Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 113 | | Number of Gates | 30000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs30xl-5tq144c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | T-1-1- | Ο. | Δ I D | Ot | | Functionality | |--------|-----|--------------|---------|---------|----------------| | םוחבו | ٠,٠ | | STORAGE | FIDMONT | FIIDCTIONSIITV | | | | | | | | | Mode | СК | EC | SR | D | Q | |---------------------------|----|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | Flip-Flop | Х | Х | 1 | Х | SR | | Operation | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Operation
(Spartan-XL) | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Q | #### Legend: | Χ | Don't care | |----|--| | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Figure 3: CLB Flip-Flop Functional Block Diagram #### **Clock Input** Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB. #### **Clock Enable** The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device. #### Set/Reset The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB. ### CLB Signal Flow Control In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y). Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source. Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT. #### **Control Signals** There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals. - The 16 x 1 single-port configuration contains a RAM array with 16 locations, each one-bit wide. One 4-bit address decoder determines the RAM location for write and read operations. There is one input for writing data and one output for reading data, all at the selected address. - The (16 x 1) x 2 single-port configuration combines two 16 x 1 single-port configurations (each according to the preceding description). There is one data input, one data output and one address decoder for each array. These arrays can be addressed independently. - The 32 x 1 single-port configuration contains a RAM array with 32 locations, each one-bit wide. There is one data input, one data output, and one 5-bit address decoder. - The dual-port mode 16 x 1 configuration contains a RAM array with 16 locations, each one-bit wide. There are two 4-bit address decoders, one for each port. One port consists of an input for writing and an output for reading, all at a selected address. The other port consists of one output for reading from an independently selected address. The appropriate choice of RAM configuration mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Selection criteria include the following: Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port, and the 16 x 1 dual-port configurations each use one entire CLB, the 16 x 1 single-port configuration uses only one half of a CLB. Due to its simultaneous read/write capability, the dual-port RAM can transfer twice as much data as the single-port RAM, which permits only one data operation at any given time. CLB memory configuration options are selected by using the appropriate library symbol in the design entry. #### **Single-Port Mode** There are three CLB memory configurations for the single-port RAM: 16×1 , $(16 \times 1) \times 2$, and 32×1 , the functional organization of which is shown in Figure 12. The single-port RAM signals and the CLB signals (Figure 2, page 4) from which they are originally derived are shown in Table 9. Table 9: Single-Port RAM Signals | RAM Signal | Function | CLB Signal | |------------------|-------------------------------|--------------------------------------| | D0 or D1 | Data In | DIN or H1 | | A[3:0] | Address | F[4:1] or G[4:1] | | A4 (32 x 1 only) | Address | H1 | | WE | Write Enable | SR | | WCLK | Clock | К | | SPO | Single Port Out
(Data Out) | F _{OUT} or G _{OUT} | #### Notes: - The (16 x 1) x 2 configuration combines two 16 x 1 single-port RAMs, each with its own independent address bus and data input. The same WE and WCLK signals are connected to both RAMs. - 2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the 32 x 1 configuration. Figure 12: Logic Diagram for the Single-Port RAM Writing data to the single-port RAM is essentially the same as writing to a data register. It is an edge-triggered (synchronous) operation performed by applying an address to the A inputs and data to the D input during the active edge of WCLK while WE is High. The timing relationships are shown in Figure 13. The High logic level on WE enables the input data register for writing. The active edge of WCLK latches the address, input data, and WE signals. Then, an internal write pulse is generated that loads the data into the memory cell. Figure 13: Data Write and Access Timing for RAM WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM. The WE input is active High and cannot be inverted within the CLB. Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO. ### **Dual-Port Mode** In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported. The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the Figure 14: Logic Diagram for the Dual-Port RAM CLB signals from which they are originally derived are shown in Table 10. Table 10: Dual-Port RAM Signals | RAM Signal | Function | CLB Signal | |------------|--|------------------| | D | Data In | DIN | | A[3:0] | Read Address for
