Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 784 | | Number of Logic Elements/Cells | 1862 | | Total RAM Bits | 25088 | | Number of I/O | 169 | | Number of Gates | 40000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcs40-4pq208c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **General Overview** Spartan series FPGAs are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources (routing channels), and surrounded by a perimeter of programmable Input/Output Blocks (IOBs), as seen in Figure 1. They have generous routing resources to accommodate the most complex interconnect patterns. The devices are customized by loading configuration data into internal static memory cells. Re-programming is possible an unlimited number of times. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. The FPGA can either actively read its configuration data from an external serial PROM (Master Serial mode), or the configuration data can be written into the FPGA from an external device (Slave Serial mode). Spartan series FPGAs can be used where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 50,000 systems per month. ---- Figure 1: Basic FPGA Block Diagram Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown) A CLB can implement any of the following functions: Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables **Note:** When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. - Any single function of five variables - Any function of four variables together with some functions of six variables - · Some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ### Flip-Flops Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay. The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20. ### Latches (Spartan-XL Family Only) The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2. | T-1-1- | Ο. | Δ I D | Ot | | Functionality | |--------|-----|--------------|---------|---------|----------------| | םוחבו | ٠,٠ | | STORAGE | FIDMONT | FIIDCTIONSIITV | | | | | | | | | Mode | СК | EC | SR | D | Q | |---------------------------|----|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | Flip-Flop | Х | Х | 1 | Х | SR | | Operation | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Operation
(Spartan-XL) | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Q | ### Legend: | Χ | Don't care | |----|--| | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Figure 3: CLB Flip-Flop Functional Block Diagram #### **Clock Input** Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB. #### **Clock Enable** The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device. #### Set/Reset The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB. ### CLB Signal Flow Control In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y). Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source. Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT. #### **Control Signals** There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals. Figure 4: CLB Control Signal Interface The four internal control signals are: - EC: Enable Clock - SR: Asynchronous Set/Reset or H function generator Input 0 - DIN: Direct In or H function generator Input 2 - H1: H function generator Input 1. ### Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 6 shows a simplified functional block diagram of the Spartan/XL FPGA IOB. Figure 5: IOB Flip-Flop/Latch Functional Block Diagram ### IOB Input Signal Path The input signal to the IOB can be configured to either go directly to the routing channels (via I1 and I2 in Figure 6) or to the input register. The input register can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The functionality of this register is shown in Table 3, and a simplified block diagram of the register can be seen in Figure 5. Table 3: Input Register Functionality | Mode | CK | EC | D | Q | |--------------------|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Х | 0 | Х | Q | #### Legend: | X | Don't care. | |----|--| | ^ | | | | Rising edge (clock not inverted). | | SR | Set or Reset value. Reset is default. | | 0* | Input is Low or unconnected (default value) | | 1* | Input is High or unconnected (default value) | Figure 13: Data Write and Access Timing for RAM WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM. The WE input is active High and cannot be inverted within the CLB. Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO. ### **Dual-Port Mode** In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported. The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the Figure 14: Logic Diagram for the Dual-Port RAM Figure 17: Detail of Spartan/XL Dedicated Carry Logic # **3-State Long Line Drivers** A pair of 3-state buffers is associated with each CLB in the array. These 3-state buffers (BUFT) can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal long-lines, saving logic resources. There is a weak keeper at each end of these two horizontal longlines. This circuit prevents undefined floating levels. However, it is overridden by any driver. The buffer enable is an active High 3-state (i.e., an active Low enable), as shown in Table 11. ### Three-State Buffer Example Figure 18 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active High 3-state (T) is identical to an active Low output enable, as shown in Table 11. Table 11: Three-State Buffer Functionality | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 18: 3-state Buffers Implement a Multiplexer Even if the boundary scan symbol is used in a design, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. ## **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state. - TCK: Tie High or Low—do not toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note, "Boundary Scan in FPGA Devices." # Boundary Scan Enhancements (Spartan-XL Family Only) Spartan-XL devices have improved boundary scan functionality and performance in the following areas: **IDCODE:** The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The use of the IDCODE enables selective configuration dependent on the FPGA found. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 #### where c = the company code (49h for Xilinx) a = the array dimension in CLBs (ranges from 0Ah for XCS05XL to 1Ch for XCS40XL) f = the family code (02h for Spartan-XL family) v = the die version number Table 13: IDCODEs Assigned to Spartan-XL FPGAs | FPGA | IDCODE | |---------|-----------| | XCS05XL | 0040A093h | | XCS10XL | 0040E093h | | XCS20XL | 00414093h | | XCS30XL | 00418093h | | XCS40XL | 0041C093h | **Configuration State:** The configuration state is available to JTAG controllers. **Configuration Disable:** The JTAG port can be prevented from configuring the FPGA. **TCK Startup:** TCK can now be used to clock the start-up block in addition to other user clocks. **CCLK Holdoff:** Changed the requirement for Boundary Scan Configure or EXTEST to be issued prior to the release of INIT pin and CCLK cycling. **Reissue Configure:** The Boundary Scan Configure can be reissued to recover from an unfinished attempt to configure the device. **Bypass FF:** Bypass FF and IOB is modified to provide DRCLOCK only during BYPASS for the bypass flip-flop, and during EXTEST or SAMPLE/PRELOAD for the IOB register. # Power-Down (Spartan-XL Family Only) All Spartan/XL devices use a combination of efficient segmented routing and advanced process technology to provide low power consumption under all conditions. The 3.3V Spartan-XL family adds a dedicated active Low power-down pin (PWRDWN) to reduce supply current to 100 μA typical. The PWRDWN pin takes advantage of one of the unused No Connect locations on the 5V Spartan device. The user must de-select the "5V Tolerant I/Os" option in the Configuration Options to achieve the specified Power Down current. The PWRDWN pin has a default internal pull-up resistor, allowing it to be left unconnected if unused. V_{CC} must continue to be supplied during Power-down, and configuration data is maintained. When the \overline{PWRDWN} pin is pulled Low, the input and output buffers are disabled. The inputs are internally forced to a logic Low level, including the MODE pins, DONE, CCLK, and \overline{TDO} , and all internal pull-up resistors are turned off. The $\overline{PROGRAM}$ pin is not affected by Power Down. The GSR net is asserted during Power Down, initializing all the flip-flops to their start-up state. PWRDWN has a minimum pulse width of 50 ns (Figure 23). On entering the Power-down state, the inputs will be disabled and the flip-flops set/reset, and then the outputs are disabled about 10 ns later. The user may prefer to assert the GTS or GSR signals before PWRDWN to affect the order of events. When the PWRDWN signal is returned High, the inputs will be enabled first, followed immediately by the release of the GSR signal initializing the flip-flops. About 10 ns later, the outputs will be enabled. Allow 50 ns after the release of PWRDWN before using the device. Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. # **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration. Note: Figure 25: Master/Slave Serial Mode Circuit Diagram DS060_25_061301 DS060_28_080400 | Symbol | | Description | Min | Max | Units | |------------------|------|------------------------|-----|-----|-------| | T _{IC} | | INIT (High) setup time | | - | μs | | T _{DC} | | D0-D7 setup time | 20 | - | ns | | T _{CD} | CCLK | D0-D7 hold time | 0 | - | ns | | T _{CCH} | COLK | CCLK High time | 45 | - | ns | | T _{CCL} | | CCLK Low time | 45 | - | ns | | F _{CC} | | CCLK Frequency | - | 10 | MHz | #### Notes: Figure 28: Express Mode Programming Switching Characteristics # **Setting CCLK Frequency** In Master mode, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for Spartan/XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for Spartan/XL devices. The frequency is changed to fast by an option when running the bitstream generation software. ### **Data Stream Format** The data stream ("bitstream") format is identical for both serial configuration modes, but different for the Spartan-XL family Express mode. In Express mode, the device becomes active when DONE goes High, therefore no length count is required. Additionally, CRC error checking is not supported in Express mode. The data stream format is shown in Table 16. Bit-serial data is read from left to right. Express mode data is shown with D0 at the left and D7 at the right. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones (or 24 fill bits, in Spartan-XL family Express mode). This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 17). Each frame begins with a start field and ends with an error check. In serial modes, a postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional start-up bytes to shift the last data through the chain. All start-up bytes are "don't cares". If not driven by the preceding DOUT, CS1 must remain High until the device is fully configured. Table 17: Spartan/XL Program Data | Device | XC | CS05 | XC | S10 | XC | S20 | XC | S30 | XC | S40 | |-------------------------------------|--------|------------------|--------|------------------|---------|------------------|---------|------------------|-------------------|--------------| | Max System
Gates | 5, | 000 | 10 | ,000 | 20 | 20,000 30,000 | | 40 | ,000 | | | CLBs
(Row x Col.) | | 100
(10 x 10) | | 196
(14 x 14) | | 400
(20 x 20) | | 576
(24 x 24) | | '84
x 28) | | IOBs | 80 | | 112 | | 1 | 160 192 | | 20 |)5 ⁽⁴⁾ | | | Part Number | XCS05 | XCS05XL | XCS10 | XCS10XL | XCS20 | XCS20XL | XCS30 | XCS30XL | XCS40 | XCS40XL | | Supply Voltage | 5V | 3.3V | | Bits per Frame | 126 | 127 | 166 | 167 | 226 | 227 | 266 | 267 | 306 | 307 | | Frames | 428 | 429 | 572 | 573 | 788 | 789 | 932 | 933 | 1,076 | 1,077 | | Program Data | 53,936 | 54,491 | 94,960 | 95,699 | 178,096 | 179,111 | 247,920 | 249,119 | 329,264 | 330,647 | | PROM Size (bits) | 53,984 | 54,544 | 95,008 | 95,752 | 178,144 | 179,160 | 247,968 | 249,168 | 329,312 | 330,696 | | Express Mode
PROM Size
(bits) | - | 79,072 | - | 128,488 | - | 221,056 | - | 298,696 | - | 387,856 | #### Notes: - Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device) Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device) Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte - 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. - 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits. - 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. DS060_39_082801 Figure 31: Start-up Timing # **Configuration Through the Boundary Scan Pins** Spartan/XL devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input. - Wait for INIT to go High. - Sequence the boundary scan Test Access Port to the SHIFT-DR state. - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note, "Boundary Scan in FPGA Devices." This application note applies