

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	784
Number of Logic Elements/Cells	1862
Total RAM Bits	25088
Number of I/O	169
Number of Gates	40000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcs40xl-5pqg208c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

T-1-1-	Ο.	Δ I D	Ot		Functionality
םוחבו	٠,٠		STORAGE	FIDMONT	FIIDCTIONSIITV

Mode	СК	EC	SR	D	Q
Power-Up or GSR	Х	Х	Х	Х	SR
Flip-Flop	Х	Х	1	Х	SR
Operation		1*	0*	D	D
	0	Х	0*	Х	Q
Latch	1	1*	0*	Х	Q
Operation (Spartan-XL)	0	1*	0*	D	D
Both	Х	0	0*	Х	Q

Legend:

Χ	Don't care
	Rising edge (clock not inverted).
SR	Set or Reset value. Reset is default.
0*	Input is Low or unconnected (default value)
1*	Input is High or unconnected (default value)

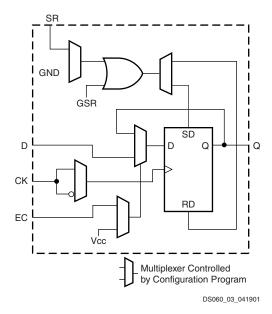


Figure 3: CLB Flip-Flop Functional Block Diagram

Clock Input

Each flip-flop can be triggered on either the rising or falling clock edge. The CLB clock line is shared by both flip-flops. However, the clock is individually invertible for each flip-flop (see CK path in Figure 3). Any inverter placed on the clock line in the design is automatically absorbed into the CLB.

Clock Enable

The clock enable line (EC) is active High. The EC line is shared by both flip-flops in a CLB. If either one is left disconnected, the clock enable for that flip-flop defaults to the active state. EC is not invertible within the CLB. The clock enable is synchronous to the clock and must satisfy the setup and hold timing specified for the device.

Set/Reset

The set/reset line (SR) is an asynchronous active High control of the flip-flop. SR can be configured as either set or reset at each flip-flop. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a GSR pulse during normal operation, and the effect of a pulse on the SR line of the CLB. The SR line is shared by both flip-flops. If SR is not specified for a flip-flop the set/reset for that flip-flop defaults to the inactive state. SR is not invertible within the CLB.

CLB Signal Flow Control

In addition to the H-LUT input control multiplexers (shown in box "A" of Figure 2, page 4) there are signal flow control multiplexers (shown in box "B" of Figure 2) which select the signals which drive the flip-flop inputs and the combinatorial CLB outputs (X and Y).

Each flip-flop input is driven from a 4:1 multiplexer which selects among the three LUT outputs and DIN as the data source.

Each combinatorial output is driven from a 2:1 multiplexer which selects between two of the LUT outputs. The X output can be driven from the F-LUT or H-LUT, the Y output from G-LUT or H-LUT.

Control Signals

There are four signal control multiplexers on the input of the CLB. These multiplexers allow the internal CLB control signals (H1, DIN, SR, and EC in Figure 2 and Figure 4) to be driven from any of the four general control inputs (C1-C4 in Figure 4) into the CLB. Any of these inputs can drive any of the four internal control signals.

Table 4: Supported Sources for Spartan/XL Inputs

	Spartan Inputs		Spartan-XL Inputs
Source	5V, TTL	5V, CMOS	3.3V CMOS
Any device, V _{CC} = 3.3V, CMOS outputs	√	Unreli- able	V
Spartan family, V _{CC} = 5V, TTL outputs	V	Data	V
Any device, $V_{CC} = 5V$, TTL outputs $(V_{OH} \le 3.7V)$	V		V
Any device, V _{CC} = 5V, CMOS outputs	√	V	√ (default mode)

Spartan-XL Family V_{CC} Clamping

Spartan-XL FPGAs have an optional clamping diode connected from each I/O to V_{CC} . When enabled they clampringing transients back to the 3.3V supply rail. This clamping action is required in 3.3V PCI applications. V_{CC} clamping is a global option affecting all I/O pins.

Spartan-XL devices are fully 5V TTL I/O compatible if V_{CC} clamping is not enabled. With V_{CC} clamping enabled, the Spartan-XL devices will begin to clamp input voltages to one diode voltage drop above V_{CC} . If enabled, TTL I/O compatibility is maintained but full 5V I/O tolerance is sacrificed. The user may select either 5V tolerance (default) or 3.3V PCI compatibility. In both cases negative voltage is clamped to one diode voltage drop below ground.

Spartan-XL devices are compatible with TTL, LVTTL, PCI 3V, PCI 5V and LVCMOS signalling. The various standards are illustrated in Table 5.

Table 5: I/O Standards Supported by Spartan-XL FPGAs

Signaling Standard	VCC Clamping	Output Drive	V _{IH MAX}	V _{IH MIN}	V _{IL MAX}	V _{OH MIN}	V _{OL MAX}
TTL	Not allowed	12/24 mA	5.5	2.0	0.8	2.4	0.4
LVTTL	OK	12/24 mA	3.6	2.0	0.8	2.4	0.4
PCI5V	Not allowed	24 mA	5.5	2.0	0.8	2.4	0.4
PCI3V	Required	12 mA	3.6	50% of V _{CC}	30% of V _{CC}	90% of V _{CC}	10% of V _{CC}
LVCMOS 3V	OK	12/24 mA	3.6	50% of V _{CC}	30% of V _{CC}	90% of V _{CC}	10% of V _{CC}

Additional Fast Capture Input Latch (Spartan-XL Family Only)

The Spartan-XL family OB has an additional optional latch on the input. This latch is clocked by the clock used for the output flip-flop rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch.

To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active High input flip-flop. ILFLX is a transparent Low Fast Capture latch followed by a transparent High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB.

IOB Output Signal Path

Output signals can be optionally inverted within the IOB, and can pass directly to the output buffer or be stored in an edge-triggered flip-flop and then to the output buffer. The functionality of this flip-flop is shown in Table 6.

Table 6: Output Flip-Flop Functionality

Mode	Clock	Clock Enable	Т	D	Q
Power-Up or GSR	Х	Х	0*	Х	SR
Flip-Flop	Х	0	0*	Х	Q
		1*	0*	D	D
	Х	Х	1	Х	Z
	0	Х	0*	Х	Q

Legend:

V	Don't care

___ Rising edge (clock not inverted).

SR Set or Reset value. Reset is default.