Single-Port. | F[4:1] | | | Write Address for
Single-Port and
Dual-Port. | | | DPRA[3:0] | Read Address for
Dual-Port | G[4:1] | | WE | Write Enable | SR | | WCLK | Clock | К | | SPO | Single Port Out (addressed by A[3:0])
 F _{OUT} | | DPO | Dual Port Out
(addressed by
DPRA[3:0]) | G _{OUT} | The RAM16X1D primitive used to instantiate the dual-port RAM consists of an upper and a lower 16 x 1 memory array. The address port labeled A[3:0] supplies both the read and write addresses for the lower memory array, which behaves the same as the 16 x 1 single-port RAM array described previously. Single Port Out (SPO) serves as the data output for the lower memory. Therefore, SPO reflects the data at address A[3:0]. The other address port, labeled DPRA[3:0] for Dual Port Read Address, supplies the read address for the upper memory. The write address for this memory, however, comes from the address A[3:0]. Dual Port Out (DPO) serves as the data output for the upper memory. Therefore, DPO reflects the data at address DPRA[3:0]. By using A[3:0] for the write address and DPRA[3:0] for the read address, and reading only the DPO output, a FIFO that can read and write simultaneously is easily generated. The simultaneous read/write capability possible with the dual-port RAM can provide twice the effective data throughput of a single-port RAM alternating read and write operations. The timing relationships for the dual-port RAM mode are shown in Figure 13. Note that write operations to RAM are synchronous (edge-triggered); however, data access is asynchronous. #### **Initializing RAM at FPGA Configuration** Both RAM and ROM implementations in the Spartan/XL families are initialized during device configuration. The initial contents are defined via an INIT attribute or property attached to the RAM or ROM symbol, as described in the library guide. If not defined, all RAM contents are initialized to zeros, by default. RAM initialization occurs only during device configuration. The RAM content is not affected by GSR. #### More Information on Using RAM Inside CLBs Three application notes are available from Xilinx that discuss synchronous (edge-triggered) RAM: "Xilinx Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in Xilinx RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both the Spartan and the Spartan-XL families. ### **Fast Carry Logic** Each CLB F-LUT and G-LUT contains dedicated arithmetic logic for the fast generation of carry and borrow signals. This extra output is passed on to the function generator in the adjacent CLB. The carry chain is independent of normal routing resources. (See Figure 15.) Dedicated fast carry logic greatly increases the efficiency and performance of adders, subtractors, accumulators, comparators and counters. It also opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast enough or too inefficient. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications. The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. This fast carry logic is one of the more significant features of the Spartan Figure 15: Available Spartan/XL Carry Propagation Paths Figure 20 is a diagram of the Spartan/XL FPGA boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. Spartan/XL devices can also be configured through the boundary scan logic. See **Configuration Through the Boundary Scan Pins**, page 37. ### Data Registers The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out and 3-state Control. Non-IOB pins have appropriate partial bit population for In or Out only. PROGRAM, CCLK and DONE are not included in the boundary scan register. Each EXTEST CAPTURE-DR state captures all In, Out, and 3-state pins. The data register also includes the following non-pin bits: TDO.T, and TDO.O, which are always bits 0 and 1 of the data register, respectively, and BSCANT.UPD, which is always the last bit of the data register. These three boundary scan bits are special-purpose Xilinx test signals. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA provides two additional data registers that can be specified using the BSCAN macro. The FPGA provides two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are the decodes of two user instructions. For these instructions, two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to be shifted out on TDO. The data register clock (BSCAN.DRCK) is available for control of test logic which the user may wish to implement with CLBs. The NAND of TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE). #### Instruction Set The Spartan/XL FPGA boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 12. Figure 20: Spartan/XL Boundary Scan Logic DS060 26 080400 | Symbol | | Description | Min | Max | Units | |------------------|------|-------------|-----|------|-------| | T _{DCC} | | DIN setup | 20 | - | ns | | T _{CCD} | | DIN hold | 0 | - | ns | | T _{CCO} | CCLK | DIN to DOUT | - | 30 | ns | | T _{CCH} | COLK | High time | 40 | - | ns | | T _{CCL} | | Low time | 40 | - | ns | | F _{CC} | | Frequency | - | 12.5 | MHz | #### Notes: Figure 26: Slave Serial Mode Programming Switching Characteristics ### **Express Mode (Spartan-XL Family Only)** Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers (Figure 27). A CCLK frequency of 1 MHz is equivalent to a 8 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking. A length count is not used in Express mode. Express mode must be specified as an option to the development system. The Express mode bitstream is not compatible with the other configuration modes (see Table 16, page 32.) Express mode is selected by a <0X> on the Mode pins (M1, M0). The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge (Figure 28). ### Pseudo Daisy Chain Multiple devices with different configurations can be configured in a pseudo daisy chain provided that all of the devices are in Express mode. Concatenated bitstreams are used to configure the chain of Express mode devices so that each device receives a separate header. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. Frame data is accepted only when CS1 is High and the device's configuration memory is not already full. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pull-up). The status pin DOUT is pulled Low after the header is received, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the next header and configuration data on the D0-D7 bus. The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using a development system option. The requirement that all DONE pins in a daisy chain be wired together applies only to Express mode, and only if all devices in the chain are to become active simultaneously. All Spartan-XL devices in Express mode are synchronized Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. to the DONE pin. User I/Os for each device become active after the DONE pin for that device goes High. (The exact timing is determined by development system options.) Since the DONE pin is open-drain and does not drive a High value, tying the DONE pins of all devices together prevents all devices in the chain from going High until the last device in the chain has completed its configuration cycle. If the DONE pin of a device is left unconnected, the device becomes active as soon as that device has been configured. Only devices supporting Express mode can be used to form an Express mode daisy chain. Figure 27: Express Mode Circuit Diagram ---- Figure 30: Power-up Configuration Sequence ### Configuration The 0010 preamble code indicates that the following 24 bits represent the length count for serial modes. The length count is the total number of configuration clocks needed to load the complete configuration data. (Four additional configuration clocks are required to complete the configuration process, as discussed below.) After the preamble and the length count have been passed through to any device in the daisy chain, its DOUT is held High to prevent frame start bits from reaching any daisy-chained devices. In Spartan-XL family Express mode, the length count bits are ignored, and DOUT is held Low, to disable the next device in the pseudo daisy chain. A specific configuration bit, early in the first frame of
a master device, controls the configuration-clock rate and can increase it by a factor of eight. Therefore, if a fast configuration clock is selected by the bitstream, the slower clock rate is used until this configuration bit is detected. Each frame has a start field followed by the frame-configuration data bits and a frame error field. If a frame data error is detected, the FPGA halts loading, and signals the error by pulling the open-drain INIT pin Low. After all configuration frames have been loaded into an FPGA using a serial mode, DOUT again follows the input data so that the remaining data is passed on to the next device. In Spartan-XL family Express mode, when the first device is fully programmed, DOUT goes High to enable the next device in the chain. #### Delaying Configuration After Power-Up There are two methods of delaying configuration after power-up: put a logic Low on the PROGRAM input, or pull the bidirectional INIT pin Low, using an open-collector (open-drain) driver. (See Figure 30.) A Low on the PROGRAM input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as PROGRAM is Low, the FPGA keeps clearing its configuration memory. When PROGRAM goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the INIT input is not externally held Low. Note that a Low on the PROGRAM input automatically forces a Low on the INIT output. The Spartan/XL FPGA PROGRAM pin has a permanent weak pull-up. Avoid holding $\overline{PROGRAM}$ Low for more than 500 μs . The 500 μs maximum limit is only a recommendation, not a requirement. The only effect of holding $\overline{PROGRAM}$ Low for more than 500 μs is an increase in current, measured at about 40 mA in the XCS40XL. This increased current cannot damage the device. This applies only during reconfiguration, not during power-up. The \overline{INIT} pin can also be held Low to delay reconfiguration, and the same characteristics apply as for the $\overline{PROGRAM}$ pin. Using an open-collector or open-drain driver to hold INIT Low before the beginning of configuration causes the FPGA #### Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Although readback can be performed while the device is operating, for best results and to freeze a known capture