to Spartan and Spartan-XL devices. # **Spartan Family DC Characteristics Over Operating Conditions** | Symbol | Description | | Min | Max | Units | |------------------|--|--|-----------------------|-----|-------| | V _{OH} | High-level output voltage @ I _{OH} = -4.0 mA, V _{CC} min | TTL outputs | 2.4 | - | V | | | High-level output voltage @ I _{OH} = −1.0 mA, V _{CC} min | CMOS outputs | V _{CC} - 0.5 | - | V | | V _{OL} | Low-level output voltage @ I _{OL} = 12.0 mA, V _{CC} min ⁽¹⁾ | TTL outputs | - | 0.4 | V | | | | CMOS outputs | - | 0.4 | V | | V_{DR} | Data retention supply voltage (below which configuratio | ta retention supply voltage (below which configuration data may be lost) | | | | | I _{cco} | Quiescent FPGA supply current ⁽²⁾ | Commercial | - | 3.0 | mA | | | | Industrial | - | 6.0 | mA | | IL | Input or output leakage current | | -10 | +10 | μΑ | | C _{IN} | Input capacitance (sample tested) | - | 10 | pF | | | I _{RPU} | Pad pull-up (when selected) @ V _{IN} = 0V (sample tested | 0.02 | 0.25 | mA | | | I _{RPD} | Pad pull-down (when selected) @ V _{IN} = 5V (sample tes | ted) | 0.02 | - | mA | #### Notes: - 1. With 50% of the outputs simultaneously sinking 12 mA, up to a maximum of 64 pins. - With no output current loads, no active input pull-up resistors, all package pins at V_{CC} or GND, and the FPGA configured with a Tie option. # **Spartan Family Global Buffer Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | | d Grade | | |-----------------|---|--------|-----|---------|-------| | | | | -4 | -3 | | | Symbol | Description | Device | Max | Max | Units | | T _{PG} | From pad through Primary buffer, to any clock K | XCS05 | 2.0 | 4.0 | ns | | | | XCS10 | 2.4 | 4.3 | ns | | | | XCS20 | 2.8 | 5.4 | ns | | | | XCS30 | 3.2 | 5.8 | ns | | | | XCS40 | 3.5 | 6.4 | ns | | T _{SG} | From pad through Secondary buffer, to any clock K | XCS05 | 2.5 | 4.4 | ns | | | | XCS10 | 2.9 | 4.7 | ns | | | | XCS20 | 3.3 | 5.8 | ns | | | | XCS30 | 3.6 | 6.2 | ns | | | | XCS40 | 3.9 | 6.7 | ns | # **Spartan-XL Family DC Characteristics Over Operating Conditions** | Symbol | Description | Min | Тур. | Max | Units | | |-------------------|---|---|---------------------|-----|---------------------|----| | V _{OH} | High-level output voltage @ $I_{OH} = -4.0 \text{ mA}, V_{C}$ | High-level output voltage @ $I_{OH} = -4.0 \text{ mA}$, $V_{CC} \text{ min (LVTTL)}$ | | | | V | | | High-level output voltage @ $I_{OH} = -500 \mu A$, (LV | (CMOS) | 90% V _{CC} | - | - | V | | V _{OL} | Low-level output voltage @ I _{OL} = 12.0 mA, V _{CO} | ; min (LVTTL) ⁽¹⁾ | - | - | 0.4 | V | | | Low-level output voltage @ I _{OL} = 24.0 mA, V _{CO} | ; min (LVTTL) ⁽²⁾ | - | - | 0.4 | V | | | Low-level output voltage @ I _{OL} = 1500 μA, (LV | CMOS) | - | - | 10% V _{CC} | V | | V _{DR} | Data retention supply voltage (below which cormay be lost) | voltage (below which configuration data | | | - | V | | I _{CCO} | Quiescent FPGA supply current ^(3,4) | Commercial | - | 0.1 | 2.5 | mA | | | | Industrial | - | 0.1 | 5 | mA | | I _{CCPD} | Power Down FPGA supply current ^(3,5) | Commercial | - | 0.1 | 2.5 | mA | | | | Industrial | - | 0.1 | 5 | mA | | IL | Input or output leakage current | 1 | -10 | - | 10 | μΑ | | C _{IN} | Input capacitance (sample tested) | | - | - | 10 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{IN} = 0V (samp | -up (when selected) @ V _{IN} = 0V (sample tested) | | - | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{IN} = 3.3V (s | sample tested) | 0.02 | - | - | mA | #### Notes: - With up to 64 pins simultaneously sinking 12 mA (default mode). - 2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected). - 3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option. - With no output current loads, no active input resistors, and all package pins at V_{CC} or GND. - 5. With PWRDWN active. # **Supply Current Requirements During Power-On** Spartan-XL FPGAs require that a minimum supply current I_{CCPO} be provided to the V_{CC} lines for a successful power on. If more current is available, the FPGA can consume more than I_{CCPO} min., though this cannot adversely affect reliability. A maximum limit for I_{CCPO} is not specified. Be careful when using foldback/crowbar supplies and fuses. It is