0* Input is Low or unconnected (default value)

1* Input is High or unconnected (default value)

Z 3-state

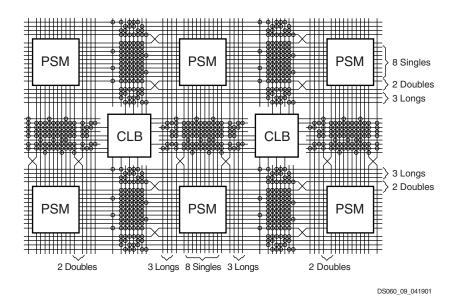


Figure 8: Spartan/XL CLB Routing Channels and Interface Block Diagram

CLB Interface

A block diagram of the CLB interface signals is shown in Figure 9. The input signals to the CLB are distributed evenly on all four sides providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. The exceptions are the clock (K) input and CIN/COUT signals. The K input is routed to dedicated global vertical lines as well as four single-length lines and is on the left side of the CLB. The CIN/COUT signals are routed through dedicated interconnects which do not interfere with the general routing structure. The output signals from the CLB are available to drive both vertical and horizontal channels.

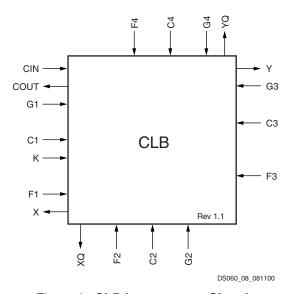
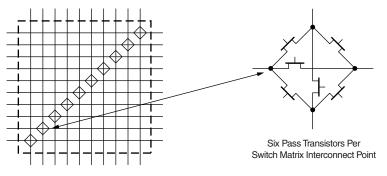


Figure 9: CLB Interconnect Signals

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each PSM consists of programmable pass transistors used to establish connections between the lines (see Figure 10).


For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix.

Single-Length Lines

Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 10. Routing connectivity is shown in Figure 8.

Single-length lines incur a delay whenever they go through a PSM. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one.

DS060_10_081100

Figure 10: Programmable Switch Matrix

Double-Length Lines

The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a PSM. Double-length lines are grouped in pairs with the PSMs staggered, so that each line goes through a PSM at every other row or column of CLBs (see Figure 8).

There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility.

Longlines

12

Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances.

Each Spartan/XL device longline has a programmable splitter switch at its center. This switch can separate the line into two independent routing channels, each running half the width or height of the array.

Routing connectivity of the longlines is shown in Figure 8. The longlines also interface to some 3-state buffers which is described later in 3-State Long Line Drivers, page 19.

I/O Routing

Spartan/XL devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines, and four long-lines.

Global Nets and Buffers

The Spartan/XL devices have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew.

Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. In the 5V Spartan devices, the four global lines can be driven by either of two types of global buffers; Primary Global buffers (BUFGP) or Secondary Global buffers (BUFGS). Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 11. In the 3V Spartan-XL devices, the four global lines can be driven by any of the eight Global Low-Skew Buffers (BUFGLS). The clock pins of every CLB and IOB can also be sourced from local interconnect.

Figure 13: Data Write and Access Timing for RAM

WCLK can be configured as active on either the rising edge (default) or the falling edge. While the WCLK input to the RAM accepts the same signal as the clock input to the associated CLB's flip-flops, the sense of this WCLK input can be

inverted with respect to the sense of the flip-flop clock inputs. Consequently, within the same CLB, data at the RAM SPO line can be stored in a flip-flop with either the same or the inverse clock polarity used to write data to the RAM.

The WE input is active High and cannot be inverted within the CLB.

Allowing for settling time, the data on the SPO output reflects the contents of the RAM location currently addressed. When the address changes, following the asynchronous delay T_{ILO} , the data stored at the new address location will appear on SPO. If the data at a particular RAM address is overwritten, after the delay T_{WOS} , the new data will appear on SPO.

Dual-Port Mode

In dual-port mode, the function generators (F-LUT and G-LUT) are used to create a 16 x 1 dual-port memory. Of the two data ports available, one permits read and write operations at the address specified by A[3:0] while the second provides only for read operations at the address specified independently by DPRA[3:0]. As a result, simultaneous read/write operations at different addresses (or even at the same address) are supported.

The functional organization of the 16 \times 1 dual-port RAM is shown in Figure 14. The dual-port RAM signals and the

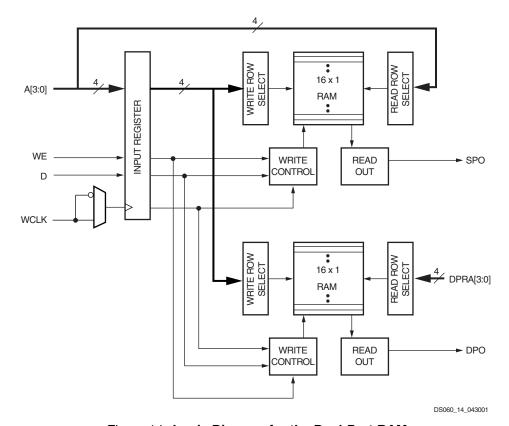


Figure 14: Logic Diagram for the Dual-Port RAM

On-Chip Oscillator

Spartan/XL devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration mode. The oscillator runs at a nominal 8 MHz frequency that varies with process, $V_{\rm CC}$, and temperature. The output frequency falls between 4 MHz and 10 MHz.

The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8-MHz clock, plus any two of 500 kHz, 16 kHz, 490 Hz and 15 Hz. These frequencies can vary by as much as -50% or +25%.

These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code. The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design.

Global Signals: GSR and GTS

Global Set/Reset

A separate Global Set/Reset line, as shown in Figure 3, page 5 for the CLB and Figure 5, page 6 for the IOB, sets or clears each flip-flop during power-up, reconfiguration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, if in reset mode, it is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 19.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the GSR signal. Alternatively, GSR can be driven from any internal node.

Global 3-State

A separate Global 3-state line (GTS) as shown in Figure 6, page 7 forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. GTS does not compete with other routing resources; it uses a dedicated distribution network.

GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. This is similar to what is shown in Figure 19 for GSR except the IBUF would be

connected to GTS. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-state signal. Alternatively, GTS can be driven from any internal node.

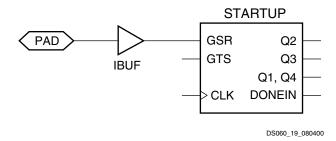


Figure 19: Symbols for Global Set/Reset

Boundary Scan

The "bed of nails" has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can embed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan compatible device. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two.

The Spartan and Spartan-XL families implement IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section.