state, it is recommended that the clock inputs be stopped until readback is complete. Readback of Spartan-XL family Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes. Spartan/XL FPGA Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, instantiate the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 32. After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. ### Readback Options Readback options are: Readback Capture, Readback Abort, and Clock Select. They are set with the bitstream generation software. ### **Readback Capture** When the Readback Capture option is selected, the data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. RDBK.TRIG is located in the lower-left corner of the device. When the Readback Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in Readback, since they directly overwrite the F and G function-table configuration of the CLB. Figure 32: Readback Example ### **Spartan Family CLB Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and expressed in nanoseconds unless otherwise noted. | | | Speed Grade | | | | | |--------------------|--|-------------|---------------------------|---------------|---------|-------| | | Description | - | 4 | - | 3 | 1 | | Symbol | | Min | Max | Min | Max | Units | | Clocks | | | | | | | | T _{CH} | Clock High time | 3.0 | - | 4.0 | - | ns | | T_{CL} | Clock Low time | 3.0 | - | 4.0 | - | ns | | Combina | torial Delays | | 1 | 1 | 1 | 1 | | T _{ILO} | F/G inputs to X/Y outputs | - | 1.2 | - | 1.6 | ns | | T _{IHO} | F/G inputs via H to X/Y outputs | - | 2.0 | - | 2.7 | ns | | T _{HH1O} | C inputs via H1 via H to X/Y outputs | - | 1.7 | - | 2.2 | ns | | CLB Fast | Carry Logic | | 1 | | 1 | | | T _{OPCY} | Operand inputs (F1, F2, G1, G4) to C _{OUT} | - | 1.7 | - | 2.1 | ns | | T _{ASCY} | Add/Subtract input (F3) to C _{OUT} | - | 2.8 | - | 3.7 | ns | | T _{INCY} | Initialization inputs (F1, F3) to C _{OUT} | - | 1.2 | - | 1.4 | ns | | T _{SUM} | C _{IN} through function generators to X/Y outputs | - | 2.0 | - | 2.6 | ns | | T _{BYP} | C _{IN} to C _{OUT} , bypass function generators | - | 0.5 | - | 0.6 | ns | | Sequentia | al Delays | | | | | | | T _{CKO} | Clock K to Flip-Flop outputs Q | - | 2.1 | - | 2.8 | ns | | Setup Tin | ne before Clock K | | | | | | | T _{ICK} | F/G inputs | 1.8 | - | 2.4 | - | ns | | T _{IHCK} | F/G inputs via H | 2.9 | - | 3.9 | - | ns | | T _{HH1CK} | C inputs via H1 through H | 2.3 | - | 3.3 | - | ns | | T _{DICK} | C inputs via DIN | 1.3 | - | 2.0 | - | ns | | T _{ECCK} | C inputs via EC | 2.0 | - | 2.6 | - | ns | | T _{RCK} | C inputs via S/R, going Low (inactive) | 2.5 | - | 4.0 | - | ns | | Hold Time | e after Clock K | | 1 | | 1 | | | | All Hold times, all devices | 0.0 | - | 0.0 | - | ns | | Set/Reset | Direct | | | | | | | T _{RPW} | Width (High) | 3.0 | - | 4.0 | - | ns | | T _{RIO} | Delay from C inputs via S/R, going High to Q | - | 3.0 | - | 4.0 | ns | | Global Se | et/Reset | | | | | | | T_{MRW} | Minimum GSR pulse width | 11.5 | - | 13.5 | - | ns | | T_{MRQ} | Delay from GSR input to any Q | See pa | ge 50 for T _{RI} | RI values per | device. | | | F _{TOG} | Toggle Frequency (MHz) (for export control purposes) | - | 166 | - | 125 | MHz | ### **Spartan Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | | Speed | Grade | | | |--------------------|---|-------------|------|-------|-------|------|-------| | | | | - | 4 | - | 3 | | | Symbol | Description | Device | Min | Max | Min | Max | Units | | Setup Tin | nes - TTL Inputs ⁽¹⁾ | | | • | • | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK), no delay | All devices | 1.6 | - | 2.1 | - | ns | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.5 | - | 2.0 | - | ns | | Hold Time | es | · | | | | | | | T _{IKEC} | Clock Enable (EC) to Clock (IK), no delay | All devices | 0.0 | - | 0.9 | - | ns | | | All Other Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | Propagat | ion Delays - TTL Inputs ⁽¹⁾ | , | | | | | | | T _{PID} | Pad to I1, I2 | All devices | - | 1.5 | - | 2.0 | ns | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.8 | - | 3.6 | ns | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 2.7 | - | 2.8 | ns | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 3.2 | - | 3.9 | ns | | Delay Ad | der for Input with Delay Option | | | I | I | II. | | | T _{Delay} | $T_{\text{ECIKD}} = T_{\text{ECIK}} + T_{\text{Delay}}$ | XCS05 | 3.6 | - | 4.0 | - | ns | | | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS10 | 3.7 | - | 4.1 | - | ns | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS20 | 3.8 | - | 4.2 | - | ns | | | | XCS30 | 4.5 | - | 5.0 | - | ns | | | | XCS40 |