possible to control the magnitude of I_{CCPO} by limiting the supply current available to the FPGA. A current limit below the trip level will avoid inadvertently activating over-current protection circuits. | Symbol | Description | Min | Max | Units | |-------------------|---|-----|-----|-------| | I _{CCPO} | Total V _{CC} supply current required during power-on | 100 | - | mA | | T _{CCPO} | V _{CC} ramp time ^(2,3) | - | 50 | ms | #### Notes: - 1. The I_{CCPO} requirement applies for a brief time (commonly only a few milliseconds) when V_{CC} ramps from 0 to 3.3V. - 2. The ramp time is measured from GND to V_{CC} max on a fully loaded board. - V_{CC} must not dip in the negative direction during power on. # **Spartan-XL Family Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper- ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. # Spartan-XL Family Output Flip-Flop, Clock-to-Out | | | | Speed Grade | | | | |--------------------|----------------------------|-------------|-------------|-----|----------|--| | | | | -5 | -4 | | | | Symbol | Description | Device | Max | Max | Units | | | Global Cl | ock to Output using OFF | ' | | ' | <u> </u> | | | T _{ICKOF} | Fast | XCS05XL | 4.6 | 5.2 | ns | | | | | XCS10XL | 4.9 | 5.5 | ns | | | | | XCS20XL | 5.2 | 5.8 | ns | | | | | XCS30XL | 5.5 | 6.2 | ns | | | | | XCS40XL | 5.8 | 6.5 | ns | | | Slew Rate | Adjustment | 1 | | 1 | | | | T_{SLOW} | For Output SLOW option add | All Devices | 1.5 | 1.7 | ns | | #### Notes: - Output delays are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - 2. Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. - 3. OFF = Output Flip Flop # **Spartan-XL Family IOB Input Switching Characteristic Guidelines** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). | | | | | Speed | Grade | | | | |--------------------|---|------------------------|------|-------|-------|------|-------|--| | | | Description Device Min | | 5 | - | 4 | 1 | | | Symbol | Description | | | Max | Min | Max | Units | | | Setup Tim | es | | | | | | | | | T _{ECIK} | Clock Enable (EC) to Clock (IK) | All devices | 0.0 | - | 0.0 | - | ns | | | T _{PICK} | Pad to Clock (IK), no delay | All devices | 1.0 | - | 1.2 | - | ns | | | T _{POCK} | Pad to Fast Capture Latch Enable (OK), no delay | All devices | 0.7 | - | 0.8 | - | ns | | | Hold Time | es | | | | • | | | | | | All Hold Times | All devices | 0.0 | - | 0.0 | - | ns | | | Propagati | on Delays | | | | • | | | | | T _{PID} | Pad to I1, I2 | All devices | - | 0.9 | - | 1.1 | ns | | | T _{PLI} | Pad to I1, I2 via transparent input latch, no delay | All devices | - | 2.1 | - | 2.5 | ns | | | T _{IKRI} | Clock (IK) to I1, I2 (flip-flop) | All devices | - | 1.0 | - | 1.1 | ns | | | T _{IKLI} | Clock (IK) to I1, I2 (latch enable, active Low) | All devices | - | 1.1 | - | 1.2 | ns | | | Delay Add | ler for Input with Full Delay Option | | | | • | | | | | T _{Delay} | $T_{PICKD} = T_{PICK} + T_{Delay}$ | XCS05XL | 4.0 | - | 4.7 | - | ns | | | | $T_{PDLI} = T_{PLI} + T_{Delay}$ | XCS10XL | 4.8 | - | 5.6 | - | ns | | | | | XCS20XL | 5.0 | - | 5.9 | - | ns | | | | | XCS30XL | 5.5 | - | 6.5 | - | ns | | | | | XCS40XL | 6.5 | - | 7.6 | - | ns | | | Global Se | t/Reset | " | | ı | 1 | ı | i. | | | T _{MRW} | Minimum GSR pulse width | All devices | 10.5 | - | 11.5 | - | ns | | | T _{RRI} | Delay from GSR input to any Q | XCS05XL | - | 9.0 | - | 10.5 | ns | | | | | XCS10XL | - | 9.5 | - | 11.0 | ns | | | | | XCS20XL | - | 10.0 | - | 11.5 | ns | | | | | XCS30XL | - | 11.0 | - | 12.5 | ns | | | | | XCS40XL | - | 12.0 | - | 13.5 | ns | | #### Notes: - 1. Input pad setup and hold times are specified with respect to the internal clock (IK). For setup and hold times with respect to the clock input, see the pin-to-pin parameters in the Pin-to-Pin Input Parameters table. - 2. Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source. Table 18: Pin Descriptions (Continued) | | I/O | | | |--------------------------------|-------------------------------------|----------------------|--| | Pin Name | During
Config. | I/O After
Config. | Pin Description | | SGCK1 -
SGCK4
(Spartan) | Weak
Pull-up
(except
SGCK4 | I or I/O | Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. | | | is DOUT) | | The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins. | | GCK1 -
