	I	I/O	During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. After configuration, DIN is a user-programmable I/O pin.			
DOUT	0	I/O	During Slave Serial or Master Serial configuration, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input.			
			In Spartan-XL family Express mode, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.			
			After configuration, DOUT is a user-programmable I/O pin.			
Unrestricted User-Programmable I/O Pins						
I/O	Weak Pull-up	I/O	These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor network that defines the logic level as High.			

XCS10 and XCS10XL Device Pinouts

XCS10/XL					Bndry
Pad Name	PC84 ⁽⁴⁾	VQ100	CS144 ^(2,4)	TQ144	Scan
VCC	P33	P25	N1	P37	-
Not	P34	P26	N2	P38	174 ⁽¹⁾
Connect-					
ed ⁽¹⁾					
PWRDWN ⁽²					
)					
I/O,	P35	P27	М3	P39	175 ⁽³⁾
PGCK2 ⁽¹⁾					
GCK3 ⁽²⁾	D00	Doo	NO	D.10	470 (3)
I/O (HDC)	P36	P28	N3	P40	178 ⁽³⁾
1/0	-	-	K4	P41	181 ⁽³⁾
1/0	-	-	L4	P42	184 ⁽³⁾
I/O (I DC)	- D07	P29	M4	P43	187 ⁽³⁾
I/O (LDC)	P37	P30	N4	P44	190 ⁽³⁾
GND	-	-	K5	P45	193 ⁽³⁾
I/O I/O	-	-	L5 M5	P46 P47	193 ⁽³⁾
	- D00	- D01	N5	P47 P48	196 ⁽³⁾
I/O I/O	P38	P31 P32	K6	P46 P49	202 (3)
I/O	P39	P32	L6	P49 P50	205 (3)
I/O	-	P33	M6	P50 P51	208 (3)
I/O	P40	P35	N6	P52	211 ⁽³⁾
	P40 P41	P35	M7	P52	211 ⁽³⁾
I/O (INIT) VCC	P42	P37	N7	P54	214 (9)
GND	P43	P38	L7	P55	-
I/O	P44	P39	K7	P56	217 ⁽³⁾
I/O	P45	P40	N8	P57	220 (3)
I/O	1 43	P41	M8	P58	223 (3)
I/O	_	P42	L8	P59	226 ⁽³⁾
I/O	P46	P43	K8	P60	229 (3)
I/O	P47	P44	N9	P61	232 (3)
I/O	-	-	M9	P62	235 (3)
I/O	_	-	L9	P63	238 (3)
GND	_	_	K9	P64	-
I/O	P48	P45	N10	P65	241 ⁽³⁾
I/O	P49	P46	M10	P66	244 (3)
I/O	-	-	L10	P67	247 ⁽³⁾
I/O	-	-	N11	P68	250 ⁽³⁾
I/O	P50	P47	M11	P69	253 ⁽³⁾
I/O,	P51	P48	L11	P70	256 ⁽³⁾
SGCK3 ⁽¹⁾					
GCK4 ⁽²⁾					
GND	P52	P49	N12	P71	-
DONE	P53	P50	M12	P72	-
VCC	P54	P51	N13	P73	-
PROGRAM	P55	P52	M13	P74	-
I/O (D7 ⁽²⁾)	P56	P53	L12	P75	259 ⁽³⁾