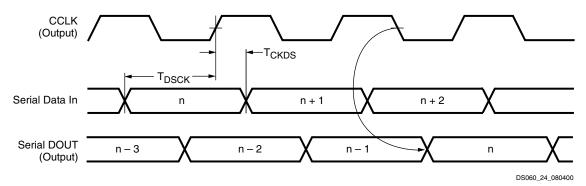
By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in the Spartan/XL devices.

The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note: "Boundary Scan in FPGA Devices."

Master Serial Mode

The Master serial mode uses an internal oscillator to generate a Configuration Clock (CCLK) for driving potential slave devices and the Xilinx serial-configuration PROM (SPROM). The CCLK speed is selectable as either 1 MHz (default) or 8 MHz. Configuration always starts at the default slow frequency, then can switch to the higher frequency during the first frame. Frequency tolerance is –50% to +25%.

In Master Serial mode, the CCLK output of the device drives a Xilinx SPROM that feeds the FPGA DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. The next data bit is put on the SPROM data output, connected to the FPGA DIN pin. The FPGA accepts this data on the subsequent rising CCLK edge.


When used in a daisy-chain configuration the Master Serial FPGA is placed as the first device in the chain and is referred to as the lead FPGA. The lead FPGA presents the preamble data, and all data that overflows the lead device, on its DOUT pin. There is an internal pipeline delay of 1.5 CCLK periods, which means that DOUT changes on the

falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. See the timing diagram in Figure 24.

In the bitstream generation software, the user can specify Fast Configuration Rate, which, starting several bits into the first frame, increases the CCLK frequency by a factor of eight. For actual timing values please refer to the specification section. Be sure that the serial PROM and slaves are fast enough to support this data rate. Earlier families such as the XC3000 series do not support the Fast Configuration Rate option.

The SPROM CE input can be driven from either $\overline{\text{LDC}}$ or DONE. Using $\overline{\text{LDC}}$ avoids potential contention on the DIN pin, if this pin is configured as user I/O, but $\overline{\text{LDC}}$ is then restricted to be a permanently High user output after configuration. Using DONE can also avoid contention on DIN, provided the Early DONE option is invoked.

Figure 25 shows a full master/slave system. The leftmost device is in Master Serial mode, all other devices in the chain are in Slave Serial mode.

	Symbol	Description	Min	Units
CCLK	T _{DSCK}	DIN setup	20	ns
COLK	T _{CKDS}	DIN hold	0	ns

Notes:

- 1. At power-up, V_{CC} must rise from 2.0V to V_{CC} min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid.
- Master Serial mode timing is based on testing in slave mode.

Figure 24: Master Serial Mode Programming Switching Characteristics

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configuration data on the rising edge of CCLK and, after loading its configuration, passes additional data out, resynchronized on the next falling edge of CCLK.

In this mode, an external signal drives the CCLK input of the FPGA (most often from a Master Serial device). The serial configuration bitstream must be available at the DIN input of the lead FPGA a short setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge.

Figure 25 shows a full master/slave system. A Spartan/XL device in Slave Serial mode should be connected as shown in the third device from the left.

Slave Serial is the default mode if the Mode pins are left unconnected, as they have weak pull-up resistors during configuration.

Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 25. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, is passed through

and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames.

After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received.

The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM File Formatter must be used to combine the bitstreams for a daisy-chained configuration.

Note:

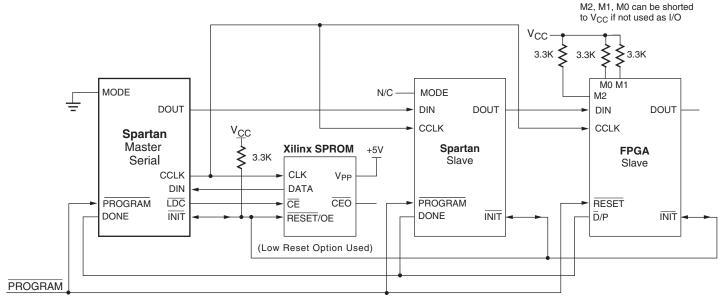
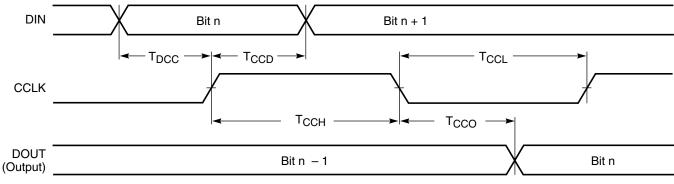



Figure 25: Master/Slave Serial Mode Circuit Diagram

DS060_25_061301

DS060 26 080400

Symbol		Description	Min	Max	Units
T _{DCC}		DIN setup	20	-	ns
T _{CCD}		DIN hold	0	-	ns
T _{CCO}	CCLK	DIN to DOUT	-	30	ns
T _{CCH}	COLK	High time	40	-	ns
T _{CCL}		Low time	40	-	ns
F _{CC}		Frequency	-	12.5	MHz

Notes:

Figure 26: Slave Serial Mode Programming Switching Characteristics

Express Mode (Spartan-XL Family Only)

Express mode is similar to Slave Serial mode, except that data is processed one byte per CCLK cycle instead of one bit per CCLK cycle. An external source is used to drive CCLK, while byte-wide data is loaded directly into the configuration data shift registers (Figure 27). A CCLK frequency of 1 MHz is equivalent to a 8 MHz serial rate, because eight bits of configuration data are loaded per CCLK cycle. Express mode does not support CRC error checking, but does support constant-field error checking. A length count is not used in Express mode.

Express mode must be specified as an option to the development system. The Express mode bitstream is not compatible with the other configuration modes (see Table 16, page 32.) Express mode is selected by a <0X> on the Mode pins (M1, M0).

The first byte of parallel configuration data must be available at the D inputs of the FPGA a short setup time before the second rising CCLK edge. Subsequent data bytes are clocked in on each consecutive rising CCLK edge (Figure 28).

Pseudo Daisy Chain

Multiple devices with different configurations can be configured in a pseudo daisy chain provided that all of the devices

are in Express mode. Concatenated bitstreams are used to configure the chain of Express mode devices so that each device receives a separate header. CCLK pins are tied together and D0-D7 pins are tied together for all devices along the chain. A status signal is passed from DOUT to CS1 of successive devices along the chain. Frame data is accepted only when CS1 is High and the device's configuration memory is not already full. The lead device in the chain has its CS1 input tied High (or floating, since there is an internal pull-up). The status pin DOUT is pulled Low after the header is received, and remains Low until the device's configuration memory is full. DOUT is then pulled High to signal the next device in the chain to accept the next header and configuration data on the D0-D7 bus.