GCK8
(Spartan-XL) | Weak
Pull-up
(except | I or I/O | Eight Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. | | | GCK6 is
DOUT) | | The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol is automatically placed on one of these pins. | | CS1
(Spartan-XL) | I | I/O | During Express configuration, CS1 is used as a serial-enable signal for daisy-chaining. | | D0-D7
(Spartan-XL) | I | I/O | During Express configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins. | | DIN | I | I/O | During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. After configuration, DIN is a user-programmable I/O pin. | | DOUT | 0 | I/O | During Slave Serial or Master Serial configuration, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input. | | | | | In Spartan-XL family Express mode, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices. | | | | | After configuration, DOUT is a user-programmable I/O pin. | | Unrestricted L | Jser-Progra | mmable I/O | Pins | | I/O | Weak
Pull-up | I/O | These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor network that defines the logic level as High. | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL
Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Bndry
Scan | |--|-------|------------------------|-------|-------|--------------------| | I/O | - | F4 | P13 | P21 | 170 | | I/O | P8 | F3 | P14 | P22 | 173 | | I/O | P9 | F2 | P15 | P23 | 176 | | I/O | P10 | F1 | P16 | P24 | 179 | | GND | P11 | G2 | P17 | P25 | - | | VCC | P12 | G1 | P18 | P26 | - | | I/O | P13 | G3 | P19 | P27 | 182 | | I/O | P14 | G4 | P20 | P28 | 185 | | I/O | P15 | H1 | P21 | P29 | 188 | | I/O | - | H2 | P22 | P30 | 191 | | I/O | - | - | - | P31 | 194 | | I/O | - | - | - | P32 | 197 | | VCC ⁽²⁾ | - | - | - | P33 | - | | I/O | P16 | H3 | P23 | P34 | 200 | | I/O | P17 | H4 | P24 | P35 | 203 | | I/O | - | J1 | P25 | P36 | 206 | | I/O | - | J2 | P26 | P37 | 209 | | GND | - | J3 | P27 | P38 | - | | I/O | - | - | - | P40 | 212 | | I/O | - | - | - | P41 | 215 | | I/O | - | - | - | P42 | 218 | | I/O | - | - | - | P43 | 221 | | I/O | P18 | J4 | P28 | P44 | 224 | | I/O | P19 | K1 | P29 | P45 | 227 | | I/O | - | K2 | P30 | P46 | 230 | | I/O | - | K3 | P31 | P47 | 233 | | I/O | P20 | L1 | P32 | P48 | 236 | | I/O,
SGCK2 ⁽¹⁾ ,
GCK2 ⁽²⁾ | P21 | L2 | P33 | P49 | 239 | | Not
Connected ⁽¹⁾
M1 ⁽²⁾ | P22 | L3 | P34 | P50 | 242 | | GND | P23 | M1 | P35 | P51 | - | | MODE ⁽¹⁾ ,
M0 ⁽²⁾ | P24 | M2 | P36 | P52 | 245 | | VCC | P25 | N1 | P37 | P53 | - | | Not
Connected ⁽¹⁾
PWRDWN ⁽²⁾ | P26 | N2 | P38 | P54 | 246 (1) | | I/O,
PGCK2 ⁽¹⁾ ,
GCK3 ⁽²⁾ | P27 | M3 | P39 | P55 | 247 (3) | | I/O (HDC) | P28 | N3 | P40 | P56 | 250 ⁽³⁾ | | I/O | - | K4 | P41 | P57 | 253 ⁽³⁾ | | I/O | - | L4 | P42 | P58 | 256 ⁽³⁾ | | I/O | P29 | M4 | P43 | P59 | 259 ⁽³⁾ | # **XCS20 and XCS20XL Device Pinouts** | XCS20/XL | | ONE DCV | | | Bndry | |---|-------|------------------------|-------|-------|--------------------| | Pad Name | VQ100 | CS144 ^(2,4) | TQ144 | PQ208 | Scan | | I/O (LDC) | P30 | N4 | P44 | P60 | 262 ⁽³⁾ | | I/O | - | - | - | P61 | 265 ⁽³⁾ | | I/O | - | - | - | P62 | 268 ⁽³⁾ | | I/O | - | - | - | P63 | 271 ⁽³⁾ | | I/O | - | - | - | P64 | 274 ⁽³⁾ | | GND | - | K5 | P45 | P66 | - | | I/O | - | L5 | P46 | P67 | 277 (3) | | I/O | - | M5 | P47 | P68 | 280 (3) | | I/O | P31 | N5 | P48 | P69 | 283 ⁽³⁾ | | I/O | P32 | K6 | P49 | P70 | 286 ⁽³⁾ | | VCC ⁽²⁾ | - | - | - | P71 | - | | I/O | - | - | - | P72 | 289 ⁽³⁾ | | I/O | - | - | - | P73 | 292 ⁽³⁾ | | I/O | P33 | L6 | P50 | P74 | 295 ⁽³⁾ | | I/O | P34 | M6 | P51 | P75 | 298 ⁽³⁾ | | I/O | P35 | N6 | P52 | P76 | 301 ⁽³⁾ | | I/O (INIT) | P36 | M7 | P53 | P77 | 304 ⁽³⁾ | | VCC | P37 | N7 | P54 | P78 | - | | GND | P38 | L7 | P55 | P79 | - | | I/O | P39 | K7 | P56 | P80 | 307 ⁽³⁾ | | I/O | P40 | N8 | P57 | P81 | 310 ⁽³⁾ | | I/O | P41 | M8 | P58 | P82 | 313 ⁽³⁾ | | I/O | P42 | L8 | P59 | P83 | 316 ⁽³⁾ | | I/O | - | - | - | P84 | 319 ⁽³⁾ | | I/O | - | - | - | P85 | 322 (3) | | VCC ⁽²⁾ | - | - | - | P86 | - | | I/O | P43 | K8 | P60 | P87 | 325 ⁽³⁾ | | I/O | P44 | N9 | P61 | P88 | 328 (3) | | I/O | - | M9 | P62 | P89 | 331 ⁽³⁾ | | I/O | - | L9 | P63 | P90 | 334 ⁽³⁾ | | GND | - | K9 | P64 | P91 | - | | I/O | - | - | - | P93 | 337 ⁽³⁾ | | I/O | - | - | 1 | P94 | 340 ⁽³⁾ | | I/O | - | - | ı | P95 | 343 ⁽³⁾ | | I/O | - | - | ı | P96 | 346 ⁽³⁾ | | I/O | P45 | N10 | P65 | P97 | 349 ⁽³⁾ | | I/O | P46 | M10 | P66 | P98 | 352 ⁽³⁾ | | I/O | - | L10 | P67 | P99 | 355 ⁽³⁾ | | I/O | - | N11 | P68 | P100 | 358 ⁽³⁾ | | I/O | P47 | M11 | P69 | P101 | 361 ⁽³⁾ | | I/O,