5.5 | - | 5.5 | - | ns | | Global Se | et/Reset | | | I | I | II. | | | T_{MRW} | Minimum GSR pulse width | All devices | 11.5 | - | 13.5 | - | ns | | T _{RRI} | Delay from GSR input to any Q | XCS05 | - | 9.0 | - | 11.3 | ns | | | | XCS10 | - | 9.5 | - | 11.9 | ns | | | | XCS20 | - | 10.0 | - | 12.5 | ns | | | | XCS30 | - | 10.5 | - | 13.1 | ns | | | | XCS40 | - | 11.0 | - | 13.8 | ns | ### Notes: - 1. Delay adder for CMOS Inputs option: for -3 speed grade, add 0.4 ns; for -4 speed grade, add 0.2 ns. - 2. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 3. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. # Spartan-XL Family Detailed Specifications #### **Definition of Terms** In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows: **Advance:** Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Values are subject to change. Use as estimates, not for production. Preliminary: Based on preliminary characterization. Further changes are not expected. Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final. Notwithstanding the definition of the above terms, all specifications are subject to change without notice. Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. # Spartan-XL Family Absolute Maximum Ratings⁽¹⁾ | Symbol | Descri | Value | Units | | |------------------|-----------------------------------|---|--------------------------|----| | V _{CC} | Supply voltage relative to GND | | -0.5 to 4.0 | V | | V _{IN} | Input voltage relative to GND | 5V Tolerant I/O Checked ^(2, 3) | -0.5 to 5.5 | V | | | | Not 5V Tolerant I/Os ^(4, 5) | -0.5 to $V_{CC} + 0.5$ | V | | V _{TS} | Voltage applied to 3-state output | 5V Tolerant I/O Checked ^(2, 3) | -0.5 to 5.5 | V | | | | Not 5V Tolerant I/Os ^(4, 5) | -0.5 to $V_{CC} + 0.5$ | V | | T _{STG} | Storage temperature (ambient) | | -65 to +150 | °C | | TJ | Junction temperature | Plastic packages | +125 | °C | #### Notes: - Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability. - 2. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA and undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve. - 3. With 5V Tolerant I/Os selected, the Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to + 7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA. - 4. Without 5V Tolerant I/Os selected, the Maximum DC overshoot or undershoot must be limited to either 0.5V or 10 mA, whichever is easier to achieve. - 5. Without 5V Tolerant I/Os selected, the Maximum AC conditions are as follows; the device pins may undershoot to –2.0V or overshoot to V_{CC} + 2.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA. - 6. For soldering guidelines, see the Package Information on the Xilinx website. ### **Spartan-XL Family Recommended Operating Conditions** | Symbol | Description | | Min | Max | Units | |-----------------|---|------------|------------------------|------------------------|-------| | V_{CC} | Supply voltage relative to GND, T _J = 0°C to +85°C | Commercial | 3.0 | 3.6 | V | | | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C^{(1)}$ | Industrial | 3.0 | 3.6 | V | | V _{IH} | High-level input voltage ⁽²⁾ | | 50% of V _{CC} | 5.5 | V | | V _{IL} | Low-level input voltage ⁽²⁾ | | 0 | 30% of V _{CC} | V | | T _{IN} | Input signal transition time | | - | 250 | ns | #### Notes: - At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C. - Input and output measurement threshold is ~50% of V_{CC}. ### Spartan-XL Family Global Buffer Switching Characteristic Guidelines All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | Spee | | | |------------------|---|---------|------|-----|-------| | | | | -5 | -4 | | | Symbol | Description | Device | Max | Max | Units | | T _{GLS} | From pad through buffer, to any clock K | XCS05XL | 1.4 | 1.5 | ns | | | | XCS10XL | 1.7 | 1.8 | ns | | | | XCS20XL | 2.0 | 2.1 | ns | | | | XCS30XL | 2.3 | 2.5 | ns | | | | XCS40XL | 2.6 | 2.8 | ns | ### Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines (cont.) All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted. | | | | - | 5 | - | 4 | | | | | | |-------------------|---|------|-----|-----|-----|-----|-------|--|--|--|--| | Symbol | Dual Port RAM | Size | Min | Max | Min | Max | Units | | | | | | Write Operat | Write Operation ⁽¹⁾ | | | | | | | | | | | | T _{WCDS} | Address write cycle time (clock K period) | 16x1 | 7.7 | - | 8.4 | - | ns | | | | | | T _{WPDS} | Clock K pulse width (active edge) | 16x1 | 3.1 | - | 3.6 | - | ns | | | | | | T _{ASDS} | Address setup time before clock K | 16x1 | 1.3 | - | 1.5 | - | ns | | | | | | T _{DSDS} | DIN setup time before clock K | 16x1 | 1.7 | - | 2.0 | - | ns | | | | | | T _{WSDS} | WE setup time before clock K | 16x1 | 1.4 | - | 1.6 | - | ns | | | | | | | All hold times after clock K | 16x1 | 0 | - | 0 | - | ns | | | | | | T _{WODS} | Data valid after clock K | 16x1 | - | 5.2 | - | 6.1 | ns | | | | | **Dual Port** #### Notes: **Single Port** ## Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Timing # WCLK (K) T_{WHS} $\mathsf{T}_{\mathsf{WSS}}$ WE $\mathsf{T}_{\mathsf{DHS}}$ T_{DSS} DATA IN T_{ASS} TAHS **ADDRESS** TILO T_{ILO} $\mathsf{T}_{\mathsf{WOS}}$ **DATA OUT** OLD NEW DS060_34_011300 ^{1.} Read Operation timing for 16 x 1 dual-port RAM option is identical to 16 x 2 single-port RAM timing ### XCS05 and XCS05XL Device Pinouts | XCS05/XL | | | Bndry | |---|---------------------|-------|--------------------| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | Scan | | I/O | P70 | P71 | 238 ⁽³⁾ | | I/O (D0 ⁽²⁾ , DIN) | P71 | P72 | 241 ⁽³⁾ | | I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾
(DOUT) | P72 | P73 | 244 ⁽³⁾ | | CCLK | P73 | P74 | - | | VCC | P74 | P75 | - | | O, TDO | P75 | P76 | 0 | | GND | P76 | P77 | - | | I/O | P77 | P78 | 2 | | I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾ | P78 | P79 | 5 | | I/O (CS1 ⁽²⁾) | P79 | P80 | 8 | | I/O | P80 | P81 | 11 | | I/O | P81 | P82 | 14 | | I/O | P82 | P83 | 17 | | I/O | - | P84 | 20 | | I/O | - | P85 | 23 | | I/O | P83 | P86 | 26 | | I/O | P84 | P87 | 29 | | GND | P1 | P88 | - | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS05XL is not part of the Boundary Scan chain. For the XCS05XL, subtract 1 from all Boundary Scan numbers from GCK3 on (127 and higher). - 4. PC84 package discontinued by PDN2004-01 ### **XCS10 and XCS10XL Device Pinouts** | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | |----------------------|---------------------|-------|------------------------|-------|---------------| | VCC | P2 | P89 | D7 | P128 | - | | I/O | P3 | P90 | A6 | P129 | 44 | | I/O | P4 | P91 | В6 | P130 | 47 | | I/O | - | P92 | C6 | P131 | 50 | | I/O | - | P93 | D6 | P132 | 53 | | I/O | P5 | P94 | A5 | P133 | 56 | | I/O | P6 | P95 | B5 | P134 | 59 | | I/O | - | - | C5 | P135 | 62 | | I/O | - | - | D5 | P136 | 65 | | GND | - | - | A4 | P137 | - | |
I/O | P7 | P96 | B4 | P138 | 68 | | I/O | P8 | P97 | C4 | P139 | 71 | | I/O | - | - | A3 | P140 | 74 | | I/O | - | - | В3 | P141 | 77 | | I/O | P9 | P98 | C3 | P142 | 80 | ### **XCS10 and XCS10XL Device Pinouts** | XCS10 and XCS10XL Device Pinous XCS10/XL Bndry | | | | | | | | | | | |---|---------------------|-------|------------------------|-------|---------------|--|--|--|--|--| | Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | | | | | | | I/O, | P10 | P99 | A2 | P143 | 83 | | | | | | | SGCK1 ⁽¹⁾ | | | | | | | | | | | | GCK8 ⁽²⁾ | | | | | | | | | | | | VCC | P11 | P100 | B2 | P144 | - | | | | | | | GND | P12 | P1 | A1 | P1 | - | | | | | | | I/O, | P13 | P2 | B1 | P2 | 86 | | | | | | | PGCK1 ⁽¹⁾ | | | | | | | | | | | | GCK1 ⁽²⁾ | | | | | | | | | | | | I/O | P14 | P3 | C2 | P3 | 89 | | | | | | | I/O | - | - | C1 | P4 | 92 | | | | | | | I/O | - | - | D4 | P5 | 95 | | | | | | | I/O, TDI | P15 | P4 | D3 | P6 | 98 | | | | | | | I/O, TCK | P16 | P5 | D2 | P7 | 101 | | | | | | | GND | - | - | D1 | P8 | ı | | | | | | | I/O | - | _ | E4 | P9 | 104 | | | | | | | I/O | - | - | E3 | P10 | 107 | | | | | | | I/O, TMS | P17 | P6 | E2 | P11 | 110 | | | | | | | I/O | P18 | P7 | E1 | P12 | 113 | | | | | | | I/O | - | - | F4 | P13 | 116 | | | | | | | I/O | - | P8 | F3 | P14 | 119 | | | | | | | I/O | P19 | P9 | F2 | P15 | 122 | | | | | | | I/O | P20 | P10 | F1 | P16 | 125 | | | | | | | GND | P21 | P11 | G2 | P17 | - | | | | | | | VCC | P22 | P12 | G1 | P18 | - | | | | | | | I/O | P23 | P13 | G3 | P19 | 128 | | | | | | | I/O | P24 | P14 | G4 | P20 | 131 | | | | | | | I/O | - | P15 | H1 | P21 | 134 | | | | | | | I/O | - | - | H2 | P22 | 137 | | | | | | | I/O | P25 | P16 | H3 | P23 | 140 | | | | | | | I/O | P26 | P17 | H4 | P24 | 143 | | | | | | | I/O | - | - | J1 | P25 | 146 | | | | | | | I/O | - | - | J2 | P26 | 149 | | | | | | | GND | - | - | J3 | P27 | - | | | | | | | I/O | P27 | P18 | J4 | P28 | 152 | | | | | | | I/O | - | P19 | K1 | P29 | 155 | | | | | | | I/O | _ | - | K2 | P30 | 158 | | | | | | | I/O | _ | _ | K3 | P31 | 161 | | | | | | | I/O | P28 | P20 | L1 | P32 | 164 | | | | | | | I/O, | P29 | P21 | L2 | P33 | 167 | | | | | | | SGCK2 ⁽¹⁾ | 1 23 | 1 - 1 | L | . 00 | 107 | | | | | | | GCK2 ⁽²⁾ | | | | | | | | | | | | Not | P30 | P22 | L3 | P34 | 170 | | | | | | | Connect- | | | | | | | | | | | | ed ⁽¹⁾ | | | | | | | | | | | | M1 ⁽²⁾ | | | | | | | | | | | | GND | P31 | P23 | M1 | P35 | - | | | | | | | $MODE^{(1)}$, | P32 | P24 | M2 | P36 | 173 | | | | | | | M0 ⁽²⁾ | | | | | | | | | | | ### **XCS10 and XCS10XL Device Pinouts** | XCS10/XL
Pad Name | PC84 ⁽⁴⁾ | VQ100 | CS144 ^(2,4) | TQ144 | Bndry
Scan | |----------------------|---------------------|-------|------------------------|-------|---------------| | I/O | P80 | P81 | A10 | P116 | 17 | | GND | - | - | C9 | P118 | - | | I/O | - | - | B9 | P119 | 20 | | I/O | - | - | A9 | P120 | 23 | | I/O | P81 | P82 | D8 | P121 | 26 | | I/O | P82 | P83 | C8 | P122 | 29 | | I/O | - | P84 | B8 | P123 | 32 | | I/O | - | P85 | A8 | P124 | 35 | | I/O | P83 | P86 | B7 | P125 | 38 | | I/O | P84 | P87 | A7 | P126 | 41 | | GND | P1 | P88 | C7 | P127 | - | #### Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS10XL is not part of the Boundary Scan chain. For the XCS10XL, subtract 1 from all Boundary Scan numbers from GCK3 on (175 and higher). - 4. PC84 and CS144 packages discontinued by PDN2004-01 ### Additional XCS10/XL Package Pins | TQ144 | | | | | | | | | | |--------------------|--------|--|--|--|--|--|--|--|--| | Not Connected Pins | | | | | | | | | | | P117 | P117 | | | | | | | | | | 5/5/97 | 5/5/97 | | | | | | | | | | CS144 | | | | | | | | | |--------------------|---|---|---|---|---|--|--|--| | Not Connected Pins | | | | | | | | | | D9 | - | - | - | - | - | | | | | 4/28/99 | | | | | | | | | ### XCS20 and XCS20XL Device Pinouts | XCS20/XL | | | | | Bndry | |--------------------|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | VCC | P89 | D7 | P128 | P183 | - | | I/O | P90 | A6 | P129 | P184 | 62 | | I/O | P91 | B6 | P130 | P185 | 65 | | I/O | P92 | C6 | P131 | P186 | 68 | | I/O | P93 | D6 | P132 | P187 | 71 | | I/O | - | - | - | P188 | 74 | | I/O | - | - | - | P189 | 77 | | I/O | P94 | A5 | P133 | P190 | 