The DONE pins of all devices in the chain should be tied together, with one or more active internal pull-ups. If a large number of devices are included in the chain, deactivate some of the internal pull-ups, since the Low-driving DONE pin of the last device in the chain must sink the current from all pull-ups in the chain. The DONE pull-up is activated by default. It can be deactivated using a development system option.

The requirement that all DONE pins in a daisy chain be wired together applies only to Express mode, and only if all devices in the chain are to become active simultaneously. All Spartan-XL devices in Express mode are synchronized

Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.

to wait after completing the configuration memory clear operation. When \overline{INIT} is no longer held Low externally, the device determines its configuration mode by capturing the state of the Mode pins, and is ready to start the configuration process. A master device waits up to an additional 300 μs to make sure that any slaves in the optional daisy chain have seen that \overline{INIT} is High.

For more details on Configuration, refer to the Xilinx Application Note "FPGA Configuration Guidelines" (XAPP090).

Start-Up

Start-up is the transition from the configuration process to the intended user operation. This transition involves a change from one clock source to another, and a change from interfacing parallel or serial configuration data where most outputs are 3-stated, to normal operation with I/O pins active in the user system. Start-up must make sure that the user logic 'wakes up' gracefully, that the outputs become active without causing contention with the configuration signals, and that the internal flip-flops are released from the Global Set/Reset (GSR) at the right time.

Start-Up Initiation

Two conditions have to be met in order for the start-up sequence to begin:

- The chip's internal memory must be full, and
- The configuration length count must be met, exactly.

In all configuration modes except Express mode, Spartan/XL devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration.

In Express mode, there is no length count. The start-up sequence for each device begins when the device has received its quota of configuration data. Wiring the DONE pins of several devices together delays start-up of all devices until all are fully configured.

Start-Up Events

The device can be programmed to control three start-up events.

- The release of the open-drain DONE output
- The termination of the Global Three-State and the change of configuration-related pins to the user function, activating all IOBs.
- The termination of the Global Set/Reset initialization of all CLB and IOB storage elements.

Figure 31 describes start-up timing in detail. The three events — DONE going High, the internal GSR being de-activated, and the user I/O going active — can all occur in any arbitrary sequence. This relative timing is selected by options in the bitstream generation software. Heavy lines in Figure 31 show the default timing. The thin lines indicate all other possible timing options. The start-up logic must be clocked until the "F" (Finished) state is reached.

The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. GSR is then released another clock period later to make sure that user operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 31, but the designer can modify it to meet particular requirements.

Start-Up Clock

Normally, the start-up sequence is controlled by the internal device oscillator (CCLK), which is asynchronous to the system clock. As a configuration option, they can be triggered by an on-chip user net called UCLK. This user net can be accessed by placing the STARTUP library symbol, and the start-up modes are known as UCLK_NOSYNC or UCLK_SYNC. This allows the device to wake up in synchronism with the user system.

DONE Pin

Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software.

The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to the start-up control logic. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK_SYNC or UCLK_SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. Express mode configuration always uses either CCLK_SYNC or UCLK_SYNC timing, while the other configuration modes can use any of the four timing sequences.

When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active.

Readback

The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device.

Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs.

Although readback can be performed while the device is operating, for best results and to freeze a known capture state, it is recommended that the clock inputs be stopped until readback is complete.

Readback of Spartan-XL family Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes.

Spartan/XL FPGA Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, instantiate the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 32.

After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low)

of the first frame. The first two data bits of the first frame are always High.

Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low.

Readback Options

Readback options are: Readback Capture, Readback Abort, and Clock Select. They are set with the bitstream generation software.

Readback Capture

When the Readback Capture option is selected, the data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. RDBK.TRIG is located in the lower-left corner of the device.

When the Readback Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in Readback, since they directly overwrite the F and G function-table configuration of the CLB.

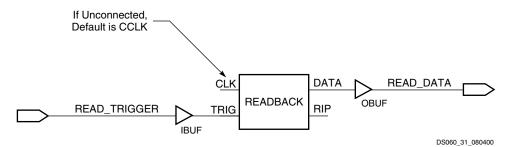


Figure 32: Readback Example

Spartan Family Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case oper-

ating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading.

Spartan Family Primary and Secondary Setup and Hold

			Speed	l Grade	
			-4	-3	
Symbol	Description	Device	Min	Min	Units
Input Setup/H	old Times Using Primary Clock and IFF				
T _{PSUF} /T _{PHF}	No Delay	XCS05	1.2 / 1.7	1.8 / 2.5	ns
		XCS10	1.0 / 2.3	1.5 / 3.4	ns
		XCS20	0.8 / 2.7	1.2 / 4.0	ns
		XCS30	0.6 / 3.0	0.9 / 4.5	ns
		XCS40	0.4 / 3.5	0.6 / 5.2	ns
T _{PSU} /T _{PH}	With Delay	XCS05	4.3 / 0.0	6.0 / 0.0	ns
		XCS10	4.3 / 0.0	6.0 / 0.0	ns
		XCS20	4.3 / 0.0	6.0 / 0.0	ns
		XCS30	4.3 / 0.0	6.0 / 0.0	ns
		XCS40	5.3 / 0.0	6.8 / 0.0	ns
Input Setup/H	old Times Using Secondary Clock and IFF				
T_{SSUF}/T_{SHF}	No Delay	XCS05	0.9 / 2.2	1.5 / 3.0	ns
		XCS10	0.7 / 2.8	1.2 / 3.9	ns
		XCS20	0.5 / 3.2	0.9 / 4.5	ns
		XCS30	0.3 / 3.5	0.6 / 5.0	ns
		XCS40	0.1 / 4.0	0.3 / 5.7	ns
T _{SSU} /T _{SH}	With Delay	XCS05	4.0 / 0.0	5.7 / 0.0	ns
		XCS10	4.0 / 0.0	5.7 / 0.0	ns
		XCS20	4.0 / 0.5	5.7 / 0.5	ns
		XCS30	4.0 / 0.5	5.7 / 0.5	ns
		XCS40	5.0 / 0.0	6.5 / 0.0	ns

Notes:

Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a
reference load of one clock pin per IOB/CLB.

^{2.} IFF = Input Flip-flop or Latch

Spartan-XL Family Detailed Specifications

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

Notwithstanding the definition of the above terms, all specifications are subject to change without notice.

Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications.