SGCK3 ⁽¹⁾ ,
GCK4 ⁽²⁾ | P48 | L11 | P70 | P102 | 364 (3) | | GND | P49 | N12 | P71 | P103 | - | | DONE | P50 | M12 | P72 | P104 | - | | VCC | P51 | N13 | P73 | P105 | - | | | | | | | | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |---|----------------------|-------|-------|-------|----------------------|------------------------|--------------------| | I/O | P18 | P28 | P44 | P52 | V1 | T1 | 272 | | I/O | P19 | P29 | P45 | P53 | T4 | T2 | 275 | | I/O | - | P30 | P46 | P54 | U3 | T3 | 278 | | I/O | - | P31 | P47 | P55 | V2 | U1 | 281 | | I/O | P20 | P32 | P48 | P56 | W1 | V1 | 284 | | O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾ | P21 | P33 | P49 | P57 | V3 | U2 | 287 | | Not Connected ⁽¹⁾ , M1 ⁽²⁾ | P22 | P34 | P50 | P58 | W2 | V2 | 290 | | GND | P23 | P35 | P51 | P59 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | MODE ⁽¹⁾ , M0 ⁽²⁾ | P24 | P36 | P52 | P60 | Y1 | W1 | 293 | | VCC | P25 | P37 | P53 | P61 | VCC ⁽⁴⁾ | U3 | - | | Not Connected ⁽¹⁾ , PWRDWN ⁽²⁾ | P26 | P38 | P54 | P62 | W3 | V3 | 294 (1) | | /O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾ | P27 | P39 | P55 | P63 | Y2 | W2 | 295 ⁽³⁾ | | I/O (HDC) | P28 | P40 | P56 | P64 | W4 | W3 | 298 (3) | | I/O | - | P41 | P57 | P65 | V4 | T4 | 301 ⁽³⁾ | | I/O | - | P42 | P58 | P66 | U5 | U4 | 304 ⁽³⁾ | | I/O | P29 | P43 | P59 | P67 | Y3 | V4 | 307 (3) | | I/O (LDC) | P30 | P44 | P60 | P68 | Y4 | W4 | 310 ⁽³⁾ | | I/O | - | - | P61 | P69 | V5 | T5 | 313 ⁽³⁾ | | I/O | - | - | P62 | P70 | W5 | W5 | 316 ⁽³⁾ | | I/O | - | - | P63 | P71 | Y5 | R6 | 319 ⁽³⁾ | | I/O | - | - | P64 | P72 | V6 | U6 | 322 (3) | | I/O | - | - | P65 | P73 | W6 | V6 | 325 ⁽³⁾ | | I/O | - | - | - | P74 | Y6 | T6 | 328 (3) | | GND | - | P45 | P66 | P75 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P46 | P67 | P76 | W7 | W6 | 331 ⁽³⁾ | | I/O | - | P47 | P68 | P77 | Y7 | U7 | 334 (3) | | I/O | P31 | P48 | P69 | P78 | V8 | V7 | 337 (3) | | I/O | P32 | P49 | P70 | P79 | W8 | W7 | 340 (3) | | VCC | - | - | P71 | P80 | VCC ⁽⁴⁾ | T7 | - | | I/O | - | - | P72 | P81 | Y8 | W8 | 343 (3) | | I/O | - | - | P73 | P82 | U9 | U8 | 346 ⁽³⁾ | | I/O | - | - | - | P84 | Y9 | W9 | 349 (3) | | I/O | - | - | - | P85 | W10 | V9 | 352 ⁽³⁾ | | I/O | P33 | P50 | P74 | P86 | V10 | U9 | 355 ⁽³⁾ | | I/O | P34 | P51 | P75 | P87 | Y10 | T9 | 358 ⁽³⁾ | | I/O | P35 | P52 | P76 | P88 | Y11 | W10 | 361 ⁽³⁾ | | I/O (INIT) | P36 | P53 | P77 | P89 | W11 | V10 | 364 ⁽³⁾ | | VCC | P37 | P54 | P78 | P90 | VCC ⁽⁴⁾ | U10 | - | | GND | P38 | P55 | P79 | P91 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | P39 | P56 | P80 | P92 | V11 | T10 | 367 ⁽³⁾ | | I/O | P40 | P57 | P81 | P93 | U11 | R10 | 370 (3) | | I/O | P41 | P58 | P82 | P94 | Y12 | W11 | 373 (3) | | I/O | P42 | P59 | P83 | P95 | W12 | V11 | 376 ⁽³⁾ | | I/O | - | - | P84 | P96 | V12 | U11 | 379 (3) | # XCS30 and XCS30XL Device Pinouts (Continued) | XCS30/XL
Pad Name | VQ100 ⁽⁵⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽⁵⁾ | CS280 ^(2,5) | Bndry
Scan | |----------------------|----------------------|-------|-------|-------|----------------------|------------------------|---------------| | I/O | - | - | - | P190 | B16 | A15 | 23 | | I/O | - | P117 | P166 | P191 | A16 | E14 | 26 | | I/O | - | - | P167 | P192 | C15 | C14 | 29 | | I/O | - | - | P168 | P193 | B15 | B14 | 32 | | I/O | - | - | P169 | P194 | A15 | D14 | 35 | | GND | - | P118 | P170 | P196 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | | I/O | - | P119 | P171 | P197 | B14 | A14 | 38 | | I/O | - | P120 | P172 | P198 | A14 | C13 | 41 | | I/O | - | - | - | P199 | C13 | B13 | 44 | | I/O | - | - | - | P200 | B13 | A13 | 47 | | VCC | - | - | P173 | P201 | VCC ⁽⁴⁾ | D13 | - | | I/O | P82 | P121 | P174 | P202 | C12 | B12 | 50 | | I/O | P83 | P122 | P175 | P203 | B12 | D12 | 53 | | I/O | - | - | P176 | P205 | A12 | A11 | 56 | | I/O | - | - | P177 | P206 | B11 | B11 | 59 | | I/O | P84 | P123 | P178 | P207 | C11 | C11 | 62 | | I/O | P85 | P124 | P179 | P208 | A11 | D11 | 65 | | I/O | P86 | P125 | P180 | P209 | A10 | A10 | 68 | | I/O | P87 | P126 | P181 | P210 | B10 | B10 | 71 | | GND | P88 | P127 | P182 | P211 | GND ⁽⁴⁾ | GND ⁽⁴⁾ | - | # Notes: - 1. 