80 | | I/O | P95 | B5 | P134 | P191 | 83 | | VCC ⁽²⁾ | - | - | - | P192 | - | | I/O | - | C5 | P135 | P193 | 86 | | I/O | - | D5 | P136 | P194 | 89 | | GND | - | A4 | P137 | P195 | - | | I/O | - | - | - | P196 | 92 | | I/O | - | - | - | P197 | 95 | | I/O | - | - | - | P198 | 98 | | I/O | - | - | - | P199 | 101 | | I/O | P96 | B4 | P138 | P200 | 104 | | I/O | P97 | C4 | P139 | P201 | 107 | | I/O | - | А3 | P140 | P204 | 110 | | I/O | - | B3 | P141 | P205 | 113 | | I/O | P98 | C3 | P142 | P206 | 116 | ### **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | V0400 | CS144 ^(2,4) | TO444 | DOGGG | Bndry | |---|-------|------------------------|-------|-------|-------| | Pad Name | VQ100 | | TQ144 | PQ208 | Scan | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P99 | A2 | P143 | P207 | 119 | | VCC | P100 | B2 | P144 | P208 | - | | GND | P1 | A1 | P1 | P1 | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | B1 | P2 | P2 | 122 | | I/O | P3 | C2 | P3 | P3 | 125 | | I/O | - | C1 | P4 | P4 | 128 | | I/O | - | D4 | P5 | P5 | 131 | | I/O, TDI | P4 | D3 | P6 | P6 | 134 | | I/O, TCK | P5 | D2 | P7 | P7 | 137 | | I/O | - | - | - | P8 | 140 | | I/O | - | - | - | P9 | 143 | | I/O | - | - | - | P10 | 146 | | I/O | - | - | - | P11 | 149 | | GND | - | D1 | P8 | P13 | - | | I/O | - | E4 | P9 | P14 | 152 | | I/O | - | E3 | P10 | P15 | 155 | | I/O, TMS | P6 | E2 | P11 | P16 | 158 | | I/O | P7 | E1 | P12 | P17 | 161 | | VCC ⁽²⁾ | - | - | - | P18 | - | | I/O | - | - | - | P19 | 164 | | I/O | - | - | - | P20 | 167 | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | P18 | P28 | P44 | P52 | V1 | T1 | 272 | | I/O | P19 | P29 | P45 | P53 | T4 | T2 | 275 | | I/O | - | P30 | P46 | P54 | U3 | T3 | 278 | | I/O | - | P31 | P47 | P55 | V2 | U1 | 281 | | I/O | P20 | P32 | P48 | P56 | W1 | V1 | 284 | | O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾ | P21 | P33 | P49 | P57 | V3 | U2 | 287 | | Not Connected ⁽¹⁾ , M1 ⁽²⁾ | P22 | P34 | P50 | P58 | W2 | V2 | 290 | | GND | P23 | P35 | P51 | P59 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | MODE ⁽¹⁾ , M0 ⁽²⁾ | P24 | P36 | P52 | P60 | Y1 | W1 | 293 | | VCC | P25 | P37 | P53 | P61 | VCC ⁽⁴⁾ | U3 | - | | Not Connected ⁽¹⁾ , PWRDWN ⁽²⁾ | P26 | P38 | P54 | P62 | W3 | V3 | 294 (1) | | /O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾ | P27 | P39 | P55 | P63 | Y2 | W2 | 295 ⁽³⁾ | | I/O (HDC) | P28 | P40 | P56 | P64 | W4 | W3 | 298 (3) | | I/O | - | P41 | P57 | P65 | V4 | T4 | 301 ⁽³⁾ | | I/O | - | P42 | P58 | P66 | U5 | U4 | 304 ⁽³⁾ | | I/O | P29 | P43 | P59 | P67 | Y3 | V4 | 307 (3) | | I/O (LDC) | P30 | P44 | P60 | P68 | Y4 | W4 | 310 ⁽³⁾ | | I/O | - | - | P61 | P69 | V5 | T5 | 313 ⁽³⁾ | | I/O | - | - | P62 | P70 | W5 | W5 | 316 ⁽³⁾ | | I/O | - | - | P63 | P71 | Y5 | R6 | 319 ⁽³⁾ | | I/O | - | - | P64 | P72 | V6 | U6 | 322 (3) | | I/O | - | - | P65 | P73 | W6 | V6 | 325 ⁽³⁾ | | I/O | - | - | - | P74 | Y6 | T6 | 328 (3) | | GND | - | P45 | P66 | P75 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P46 | P67 | P76 | W7 | W6 | 331 ⁽³⁾ | | I/O | - | P47 | P68 | P77 | Y7 | U7 | 334 (3) | | I/O | P31 | P48 | P69 | P78 | V8 | V7 | 337 (3) | | I/O | P32 | P49 | P70 | P79 | W8 | W7 | 340 (3) | | VCC | - | - | P71 | P80 | VCC ⁽⁴⁾ | T7 | - | | I/O | - | - | P72 | P81 | Y8 | W8 | 343 (3) | | I/O | - | - | P73 | P82 | U9 | U8 | 346 ⁽³⁾ | | I/O | - | - | - | P84 | Y9 | W9 | 349 (3) | | I/O | - | - | - | P85 | W10 | V9 | 352 ⁽³⁾ | | I/O | P33 | P50 | P74 | P86 | V10 | U9 | 355 ⁽³⁾ | | I/O | P34 | P51 | P75 | P87 | Y10 | T9 | 358 ⁽³⁾ | | I/O | P35 | P52 | P76 | P88 | Y11 | W10 | 361 ⁽³⁾ | | I/O (INIT) | P36 | P53 | P77 | P89 | W11 | V10 | 364 ⁽³⁾ | | VCC | P37 | P54 | P78 | P90 | VCC ⁽⁴⁾ | U10 | - | | GND | P38 | P55 | P79 | P91 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P39 | P56 | P80 | P92 | V11 | T10 | 367 ⁽³⁾ | | I/O | P40 | P57 | P81 | P93 | U11 | R10 | 370 (3) | | I/O | P41 | P58 | P82 | P94 | Y12 | W11 | 373 (3) | | I/O | P42 | P59 | P83 | P95 | W12 | V11 | 376 ⁽³⁾ | | I/O | - | - | P84 | P96 | V12 | U11 | 379 (3) | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |----------------------|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | I/O | - | - | - | P190 | B16 | A15 | 23 | | I/O | - | P117 | P166 | P191 | A16 | E14 | 26 | | I/O | - | - | P167 | P192 | C15 | C14 | 29 | | I/O | - | - | P168 | P193 | B15 | B14 | 32 | | I/O | - | - | P169 | P194 | A15 | D14 | 35 | | GND | - | P118 | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P119 | P171 | P197 | B14 | A14 | 38 | | I/O | - | P120 | P172 | P198 | A14 | C13 | 41 | | I/O | - | - | - | P199 | C13 | B13 | 44 | | I/O | - | - | - | P200 | B13 | A13 | 47 | | VCC | - | - | P173 | P201 | VCC ⁽⁴⁾ | D13 | - | | I/O | P82 | P121 | P174 | P202 | C12 | B12 | 50 | | I/O | P83 | P122 | P175 | P203 | B12 | D12 | 53 | | I/O | - | - | P176 | P205 | A12 | A11 | 56 | | I/O | - | - | P177 | P206 | B11 | B11 | 59 | | I/O | P84 | P123 | P178 | P207 | C11 | C11 | 62 | | I/O | P85 | P124 | P179 | P208 | A11 | D11 | 65 | | I/O | P86 | P125 | P180 | P209 | A10 | A10 | 68 | | I/O | P87 | P126 | P181 | P210 | B10 | B10 | 71 | | GND | P88 | P127 | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | # Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS30XL is not part of