XCS10 and XCS10XL Device Pinouts

XCS10/XL	(4)		(0.4)		Bndry
Pad Name	PC84 ⁽⁴⁾	VQ100	CS144 ^(2,4)	TQ144	Scan
I/O,	P57	P54	L13	P76	262 ⁽³⁾
PGCK3 ⁽¹⁾ GCK5 ⁽²⁾					
I/O	-	-	K10	P77	265 ⁽³⁾
I/O	-	-	K11	P78	268 ⁽³⁾
I/O (D6 ⁽²⁾)	P58	P55	K12	P79	271 ⁽³⁾
I/O	-	P56	K13	P80	274 (3)
GND	-	-	J10	P81	-
I/O	-	-	J11	P82	277 (3)
I/O	-	-	J12	P83	280 (3)
I/O (D5 ⁽²⁾)	P59	P57	J13	P84	283 ⁽³⁾
I/O	P60	P58	H10	P85	286 ⁽³⁾
I/O	-	P59	H11	P86	289 ⁽³⁾
I/O	-	P60	H12	P87	292 ⁽³⁾
I/O (D4 ⁽²⁾)	P61	P61	H13	P88	295 ⁽³⁾
I/O	P62	P62	G12	P89	298 ⁽³⁾
VCC	P63	P63	G13	P90	-
GND	P64	P64	G11	P91	-
I/O (D3 ⁽²⁾)	P65	P65	G10	P92	301 ⁽³⁾
I/O	P66	P66	F13	P93	304 ⁽³⁾
I/O	-	P67	F12	P94	307 ⁽³⁾
I/O	-	-	F11	P95	310 ⁽³⁾
I/O (D2 ⁽²⁾)	P67	P68	F10	P96	313 ⁽³⁾
I/O	P68	P69	E13	P97	316 ⁽³⁾
I/O	-	-	E12	P98	319 ⁽³⁾
I/O	-	-	E11	P99	322 (3)
GND	-	-	E10	P100	-
I/O (D1 ⁽²⁾)	P69	P70	D13	P101	325 ⁽³⁾
I/O	P70	P71	D12	P102	328 ⁽³⁾
I/O	-	-	D11	P103	331 ⁽³⁾
I/O	-	-	C13	P104	334 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P71	P72	C12	P105	337 ⁽³⁾
I/O,	P72	P73	C11	P106	340 (3)
SGCK4 ⁽¹⁾					
GCK6 ⁽²⁾					
(DOUT)					
CCLK	P73	P74	B13	P107	-
VCC	P74	P75	B12	P108	-
O, TDO	P75	P76	A13	P109	0
GND	P76	P77	A12	P110	-
I/O	P77	P78	B11	P111	2
I/O,	P78	P79	A11	P112	5
PGCK4 ⁽¹⁾					
GCK7 ⁽²⁾			D10	D110	0
1/0	-	-	D10	P113	8
1/0	- D70	-	C10	P114	11
I/O (CS1 ⁽²⁾)	P79	P80	B10	P115	14

XCS10 and XCS10XL Device Pinouts

XCS10/XL Pad Name	PC84 ⁽⁴⁾	VQ100	CS144 ^(2,4)	TQ144	Bndry Scan
I/O	P80	P81	A10	P116	17
GND	-	-	C9	P118	-
I/O	-	-	B9	P119	20
I/O	-	-	A9	P120	23
I/O	P81	P82	D8	P121	26
I/O	P82	P83	C8	P122	29
I/O	-	P84	B8	P123	32
I/O	-	P85	A8	P124	35
I/O	P83	P86	B7	P125	38
I/O	P84	P87	A7	P126	41
GND	P1	P88	C7	P127	-

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- 3. The "PWRDWN" on the XCS10XL is not part of the Boundary Scan chain. For the XCS10XL, subtract 1 from all Boundary Scan numbers from GCK3 on (175 and higher).
- 4. PC84 and CS144 packages discontinued by PDN2004-01

Additional XCS10/XL Package Pins

TQ144										
	Not Connected Pins									
P117	-	-	-	-	-					
5/5/97										

CS144										
	Not Connected Pins									
D9	-	-	-	-	-					
4/28/99										

XCS20 and XCS20XL Device Pinouts

XCS20/XL					Bndry
Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Scan
VCC	P89	D7	P128	P183	-
I/O	P90	A6	P129	P184	62
I/O	P91	B6	P130	P185	65
I/O	P92	C6	P131	P186	68
I/O	P93	D6	P132	P187	71
I/O	-	-	-	P188	74
I/O	-	-	-	P189	77
I/O	P94	A5	P133	P190	80
I/O	P95	B5	P134	P191	83
VCC ⁽²⁾	-	-	-	P192	-
I/O	-	C5	P135	P193	86
I/O	-	D5	P136	P194	89
GND	-	A4	P137	P195	-
I/O	-	-	-	P196	92
I/O	-	-	-	P197	95
I/O	-	-	-	P198	98
I/O	-	-	-	P199	101
I/O	P96	B4	P138	P200	104
I/O	P97	C4	P139	P201	107
I/O	-	А3	P140	P204	110
I/O	-	B3	P141	P205	113
I/O	P98	C3	P142	P206	116