Spartan-XL Family Absolute Maximum Ratings⁽¹⁾

Symbol	Descri	Description		
V _{CC}	Supply voltage relative to GND		-0.5 to 4.0	V
V _{IN}	Input voltage relative to GND	5V Tolerant I/O Checked ^(2, 3)	-0.5 to 5.5	V
		Not 5V Tolerant I/Os ^(4, 5)	-0.5 to $V_{CC} + 0.5$	V
V _{TS}	Voltage applied to 3-state output	5V Tolerant I/O Checked ^(2, 3)	-0.5 to 5.5	V
		Not 5V Tolerant I/Os ^(4, 5)	-0.5 to $V_{CC} + 0.5$	V
T _{STG}	Storage temperature (ambient)		-65 to +150	°C
T _J	Junction temperature	Plastic packages	+125	°C

Notes:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
 ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
 is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
- 2. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA and undershoot (below GND) must be limited to either 0.5V or 10 mA, whichever is easier to achieve.
- 3. With 5V Tolerant I/Os selected, the Maximum AC (during transitions) conditions are as follows; the device pins may undershoot to -2.0V or overshoot to + 7.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- 4. Without 5V Tolerant I/Os selected, the Maximum DC overshoot or undershoot must be limited to either 0.5V or 10 mA, whichever is easier to achieve.
- 5. Without 5V Tolerant I/Os selected, the Maximum AC conditions are as follows; the device pins may undershoot to –2.0V or overshoot to V_{CC} + 2.0V, provided this overshoot or undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- 6. For soldering guidelines, see the Package Information on the Xilinx website.

Spartan-XL Family Recommended Operating Conditions

Symbol	Description	Min	Max	Units	
V_{CC}	Supply voltage relative to GND, T _J = 0°C to +85°C	Commercial	3.0	3.6	V
	Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C^{(1)}$	Industrial	3.0	3.6	V
V _{IH}	High-level input voltage ⁽²⁾		50% of V _{CC}	5.5	V
V _{IL}	Low-level input voltage ⁽²⁾		0	30% of V _{CC}	V
T _{IN}	Input signal transition time		-	250	ns

Notes:

- At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C.
- Input and output measurement threshold is ~50% of V_{CC}.

Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted.

				Speed Grade				
			•	-5	-	-4		
Symbol	Single Port RAM	Size ⁽¹⁾	Min	Max	Min	Max	Units	
Write Ope	ration							
T _{WCS}	Address write cycle time (clock K period)	16x2	7.7	-	8.4	-	ns	
T _{WCTS}		32x1	7.7	-	8.4	-	ns	
T _{WPS}	Clock K pulse width (active edge)	16x2	3.1	-	3.6	-	ns	
T _{WPTS}		32x1	3.1	-	3.6	-	ns	
T _{ASS}	Address setup time before clock K	16x2	1.3	-	1.5	-	ns	
T _{ASTS}		32x1	1.5	-	1.7	-	ns	
T _{DSS}	DIN setup time before clock K	16x2	1.5	-	1.7	-	ns	
T _{DSTS}		32x1	1.8	-	2.1	-	ns	
T _{WSS}	WE setup time before clock K	16x2	1.4	-	1.6	-	ns	
T _{WSTS}		32x1	1.3	-	1.5	-	ns	
	All hold times after clock K	16x2	0.0	-	0.0	-	ns	
T _{WOS}	Data valid after clock K	32x1	-	4.5	-	5.3	ns	
T _{WOTS}		16x2	-	5.4	-	6.3	ns	
Read Ope	ration	•	11	1			11	
T _{RC}	Address read cycle time	16x2	2.6	-	3.1	-	ns	
T _{RCT}		32x1	3.8	-	5.5	-	ns	
T _{ILO}	Data Valid after address change (no Write	16x2	-	1.0	-	1.1	ns	
T _{IHO}	Enable)	32x1	-	1.7	-	2.0	ns	
T _{ICK}	Address setup time before clock K	16x2	0.6	-	0.7	-	ns	
T _{IHCK}		32x1	1.3	-	1.6	-	ns	
Notes:								

Notes:

56

^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	F4	P13	P21	170
I/O	P8	F3	P14	P22	173
I/O	P9	F2	P15	P23	176
I/O	P10	F1	P16	P24	179
GND	P11	G2	P17	P25	-
VCC	P12	G1	P18	P26	-
I/O	P13	G3	P19	P27	182
I/O	P14	G4	P20	P28	185
I/O	P15	H1	P21	P29	188
I/O	-	H2	P22	P30	191
I/O	-	-	-	P31	194
I/O	-	-	-	P32	197
VCC ⁽²⁾	-	-	-	P33	-
I/O	P16	H3	P23	P34	200
I/O	P17	H4	P24	P35	203
I/O	-	J1	P25	P36	206
I/O	-	J2	P26	P37	209
GND	-	J3	P27	P38	-
I/O	-	-	-	P40	212
I/O	-	-	-	P41	215
I/O	-	-	-	P42	218
I/O	-	-	-	P43	221
I/O	P18	J4	P28	P44	224
I/O	P19	K1	P29	P45	227
I/O	-	K2	P30	P46	230
I/O	-	K3	P31	P47	233
I/O	P20	L1	P32	P48	236
I/O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾	P21	L2	P33	P49	239
Not Connected ⁽¹⁾ M1 ⁽²⁾	P22	L3	P34	P50	242
GND	P23	M1	P35	P51	-
MODE ⁽¹⁾ , M0 ⁽²⁾	P24	M2	P36	P52	245
VCC	P25	N1	P37	P53	-
Not Connected ⁽¹⁾ PWRDWN ⁽²⁾	P26	N2	P38	P54	246 (1)
I/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾	P27	M3	P39	P55	247 (3)
I/O (HDC)	P28	N3	P40	P56	250 ⁽³⁾
I/O	-	K4	P41	P57	253 ⁽³⁾
I/O	-	L4	P42	P58	256 ⁽³⁾
I/O	P29	M4	P43	P59	259 ⁽³⁾