the Boundary Scan chain. For the XCS30XL, subtract 1 from all Boundary Scan numbers from GCK3 on (295 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - 5. CS280 package, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 ### Additional XCS30/XL Package Pins #### **PQ240** | GND Pins | | | | | | | | | | |----------|--------------------|-----|-----|------|------|--|--|--|--| | P22 | P37 | P83 | P98 | P143 | P158 | | | | | | P204 | P219 | - | - | - | - | | | | | | | Not Connected Pins | | | | | | | | | | P195 | | | | | | | | | | | 2/1 | 2/98 | | |-----|------|--| | | | | #### **BG256** | VCC Pins | | | | | | | | |----------|-----|-----|-----|-----|-----|--|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | | E20 | F1 | F4 | F17 | G4 | G17 | | | | K4 | L17 | P4 | P17 | P19 | R2 | | | | R4 | R17 | U6 | U7 | U10 | U14 | | | | U15 | V7 | W20 | - | - | - | | | | GND Pins | | | | | | | | | |----------|--------------------|-----|-----|-----|-----|--|--|--| | A1 | B7 | D4 | D8 | D13 | D17 | | | | | G20 | H4 | H17 | N3 | N4 | N17 | | | | | U4 | U8 | U13 | U17 | W14 | - | | | | | | Not Connected Pins | | | | | | | | | A7 | A13 | C8 | D12 | H20 | J3 | | | | | J4 | M4 | M19 | V9 | W9 | W13 | | | | | Y13 | - | - | - | - | - | | | | 6/4/97 ### **CS280** | VCC Pins | | | | | | | | |-----------|--------|-----|-----|-----|-----|--|--| | A1 | A7 | C10 | C17 | D13 | G1 | | | | G1 | G19 K2 | | K17 | M4 | N16 | | | | T7 U3 U10 | | | U17 | W13 | - | | | | GND Pins | | | | | | | | #### **CS280** | | VCC Pins | | | | | | | | |-------------------------------------|----------|---------|-----------|-----|-----|--|--|--| | E5 | E7 | E8 | E9 | E11 | E12 | | | | | E13 | G5 | G15 | H5 | H15 | J5 | | | | | J15 | L5 | L15 | M5 | M15 | N5 | | | | | N15 | R7 | R8 | R9 | R11 | R12 | | | | | R13 | - | - | - | - | - | | | | | | | Not Cor | nected Pi | ns | | | | | | A4 | A12 | C8 | C12 | C15 | D1 | | | | | D2 | D5 | D8 | D17 | D18 | E15 | | | | | H2 | НЗ | H18 | H19 | L4 | M1 | | | | | M16 | M18 | R2 | R4 | R5 | R15 | | | | | R17 | T8 | T15 | U5 | V8 | V12 | | | | | W12 | W16 | - | - | - | - | | | | | Not Connected Pins (VCC in XCS40XL) | | | | | | | | | | B5 | B15 | E3 | E18 | R3 | R18 | | | | | V5 | V15 | - | - | - | - | | | | 5/21/02 # XCS40 and XCS40XL Device Pinouts | XCS40/XL
Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Bndry
Scan | |----------------------|-------|-------|--------------------|------------------------|---------------| | VCC | P183 | P212 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | Juli | | | | | | | - | | I/O | P184 | P213 | C10 | D10 | 86 | | I/O | P185 | P214 | D10 | E10 | 89 | | I/O | P186 | P215 | A9 | A9 | 92 | | I/O | P187 | P216 | B9 | B9 | 95 | | I/O | P188 | P217 | C9 | C9 | 98 | | I/O | P189 | P218 | D9 | D9 | 101 | | I/O | P190 | P220 | A8 | A8 | 104 | | I/O | P191 | P221 | B8 | B8 | 107 | | I/O | - | - | C8 | C8 | 110 | | I/O | - | - | A7 | D8 | 113 | | VCC | P192 | P222 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | - | P223 | A6 | B7 | 116 | | I/O | - | P224 | C7 | C7 | 119 | | I/O | P193 | P225 | B6 | D7 | 122 | | I/O | P194 | P226 | A5 | A6 | 125 | | GND | P195 | P227 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P196 | P228 | C6 | B6 | 128 | | I/O | P197 | P229 | B5 | C6 | 131 | | I/O | P198 | P230 | A4 | D6 | 134 | | I/O | P199 | P231 | C5 | E6 | 137 | # **XCS40 and XCS40XL Device Pinouts** | XCS40/XL Device Piriouis | | | | | | |---|-------|-------|--------------------|------------------------|------| | Pad Name | PQ208 | PQ240 | BG256 | CS280 ^(2,5) | Scan | | I/O | P200 | P232 | B4 | A5 | 140 | | I/O | P201 | P233 | A3 | C5 | 143 | | I/O | - | - | - | D5 | 146 | | I/O | - | - | - | A4 | 149 | | I/O | P202 | P234 | D5 | B4 | 152 | | I/O | P203 | P235 | C4 | C4 | 155 | | I/O | P204 | P236 | B3 | A3 | 158 | | I/O | P205 | P237 | B2 | A2 | 161 | | I/O | P206 | P238 | A2 | В3 | 164 | | I/O,
SGCK1 ⁽¹⁾ ,
GCK8 ⁽²⁾ | P207 | P239 | C3 | B2 | 167 | | VCC | P208 | P240 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | GND | P1 | P1 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O,
PGCK1 ⁽¹⁾ ,
GCK1 ⁽²⁾ | P2 | P2 | B1 | C3 | 170 | | I/O | P3 | P3 | C2 | C2 | 173 | | I/O | P4 | P4 | D2 | B1 | 176 | | I/O | P5 | P5 | D3 | C1 | 179 | | I/O, TDI | P6 | P6 | E4 | D4 | 182 | | I/O, TCK | P7 | P7 | C1 | D3 | 185 | | I/O | - | - | - | D2 | 188 | | I/O | - | - | - | D1 | 191 | | I/O | P8 | P8 | D1 | E2 | 194 | | I/O | P9 | P9 | E3 | E4 | 197 | | I/O | P10 | P10 | E2 | E1 | 200 | | I/O | P11 | P11 | E1 | F5 | 203 | | I/O | P12 | P12 | F3 | F3 | 206 | | I/O | - | P13 | F2 | F2 | 209 | | GND | P13 | P14 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P14 | P15 | G3 | F4 | 212 | | I/O | P15 | P16 | G2 | F1 | 215 | | I/O, TMS | P16 | P17 | G1 | G3 | 218 | | I/O | P17 | P18 | Н3 | G2 | 221 | | VCC | P18 | P19 | VCC ⁽⁴⁾ | VCC ⁽⁴⁾ | - | | I/O | ı | P20 | H2 | G4 | 224 | | I/O | ı | P21 | H1 | H1 | 227 | | I/O | - | - | J4 | H3 | 230 | | I/O | - | - | J3 | H2 | 233 | | I/O | P19 | P23 | J2 | H4 | 236 | | I/O | P20 | P24 | J1 | J1 | 239 | | I/O | P21 | P25 | K2 | J2 | 242 | | I/O | P22 | P26 | K3 | J3 | 245 | | I/O | P23 | P27 | K1 | J4 | 248 | | I/O | P24 | P28 | L1 | K1 | 251 |