XCS20 and XCS20XL Device Pinouts

XCS20/XL	V0400	CS144 ^(2,4)	TO444	DOGGG	Bndry
Pad Name	VQ100		TQ144	PQ208	Scan
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P99	A2	P143	P207	119
VCC	P100	B2	P144	P208	-
GND	P1	A1	P1	P1	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	B1	P2	P2	122
I/O	P3	C2	P3	P3	125
I/O	-	C1	P4	P4	128
I/O	-	D4	P5	P5	131
I/O, TDI	P4	D3	P6	P6	134
I/O, TCK	P5	D2	P7	P7	137
I/O	-	-	-	P8	140
I/O	-	-	-	P9	143
I/O	-	-	-	P10	146
I/O	-	-	-	P11	149
GND	-	D1	P8	P13	-
I/O	-	E4	P9	P14	152
I/O	-	E3	P10	P15	155
I/O, TMS	P6	E2	P11	P16	158
I/O	P7	E1	P12	P17	161
VCC ⁽²⁾	-	-	-	P18	-
I/O	-	-	-	P19	164
I/O	-	-	-	P20	167

XCS20 and XCS20XL Device Pinouts

	d XCS20XL Device Pinouts							
XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan			
PROGRAM	P52	M13	P74	P106	-			
I/O (D7 ⁽²⁾)	P53	L12	P75	P107	367 ⁽³⁾			
I/O,	P54	L13	P76	P108	370 ⁽³⁾			
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾								
I/O		K10	P77	P109	373 ⁽³⁾			
1/0	-	K10	P77	P109	373 ⁽³⁾			
I/O (D6 ⁽²⁾)	- P55	K11	P79	P110	379 ⁽³⁾			
I/O (D6(=/)		K12		P112	382 (3)			
	P56	NIS	P80		385 (3)			
1/0	-	-	-	P114				
1/0	-	-	-	P115	388 (3)			
1/0	-	-	-	P116	391 ⁽³⁾			
I/O	-	-	-	P117	394 ⁽³⁾			
GND	-	J10	P81	P118	- (2)			
I/O	-	J11	P82	P119	397 ⁽³⁾			
I/O	-	J12	P83	P120	400 (3)			
VCC ⁽²⁾	-	-	-	P121	- (0)			
I/O (D5 ⁽²⁾)	P57	J13	P84	P122	403 (3)			
I/O	P58	H10	P85	P123	406 ⁽³⁾			
I/O	-	-	-	P124	409 (3)			
I/O	-	-	-	P125	412 ⁽³⁾			
I/O	P59	H11	P86	P126	415 ⁽³⁾			
I/O	P60	H12	P87	P127	418 ⁽³⁾			
I/O (D4 ⁽²⁾)	P61	H13	P88	P128	421 ⁽³⁾			
I/O	P62	G12	P89	P129	424 ⁽³⁾			
VCC	P63	G13	P90	P130	-			
GND	P64	G11	P91	P131	-			
I/O (D3 ⁽²⁾)	P65	G10	P92	P132	427 ⁽³⁾			
I/O	P66	F13	P93	P133	430 ⁽³⁾			
I/O	P67	F12	P94	P134	433 ⁽³⁾			
I/O	-	F11	P95	P135	436 ⁽³⁾			
I/O	-	-	-	P136	439 ⁽³⁾			
I/O	-	-	-	P137	442 (3)			
I/O (D2 ⁽²⁾)	P68	F10	P96	P138	445 ⁽³⁾			
I/O	P69	E13	P97	P139	448 ⁽³⁾			
VCC ⁽²⁾	-	-	-	P140	-			
I/O	_	E12	P98	P141	451 ⁽³⁾			
I/O	_	E11	P99	P142	454 ⁽³⁾			
GND	-	E10	P100	P143	-			
I/O	-	-	-	P145	457 ⁽³⁾			
I/O	-	-	-	P146	460 ⁽³⁾			
I/O	-	-	-	P147	463 ⁽³⁾			
I/O	-	-	-	P148	466 ⁽³⁾			
I/O (D1 ⁽²⁾)	P70	D13	P101	P149	469 ⁽³⁾			
I/O	P71	D12	P102	P150	472 ⁽³⁾			
I/O	-	D11	P103	P151	475 ⁽³⁾			