XCS20 and XCS20XL Device Pinouts

XCS20/XL		ONE DCV			Bndry
Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Scan
I/O (LDC)	P30	N4	P44	P60	262 ⁽³⁾
I/O	-	-	-	P61	265 ⁽³⁾
I/O	-	-	-	P62	268 ⁽³⁾
I/O	-	-	-	P63	271 ⁽³⁾
I/O	-	-	-	P64	274 ⁽³⁾
GND	-	K5	P45	P66	-
I/O	-	L5	P46	P67	277 (3)
I/O	-	M5	P47	P68	280 (3)
I/O	P31	N5	P48	P69	283 ⁽³⁾
I/O	P32	K6	P49	P70	286 ⁽³⁾
VCC ⁽²⁾	-	-	-	P71	-
I/O	-	-	-	P72	289 ⁽³⁾
I/O	-	-	-	P73	292 ⁽³⁾
I/O	P33	L6	P50	P74	295 ⁽³⁾
I/O	P34	M6	P51	P75	298 ⁽³⁾
I/O	P35	N6	P52	P76	301 ⁽³⁾
I/O (INIT)	P36	M7	P53	P77	304 ⁽³⁾
VCC	P37	N7	P54	P78	-
GND	P38	L7	P55	P79	-
I/O	P39	K7	P56	P80	307 ⁽³⁾
I/O	P40	N8	P57	P81	310 ⁽³⁾
I/O	P41	M8	P58	P82	313 ⁽³⁾
I/O	P42	L8	P59	P83	316 ⁽³⁾
I/O	-	-	-	P84	319 ⁽³⁾
I/O	-	-	-	P85	322 (3)
VCC ⁽²⁾	-	-	-	P86	-
I/O	P43	K8	P60	P87	325 ⁽³⁾
I/O	P44	N9	P61	P88	328 (3)
I/O	-	M9	P62	P89	331 ⁽³⁾
I/O	-	L9	P63	P90	334 ⁽³⁾
GND	-	K9	P64	P91	-
I/O	-	-	-	P93	337 ⁽³⁾
I/O	-	-	1	P94	340 ⁽³⁾
I/O	-	-	ı	P95	343 ⁽³⁾
I/O	-	-	ı	P96	346 ⁽³⁾
I/O	P45	N10	P65	P97	349 ⁽³⁾
I/O	P46	M10	P66	P98	352 ⁽³⁾
I/O	-	L10	P67	P99	355 ⁽³⁾
I/O	-	N11	P68	P100	358 ⁽³⁾
I/O	P47	M11	P69	P101	361 ⁽³⁾
I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾	P48	L11	P70	P102	364 (3)
GND	P49	N12	P71	P103	-
DONE	P50	M12	P72	P104	-
VCC	P51	N13	P73	P105	-

XCS20 and XCS20XL Device Pinouts

	d XCS20XL Device Pinouts							
XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan			
PROGRAM	P52	M13	P74	P106	-			
I/O (D7 ⁽²⁾)	P53	L12	P75	P107	367 ⁽³⁾			
I/O,	P54	L13	P76	P108	370 ⁽³⁾			
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾								
I/O		K10	P77	P109	373 ⁽³⁾			
1/0	-	K10	P77	P109	373 ⁽³⁾			
I/O (D6 ⁽²⁾)	- P55	K11	P79	P110	379 ⁽³⁾			
I/O (D6(=/)		K12		P112	382 (3)			
	P56	NIS	P80		385 (3)			
1/0	-	-	-	P114				
1/0	-	-	-	P115	388 (3)			
1/0	-	-	-	P116	391 ⁽³⁾			
I/O	-	-	-	P117	394 ⁽³⁾			
GND	-	J10	P81	P118	- (2)			
I/O	-	J11	P82	P119	397 ⁽³⁾			
I/O	-	J12	P83	P120	400 (3)			
VCC ⁽²⁾	-	-	-	P121	- (0)			
I/O (D5 ⁽²⁾)	P57	J13	P84	P122	403 (3)			
I/O	P58	H10	P85	P123	406 ⁽³⁾			
I/O	-	-	-	P124	409 (3)			
I/O	-	-	-	P125	412 ⁽³⁾			
I/O	P59	H11	P86	P126	415 ⁽³⁾			
I/O	P60	H12	P87	P127	418 ⁽³⁾			
I/O (D4 ⁽²⁾)	P61	H13	P88	P128	421 ⁽³⁾			
I/O	P62	G12	P89	P129	424 ⁽³⁾			
VCC	P63	G13	P90	P130	-			
GND	P64	G11	P91	P131	-			
I/O (D3 ⁽²⁾)	P65	G10	P92	P132	427 ⁽³⁾			
I/O	P66	F13	P93	P133	430 ⁽³⁾			
I/O	P67	F12	P94	P134	433 ⁽³⁾			
I/O	-	F11	P95	P135	436 ⁽³⁾			
I/O	-	-	-	P136	439 ⁽³⁾			
I/O	-	-	-	P137	442 ⁽³⁾			
I/O (D2 ⁽²⁾)	P68	F10	P96	P138	445 ⁽³⁾			
I/O	P69	E13	P97	P139	448 ⁽³⁾			
VCC ⁽²⁾	-	-	-	P140	-			
I/O	_	E12	P98	P141	451 ⁽³⁾			
I/O	_	E11	P99	P142	454 ⁽³⁾			
GND	-	E10	P100	P143	-			
I/O	-	-	-	P145	457 ⁽³⁾			
I/O	-	-	-	P146	460 ⁽³⁾			
I/O	-	-	-	P147	463 ⁽³⁾			
I/O	-	-	-	P148	466 ⁽³⁾			
I/O (D1 ⁽²⁾)	P70	D13	P101	P149	469 ⁽³⁾			
I/O	P71	D12	P102	P150	472 ⁽³⁾			
I/O	-	D11	P103	P151	475 ⁽³⁾			

XCS20 and XCS20XL Device Pinouts

XCS20/XL Pad Name	VQ100	CS144 ^(2,4)	TQ144	PQ208	Bndry Scan
I/O	-	C13	P104	P152	478 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P72	C12	P105	P153	481 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P73	C11	P106	P154	484 ⁽³⁾
CCLK	P74	B13	P107	P155	-
VCC	P75	B12	P108	P156	-
O, TDO	P76	A13	P109	P157	0
GND	P77	A12	P110	P158	-
I/O	P78	B11	P111	P159	2
I/O, PGCK4 ⁽¹⁾ , GCK7 ⁽²⁾	P79	A11	P112	P160	5
I/O	-	D10	P113	P161	8
I/O	-	C10	P114	P162	11
I/O (CS1 ⁽²⁾)	P80	B10	P115	P163	14
I/O	P81	A10	P116	P164	17
I/O	-	D9	P117	P166	20
I/O	-	-	-	P167	23
I/O	-	-	-	P168	26
I/O	-	-	-	P169	29
GND	-	C9	P118	P170	-
I/O	-	B9	P119	P171	32
I/O	-	A9	P120	P172	35
VCC ⁽²⁾	-	-	-	P173	-
I/O	P82	D8	P121	P174	38
I/O	P83	C8	P122	P175	41
I/O	-	-	-	P176	44
I/O	-	-	-	P177	47
I/O	P84	B8	P123	P178	50
I/O	P85	A8	P124	P179	53
I/O	P86	B7	P125	P180	56
I/O	P87	A7	P126	P181	59
GND	P88	C7	P127	P182	-