5V Spartan family only - 2. 3V Spartan-XL family only - 3. The "PWRDWN" on the XCS30XL is not part of the Boundary Scan chain. For the XCS30XL, subtract 1 from all Boundary Scan numbers from GCK3 on (295 and higher). - 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package. - 5. CS280 package, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 # Additional XCS30/XL Package Pins #### **PQ240** | GND Pins | | | | | | | | | | | | |----------|--------------------|-----|-----|------|------|--|--|--|--|--|--| | P22 | P37 | P83 | P98 | P143 | P158 | | | | | | | | P204 | P219 | - | - | - | - | | | | | | | | | Not Connected Pins | | | | | | | | | | | | P195 | | | | | | | | | | | | | 2/1 | 2/98 | | |-----|------|--| | | | | ### **BG256** | VCC Pins | | | | | | | | | | | | |----------|-----|-----|-----|-----|-----|--|--|--|--|--|--| | C14 | D6 | D7 | D11 | D14 | D15 | | | | | | | | E20 | F1 | F4 | F17 | G4 | G17 | | | | | | | | K4 | L17 | P4 | P17 | P19 | R2 | | | | | | | | R4 | R17 | U6 | U7 | U10 | U14 | | | | | | | | U15 | V7 | W20 | - | - | - | | | | | | | | GND Pins | | | | | | | | |--------------------|-----|-----|-----|-----|-----|--|--| | A1 | B7 | D4 | D8 | D13 | D17 | | | | G20 | H4 | H17 | N3 | N4 | N17 | | | | U4 | U8 | U13 | U17 | W14 | - | | | | Not Connected Pins | | | | | | | | | A7 | A13 | C8 | D12 | H20 | J3 | | | | J4 | M4 | M19 | V9 | W9 | W13 | | | | Y13 | - | - | - | - | - | | | 6/4/97 ### **CS280** | VCC Pins | | | | | | | | |----------|-----|-----|-----|-----|-----|--|--| | A1 | A7 | C10 | C17 | D13 | G1 | | | | G1 | G19 | K2 | K17 | M4 | N16 | | | | T7 | U3 | U10 | U17 | W13 | - | | | | GND Pins | | | | | | | | # **Product Availability** Table 19 shows the packages and speed grades for Spartan/XL devices. Table 20 shows the number of user I/Os available for each device/package combination. Table 19: Component Availability Chart for Spartan/XL FPGAs | | Pins | 84 | 100 | 144 | 144 | 208 | 240 | 256 | 280 | |---------|------|---------------------|----------------------|----------------------|-----------------|-----------------|-----------------|----------------------|----------------------| | | Туре | Plastic
PLCC | Plastic
VQFP | Chip
Scale | Plastic
TQFP | Plastic
PQFP | Plastic
PQFP | Plastic
BGA | Chip
Scale | | Device | Code | PC84 ⁽³⁾ | VQ100 ⁽³⁾ | CS144 ⁽³⁾ | TQ144 | PQ208 | PQ240 | BG256 ⁽³⁾ | CS280 ⁽³⁾ | | XCS05 | -3 | C(3) | C, I | - | - | - | - | - | - | | | -4 | C(3) | С | - | - | - | - | - | - | | XCS10 | -3 | C(3) | C, I | - | С | - | - | - | - | | | -4 | C(3) | С | - | С | - | - | - | - | | XCS20 | -3 | - | С | - | C, I | C, I | - | - | - | | | -4 | - | С | - | С | С | - | - | - | | XCS30 | -3 | - | C(3) | - | C, I | C, I | С | C(3) | - | | | -4 | - | C(3) | - | С | С | С | C(3) | - | | XCS40 | -3 | - | - | - | - | C, I | С | С | - | | | -4 | - | - | - | - | С | С | С | - | | XCS05XL | -4 | C(3) | C, I | - | - | - | - | - | - | | | -5 | C(3) | С | - | - | - | - | - | - | | XCS10XL | -4 | C(3) | C, I | C(3) | С | - | - | - | - | | | -5 | C(3) | С | C(3) | С | - | - | - | - | | XCS20XL | -4 | - | C, I | C(3) | C, I | C, I | - | - | - | | | -5 | - | С | C(3) | С | С | - | - | - | | XCS30XL | -4 | - | C, I | - | C, I | C, I | С | С | C(3) | | | -5 | - | С | - | С | С | С | С | C(3) | | XCS40XL | -4 | - | - | - | - | C, I | С | C, I | C(3) | | | -5 | - | - | - | - | С | С | С | C(3) | # Notes: - 1. $C = Commercial T_J = 0^{\circ} to +85^{\circ}C$ - 2. I = Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$ - 3. PC84, CS144, and CS280 packages, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01 - 4. Some Spartan-XL devices are available in Pb-free package options. The Pb-free packages insert a "G" in the package code. Contact Xilinx for availability. ### Package Specifications Package drawings and material declaration data sheets for the Spartan/XL devices can be found on the Xilinx website at: ### www.xilinx.com/support/documentation/spartan-xl.htm#19687 Thermal data for the Spartan/XL packages can be found using the thermal query tool on the Xilinx website at: www.xilinx.com/cgi-bin/thermal/thermal.pl