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	C13	P104	P152	478 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P72	C12	P105	P153	481 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P73	C11	P106	P154	484 ⁽³⁾
CCLK	P74	B13	P107	P155	-
VCC	P75	B12	P108	P156	-
O, TDO	P76	A13	P109	P157	0
GND	P77	A12	P110	P158	-
I/O	P78	B11	P111	P159	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P79	A11	P112	P160	5
I/O	-	D10	P113	P161	8
I/O	-	C10	P114	P162	11
I/O (CS1 ⁽²⁾)	P80	B10	P115	P163	14
I/O	P81	A10	P116	P164	17
I/O	-	D9	P117	P166	20
I/O	-	-	-	P167	23
I/O	-	-	-	P168	26
I/O	-	-	-	P169	29
GND	-	C9	P118	P170	-
I/O	-	B9	P119	P171	32
I/O	-	A9	P120	P172	35
VCC ⁽²⁾	-	-	-	P173	-
I/O	P82	D8	P121	P174	38
I/O	P83	C8	P122	P175	41
I/O	-	-	-	P176	44
I/O	-	-	-	P177	47
I/O	P84	B8	P123	P178	50
I/O	P85	A8	P124	P179	53
I/O	P86	B7	P125	P180	56
I/O	P87	A7	P126	P181	59
GND	P88	C7	P127	P182	-

2/8/00

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	P5	P5	P5	D3	C1	155
I/O, TDI	P4	P6	P6	P6	E4	D4	158
I/O, TCK	P5	P7	P7	P7	C1	D3	161
I/O	-	-	P8	P8	D1	E2	164
I/O	-	-	P9	P9	E3	E4	167
I/O	-	-	P10	P10	E2	E1	170
I/O	-	-	P11	P11	E1	F5	173
I/O	-	-	P12	P12	F3	F3	176
I/O	-	-	-	P13	F2	F2	179
GND	-	P8	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P9	P14	P15	G3	F4	182
I/O	-	P10	P15	P16	G2	F1	185
I/O, TMS	P6	P11	P16	P17	G1	G3	188
I/O	P7	P12	P17	P18	НЗ	G2	191
VCC	-	-	P18	P19	VCC ⁽⁴⁾	G1	-
I/O	-	-	-	P20	H2	G4	194
I/O	-	-	-	P21	H1	H1	197
I/O	-	-	P19	P23	J2	H4	200
I/O	-	-	P20	P24	J1	J1	203
I/O	-	P13	P21	P25	K2	J2	206
I/O	P8	P14	P22	P26	K3	J3	209
I/O	P9	P15	P23	P27	K1	J4	212
I/O	P10	P16	P24	P28	L1	K1	215
GND	P11	P17	P25	P29	GND ⁽⁴⁾	GND ⁽⁴⁾	-
VCC	P12	P18	P26	P30	VCC ⁽⁴⁾	K2	-
I/O	P13	P19	P27	P31	L2	K3	218
I/O	P14	P20	P28	P32	L3	K4	221
I/O	P15	P21	P29	P33	L4	K5	224
I/O	-	P22	P30	P34	M1	L1	227
I/O	-	-	P31	P35	M2	L2	230
I/O	-	-	P32	P36	M3	L3	233
I/O	-	-	-	P38	N1	M2	236
I/O	-	-	-	P39	N2	M3	239
VCC	-	-	P33	P40	VCC ⁽⁴⁾	M4	-
I/O	P16	P23	P34	P41	P1	N1	242
I/O	P17	P24	P35	P42	P2	N2	245
I/O	-	P25	P36	P43	R1	N3	248
I/O	-	P26	P37	P44	P3	N4	251
GND	-	P27	P38	P45	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P46	T1	P1	254
I/O	-	-	P39	P47	R3	P2	257
I/O	-	-	P40	P48	T2	P3	260
I/O	-	-	P41	P49	U1	P4	263
I/O	-	_	P42	P50	T3	P5	266
I/O	-	_	P43	P51	U2	R1	269

CS280

	VCC Pins										
E5	E7	E8	E9	E11	E12						
E13	G5	G15	H5	H15	J5						
J15	L5	L15	M5	M15	N5						
N15	R7	R8	R9	R11	R12						
R13	-	-	-	-	-						
		Not Cor	nected Pi	ns							
A4	A12	C8	C12	C15	D1						
D2	D5	D8	D17	D18	E15						
H2	НЗ	H18	H19	L4	M1						
M16	M18	R2	R4	R5	R15						
R17	T8	T15	U5	V8	V12						
W12	W16	-	-	-	-						
	Not Connected Pins (VCC in XCS40XL)										
B5	B15	E3	E18	R3	R18						
V5	V15	-	-	-	-						