2/8/00

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	P5	P5	P5	D3	C1	155
I/O, TDI	P4	P6	P6	P6	E4	D4	158
I/O, TCK	P5	P7	P7	P7	C1	D3	161
I/O	-	-	P8	P8	D1	E2	164
I/O	-	-	P9	P9	E3	E4	167
I/O	-	-	P10	P10	E2	E1	170
I/O	-	-	P11	P11	E1	F5	173
I/O	-	-	P12	P12	F3	F3	176
I/O	-	-	-	P13	F2	F2	179
GND	-	P8	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P9	P14	P15	G3	F4	182
I/O	-	P10	P15	P16	G2	F1	185
I/O, TMS	P6	P11	P16	P17	G1	G3	188
I/O	P7	P12	P17	P18	НЗ	G2	191
VCC	-	-	P18	P19	VCC ⁽⁴⁾	G1	-
I/O	-	-	-	P20	H2	G4	194
I/O	-	-	-	P21	H1	H1	197
I/O	-	-	P19	P23	J2	H4	200
I/O	-	-	P20	P24	J1	J1	203
I/O	-	P13	P21	P25	K2	J2	206
I/O	P8	P14	P22	P26	КЗ	J3	209
I/O	P9	P15	P23	P27	K1	J4	212
I/O	P10	P16	P24	P28	L1	K1	215
GND	P11	P17	P25	P29	GND ⁽⁴⁾	GND ⁽⁴⁾	-
VCC	P12	P18	P26	P30	VCC ⁽⁴⁾	K2	-
I/O	P13	P19	P27	P31	L2	K3	218
I/O	P14	P20	P28	P32	L3	K4	221
I/O	P15	P21	P29	P33	L4	K5	224
I/O	-	P22	P30	P34	M1	L1	227
I/O	-	-	P31	P35	M2	L2	230
I/O	-	-	P32	P36	M3	L3	233
I/O	-	-	-	P38	N1	M2	236
I/O	-	-	-	P39	N2	M3	239
VCC	-	-	P33	P40	VCC ⁽⁴⁾	M4	-
I/O	P16	P23	P34	P41	P1	N1	242
I/O	P17	P24	P35	P42	P2	N2	245
I/O	-	P25	P36	P43	R1	N3	248
I/O	-	P26	P37	P44	P3	N4	251
GND	-	P27	P38	P45	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P46	T1	P1	254
I/O	-	-	P39	P47	R3	P2	257
I/O	-	-	P40	P48	T2	P3	260
I/O	-	-	P41	P49	U1	P4	263
I/O	-	_	P42	P50	T3	P5	266
I/O	-	_	P43	P51	U2	R1	269

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	P18	P28	P44	P52	V1	T1	272
I/O	P19	P29	P45	P53	T4	T2	275
I/O	-	P30	P46	P54	U3	T3	278
I/O	-	P31	P47	P55	V2	U1	281
I/O	P20	P32	P48	P56	W1	V1	284
O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾	P21	P33	P49	P57	V3	U2	287
Not Connected ⁽¹⁾ , M1 ⁽²⁾	P22	P34	P50	P58	W2	V2	290
GND	P23	P35	P51	P59	GND ⁽⁴⁾	GND ⁽⁴⁾	-
MODE ⁽¹⁾ , M0 ⁽²⁾	P24	P36	P52	P60	Y1	W1	293
VCC	P25	P37	P53	P61	VCC ⁽⁴⁾	U3	-
Not Connected ⁽¹⁾ , PWRDWN ⁽²⁾	P26	P38	P54	P62	W3	V3	294 (1)
/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾	P27	P39	P55	P63	Y2	W2	295 ⁽³⁾
I/O (HDC)	P28	P40	P56	P64	W4	W3	298 (3)
I/O	-	P41	P57	P65	V4	T4	301 ⁽³⁾
I/O	-	P42	P58	P66	U5	U4	304 ⁽³⁾
I/O	P29	P43	P59	P67	Y3	V4	307 (3)
I/O (LDC)	P30	P44	P60	P68	Y4	W4	310 ⁽³⁾
I/O	-	-	P61	P69	V5	T5	313 ⁽³⁾
I/O	-	-	P62	P70	W5	W5	316 ⁽³⁾
I/O	-	-	P63	P71	Y5	R6	319 ⁽³⁾
I/O	-	-	P64	P72	V6	U6	322 (3)
I/O	-	-	P65	P73	W6	V6	325 ⁽³⁾
I/O	-	-	-	P74	Y6	T6	328 (3)
GND	-	P45	P66	P75	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P46	P67	P76	W7	W6	331 ⁽³⁾
I/O	-	P47	P68	P77	Y7	U7	334 (3)
I/O	P31	P48	P69	P78	V8	V7	337 (3)
I/O	P32	P49	P70	P79	W8	W7	340 (3)
VCC	-	-	P71	P80	VCC ⁽⁴⁾	T7	-
I/O	-	-	P72	P81	Y8	W8	343 (3)
I/O	-	-	P73	P82	U9	U8	346 ⁽³⁾
I/O	-	-	-	P84	Y9	W9	349 (3)
I/O	-	-	-	P85	W10	V9	352 ⁽³⁾
I/O	P33	P50	P74	P86	V10	U9	355 ⁽³⁾
I/O	P34	P51	P75	P87	Y10	T9	358 ⁽³⁾
I/O	P35	P52	P76	P88	Y11	W10	361 ⁽³⁾
I/O (INIT)	P36	P53	P77	P89	W11	V10	364 ⁽³⁾
VCC	P37	P54	P78	P90	VCC ⁽⁴⁾	U10	-
GND	P38	P55	P79	P91	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P39	P56	P80	P92	V11	T10	367 ⁽³⁾
I/O	P40	P57	P81	P93	U11	R10	370 (3)
I/O	P41	P58	P82	P94	Y12	W11	373 (3)
I/O	P42	P59	P83	P95	W12	V11	376 ⁽³⁾
I/O	-	-	P84	P96	V12	U11	379 (3)