5/21/02

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
VCC	P183	P212	VCC ⁽⁴⁾	VCC ⁽⁴⁾	Juli
					-
I/O	P184	P213	C10	D10	86
I/O	P185	P214	D10	E10	89
I/O	P186	P215	A9	A9	92
I/O	P187	P216	B9	B9	95
I/O	P188	P217	C9	C9	98
I/O	P189	P218	D9	D9	101
I/O	P190	P220	A8	A8	104
I/O	P191	P221	B8	B8	107
I/O	-	-	C8	C8	110
I/O	-	-	A7	D8	113
VCC	P192	P222	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P223	A6	B7	116
I/O	-	P224	C7	C7	119
I/O	P193	P225	B6	D7	122
I/O	P194	P226	A5	A6	125
GND	P195	P227	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P196	P228	C6	B6	128
I/O	P197	P229	B5	C6	131
I/O	P198	P230	A4	D6	134
I/O	P199	P231	C5	E6	137

XCS40 and XCS40XL Device Pinouts

XCS40/XL			741001		Bndry
Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Scan
I/O	P200	P232	B4	A5	140
I/O	P201	P233	A3	C5	143
I/O	-	1	-	D5	146
I/O	-	1	-	A4	149
I/O	P202	P234	D5	B4	152
I/O	P203	P235	C4	C4	155
I/O	P204	P236	В3	A3	158
I/O	P205	P237	B2	A2	161
I/O	P206	P238	A2	В3	164
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P207	P239	C3	B2	167
VCC	P208	P240	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P1	P1	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	P2	B1	C3	170
I/O	P3	P3	C2	C2	173
I/O	P4	P4	D2	B1	176
I/O	P5	P5	D3	C1	179
I/O, TDI	P6	P6	E4	D4	182
I/O, TCK	P7	P7	C1	D3	185
I/O	-	-	-	D2	188
I/O	-	1	-	D1	191
I/O	P8	P8	D1	E2	194
I/O	P9	P9	E3	E4	197
I/O	P10	P10	E2	E1	200
I/O	P11	P11	E1	F5	203
I/O	P12	P12	F3	F3	206
I/O	-	P13	F2	F2	209
GND	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P14	P15	G3	F4	212
I/O	P15	P16	G2	F1	215
I/O, TMS	P16	P17	G1	G3	218
I/O	P17	P18	НЗ	G2	221
VCC	P18	P19	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P20	H2	G4	224
I/O	-	P21	H1	H1	227
I/O	-	-	J4	H3	230
I/O	-	-	J3	H2	233
I/O	P19	P23	J2	H4	236
I/O	P20	P24	J1	J1	239
I/O	P21	P25	K2	J2	242
I/O	P22	P26	K3	J3	245
I/O	P23	P27	K1	J4	248
I/O	P24	P28	L1	K1	251

XCS40 and XCS40XL Device Pinouts

ACS40 and ACS40AL Device Pinouts								
XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan			
I/O	P90	P105	Y16	W14	466 ⁽³⁾			
GND	P91	P106	GND ⁽⁴⁾	GND ⁽⁴⁾	-			
I/O	-	P107	V15	V14	469 ⁽³⁾			
I/O	P92	P108	W16	U14	472 ⁽³⁾			
I/O	P93	P109	Y17	T14	475 ⁽³⁾			
I/O	P94	P110	V16	R14	478 ⁽³⁾			
I/O	P95	P111	W17	W15	481 ⁽³⁾			
I/O	P96	P112	Y18	U15	484 (3)			
I/O	-	-	-	T15	487 ⁽³⁾			
I/O	-	-	-	W16	490 ⁽³⁾			
I/O	P97	P113	U16	V16	493 (3)			
I/O	P98	P114	V17	U16	496 ⁽³⁾			
I/O	P99	P115	W18	W17	499 (3)			
I/O	P100	P116	Y19	W18	502 ⁽³⁾			
I/O	P101	P117	V18	V17	505 ⁽³⁾			
I/O,	P102	P118	W19	V18	508 ⁽³⁾			
SGCK3 ⁽¹⁾ ,	1 .02			1.0				
GCK4 ⁽²⁾								
GND	P103	P119	GND ⁽⁴⁾	GND ⁽⁴⁾	-			
DONE	P104	P120	Y20	W19	-			
VCC	P105	P121	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-			
PROGRAM	P106	P122	V19	U18	-			
I/O (D7 ⁽²⁾)	P107	P123	U19	V19	511 ⁽³⁾			
I/O,	P108	P124	U18	U19	514 ⁽³⁾			
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾								
I/O	P109	P125	T17	T16	517 ⁽³⁾			
I/O	P110	P126	V20	T17	520 ⁽³⁾			
I/O	-	P127	U20	T18	523 ⁽³⁾			
I/O	P111	P128	T18	T19	526 ⁽³⁾			
I/O	_	-	-	R15	529 ⁽³⁾			
I/O	-	-	-	R17	523 ⁽³⁾			
I/O (D6 ⁽²⁾)	P112	P129	T19	R16	535 ⁽³⁾			
I/O	P113	P130	T20	R19	538 ⁽³⁾			
I/O	P114	P131	R18	P15	541 ⁽³⁾			
I/O	P115	P132	R19	P17	544 (3)			
I/O	P116	P133	R20	P18	547 ⁽³⁾			
I/O	P117	P134	P18	P16	550 ⁽³⁾			
GND	P118	P135	GND ⁽⁴⁾	GND ⁽⁴⁾	-			
I/O		P136	P20	P19	553 ⁽³⁾			
I/O	_	P137	N18	N17	556 ⁽³⁾			
I/O	P119	P138	N19	N18	559 ⁽³⁾			
I/O	P120	P139	N20	N19	562 ⁽³⁾			
VCC	P121	P140	VCC ⁽⁴⁾	VCC ⁽⁴⁾	502 ()			
I/O (D5 ⁽²⁾)	P122	P140	M17	M19	565 ⁽³⁾			
I/O (D3(=/)	P123	P141	M18	M17	568 ⁽³⁾			
"0	1 123	1 142	IVI I O	IVI I /	JUO (°)			

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
I/O	-	-	-	M18	571 ⁽³⁾
I/O	-	-	M19	M16	574 ⁽³⁾
I/O	P124	P144	M20	L19	577 ⁽³⁾
I/O	P125	P145	L19	L18	580 ⁽³⁾
I/O	P126	P146	L18	L17	583 ⁽³⁾
I/O	P127	P147	L20	L16	586 ⁽³⁾
I/O (D4 ⁽²⁾)	P128	P148	K20	K19	589 ⁽³⁾
I/O	P129	P149	K19	K18	592 ⁽³⁾
VCC	P130	P150	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P131	P151	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O (D3 ⁽²⁾)	P132	P152	K18	K16	595 ⁽³⁾
I/O	P133	P153	K17	K15	598 ⁽³⁾
I/O	P134	P154	J20	J19	601 ⁽³⁾
I/O	P135	P155	J19	J18	604 ⁽³⁾
I/O	P136	P156	J18	J17	607 ⁽³⁾
I/O	P137	P157	J17	J16	610 ⁽³⁾
I/O	-	-	H20	H19	613 ⁽³⁾
I/O	-	-	-	H18	616 ⁽³⁾
I/O (D2 ⁽²⁾)	P138	P159	H19	H17	619 ⁽³⁾
I/O	P139	P160	H18	H16	622 ⁽³⁾
VCC	P140	P161	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	P141	P162	G19	G18	625 ⁽³⁾
I/O	P142	P163	F20	G17	628 ⁽³⁾
I/O	-	P164	G18	G16	631 ⁽³⁾
I/O	-	P165	F19	F19	634 ⁽³⁾
GND	P143	P166	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P167	F18	F18	637 ⁽³⁾
I/O	P144	P168	E19	F17	640 ⁽³⁾
I/O	P145	P169	D20	F16	643 ⁽³⁾
I/O	P146	P170	E18	F15	646 ⁽³⁾
I/O	P147	P171	D19	E19	649 ⁽³⁾
I/O	P148	P172	C20	E17	652 ⁽³⁾
I/O (D1 ⁽²⁾)	P149	P173	E17	E16	655 ⁽³⁾
I/O	P150	P174	D18	D19	658 ⁽³⁾
I/O	-	-	-	D18	661 ⁽³⁾
I/O	-	-	-	D17	664 ⁽³⁾
I/O	P151	P175	C19	C19	667 ⁽³⁾
I/O	P152	P176	B20	B19	670 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P153	P177	C18	C18	673 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P154	P178	B19	B18	676 ⁽³⁾
CCLK	P155	P179	A20	A19	-
VCC	P156	P180	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-