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	-	P85	P97	U12	T11	382 ⁽³⁾
I/O	-	-	-	P99	V13	U12	385 ⁽³⁾
I/O	-	-	-	P100	Y14	T12	388 (3)
VCC	-	-	P86	P101	VCC ⁽⁴⁾	W13	-
I/O	P43	P60	P87	P102	Y15	V13	391 ⁽³⁾
I/O	P44	P61	P88	P103	V14	U13	394 ⁽³⁾
I/O	-	P62	P89	P104	W15	T13	397 ⁽³⁾
I/O	-	P63	P90	P105	Y16	W14	400 (3)
GND	-	P64	P91	P106	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P107	V15	V14	403 (3)
I/O	-	-	P92	P108	W16	U14	406 ⁽³⁾
I/O	-	-	P93	P109	Y17	T14	409 (3)
I/O	-	-	P94	P110	V16	R14	412 ⁽³⁾
I/O	-	-	P95	P111	W17	W15	415 ⁽³⁾
I/O	-	-	P96	P112	Y18	U15	418 ⁽³⁾
I/O	P45	P65	P97	P113	U16	V16	421 ⁽³⁾
I/O	P46	P66	P98	P114	V17	U16	424 (3)
I/O	-	P67	P99	P115	W18	W17	427 (3)
I/O	-	P68	P100	P116	Y19	W18	430 (3)
I/O	P47	P69	P101	P117	V18	V17	433 (3)
I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾	P48	P70	P102	P118	W19	V18	436 ⁽³⁾
GND	P49	P71	P103	P119	GND ⁽⁴⁾	GND ⁽⁴⁾	-
DONE	P50	P72	P104	P120	Y20	W19	-
VCC	P51	P73	P105	P121	VCC ⁽⁴⁾	U17	-
PROGRAM	P52	P74	P106	P122	V19	U18	-
I/O (D7 ⁽²⁾)	P53	P75	P107	P123	U19	V19	439 (3)
I/O, PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾	P54	P76	P108	P124	U18	U19	442 (3)
I/O	-	P77	P109	P125	T17	T16	445 ⁽³⁾
I/O	-	P78	P110	P126	V20	T17	448 (3)
I/O	-	-	-	P127	U20	T18	451 ⁽³⁾
I/O	-	-	P111	P128	T18	T19	454 ⁽³⁾
I/O (D6 ⁽²⁾)	P55	P79	P112	P129	T19	R16	457 ⁽³⁾
I/O	P56	P80	P113	P130	T20	R19	460 ⁽³⁾
I/O	-	-	P114	P131	R18	P15	463 ⁽³⁾
I/O	-	-	P115	P132	R19	P17	466 ⁽³⁾
I/O	-	-	P116	P133	R20	P18	469 ⁽³⁾
I/O	-	-	P117	P134	P18	P16	472 ⁽³⁾
GND	-	P81	P118	P135	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	-	-	P136	P20	P19	475 ⁽³⁾
I/O	-	-	-	P137	N18	N17	478 ⁽³⁾
I/O	-	P82	P119	P138	N19	N18	481 ⁽³⁾
I/O	-	P83	P120	P139	N20	N19	484 (3)
VCC	-	-	P121	P140	VCC ⁽⁴⁾	N16	-
I/O (D5 ⁽²⁾)	P57	P84	P122	P141	M17	M19	487 ⁽³⁾
I/O	P58	P85	P123	P142	M18	M17	490 (3)

CS280

		VC	C Pins						
E5	E7	E8	E9	E11	E12				
E13	G5	G15	H5	H15	J5				
J15	L5	L15	M5	M15	N5				
N15	R7	R8	R9	R11	R12				
R13	-	-	-	-	-				
	Not Connected Pins								
A4	A12	C8	C12	C15	D1				
D2	D5	D8	D17	D18	E15				
H2	НЗ	H18	H19	L4	M1				
M16	M18	R2	R4	R5	R15				
R17	T8	T15	U5	V8	V12				
W12	W16	-	-	-	-				
	Not Connected Pins (VCC in XCS40XL)								
B5	B15	E3	E18	R3	R18				
V5	V15	-	-	-	-				

5/21/02

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
VCC	P183	P212	VCC ⁽⁴⁾	VCC ⁽⁴⁾	Juli
					-
I/O	P184	P213	C10	D10	86
I/O	P185	P214	D10	E10	89
I/O	P186	P215	A9	A9	92
I/O	P187	P216	B9	B9	95
I/O	P188	P217	C9	C9	98
I/O	P189	P218	D9	D9	101
I/O	P190	P220	A8	A8	104
I/O	P191	P221	B8	B8	107
I/O	-	-	C8	C8	110
I/O	-	-	A7	D8	113
VCC	P192	P222	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P223	A6	B7	116
I/O	-	P224	C7	C7	119
I/O	P193	P225	B6	D7	122
I/O	P194	P226	A5	A6	125
GND	P195	P227	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P196	P228	C6	B6	128
I/O	P197	P229	B5	C6	131
I/O	P198	P230	A4	D6	134
I/O	P199	P231	C5	E6	137

XCS40 and XCS40XL Device Pinouts

XCS40/XL			741001		Bndry
Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Scan
I/O	P200	P232	B4	A5	140
I/O	P201	P233	A3	C5	143
I/O	-	1	-	D5	146
I/O	-	1	-	A4	149
I/O	P202	P234	D5	B4	152
I/O	P203	P235	C4	C4	155
I/O	P204	P236	В3	A3	158
I/O	P205	P237	B2	A2	161
I/O	P206	P238	A2	В3	164
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P207	P239	C3	B2	167
VCC	P208	P240	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P1	P1	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	P2	B1	C3	170
I/O	P3	P3	C2	C2	173
I/O	P4	P4	D2	B1	176
I/O	P5	P5	D3	C1	179
I/O, TDI	P6	P6	E4	D4	182
I/O, TCK	P7	P7	C1	D3	185
I/O	-	-	-	D2	188
I/O	-	1	-	D1	191
I/O	P8	P8	D1	E2	194
I/O	P9	P9	E3	E4	197
I/O	P10	P10	E2	E1	200
I/O	P11	P11	E1	F5	203
I/O	P12	P12	F3	F3	206
I/O	-	P13	F2	F2	209
GND	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P14	P15	G3	F4	212
I/O	P15	P16	G2	F1	215
I/O, TMS	P16	P17	G1	G3	218
I/O	P17	P18	Н3	G2	221
VCC	P18	P19	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P20	H2	G4	224
I/O	-	P21	H1	H1	227
I/O	-	-	J4	H3	230
I/O	-	-	J3	H2	233
I/O	P19	P23	J2	H4	236
I/O	P20	P24	J1	J1	239
I/O	P21	P25	K2	J2	242
I/O	P22	P26	K3	J3	245
I/O	P23	P27	K1	J4	248
I/O	P24	P28	L1	K1	251