

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	128
Number of Gates	12000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx08-1tq176

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called *FastConnect* and *DirectConnect*, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

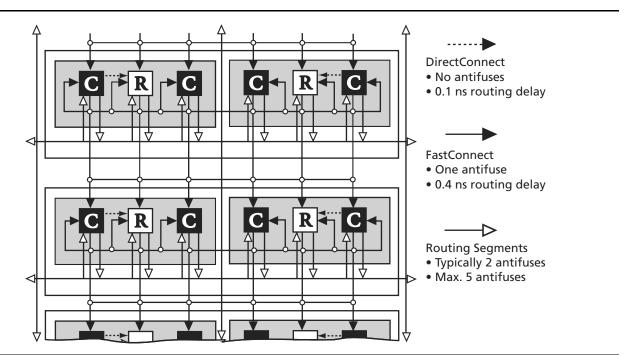
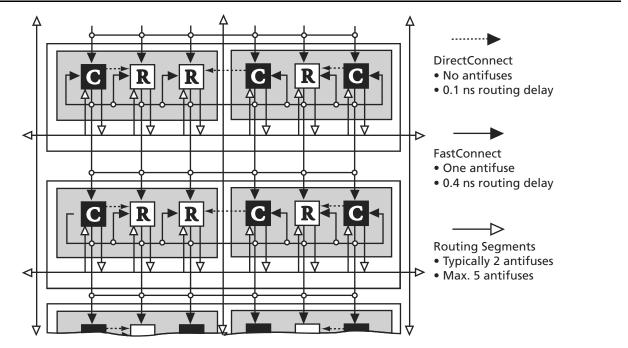



Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • **DirectConnect and FastConnect for Type 2 SuperClusters**

Boundary Scan Testing (BST)

All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 1-2. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of 10 k Ω . TMS can be pulled LOW to initiate the test sequence.

The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode.

Table 1-2 •	Boundary Scan Pin Functionality
-------------	---------------------------------

Program Fuse Blown (Dedicated Test Mode)	Program Fuse Not Blown (Flexible Mode)		
TCK, TDI, TDO are dedicated BST pins.	TCK, TDI, TDO are flexible and may be used as I/Os.		
No need for pull-up resistor for TMS	Use a pull-up resistor of 10 $k\Omega$ on TMS.		

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-7). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8 for detailed specifications.

Figure 1-7 • Device Selection Wizard

Development Tool Support

The SX family of FPGAs is fully supported by both the Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram (located on the Actel website) for more information.

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators, and the simulation results can be cross-probed with Silicon Explorer II, Actel integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys[®], and Cadence[®] Design Systems. The Designer software is available for both the Windows® and UNIX® operating systems.

Probe Circuit Control Pins

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-8 on page 1-7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

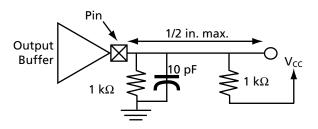
Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry.

A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{1}$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^{3}$		-142	mA
I _{OL(AC)}	Switching Current High	$V_{OUT} \ge 2.2^{1}$	95		mA
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^{3}$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \leq -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Table 1-7 A54SX16P AC Specifications for (PCI Operation)


Notes:

1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

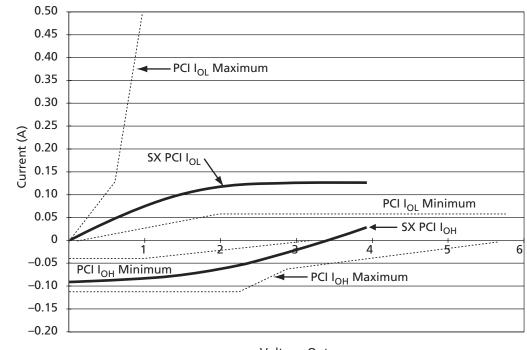


Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

Voltage Out

Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device

 $I_{OH} = (98.0/V_{CC}) \times (V_{OUT} - V_{CC}) \times (V_{OUT} + 0.4V_{CC})$ for V_{CC} > V_{OUT} > 0.7 V_{CC} $I_{OL} = (256/V_{CC}) \times V_{OUT} \times (V_{CC} - V_{OUT})$ for 0 V < V_{OUT} < 0.18 V_{CC}

EQ 1-3

EQ 1-4

Power-Up Sequencing

Table 1-10Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A549	X16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A549	5X16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			·	
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Step 1: Define Terms Used in Formula

v

22

	V_{CCA}	3.3
Module		
Number of logic modules switching at f _m (Used 50%)	m	264
Average logic modules switching rate f _m (MHz) (Guidelines: f/10)	f _m	20
Module capacitance C _{EQM} (pF)	C _{EQM}	4.0
Input Buffer		
Number of input buffers switching at f _n	n	1
Average input switching rate f _n (MHz) (Guidelines: f/5)	f _n	40
Input buffer capacitance C _{EQI} (pF)	C _{EQI}	3.4
Output Buffer		
Number of output buffers switching at fp	р	1
Average output buffers switching rate f _p (MHz) (Guidelines: f/10)	f_p	20
Output buffers buffer capacitance C _{EQO} (pF)	C _{EQO}	4.7
Output Load capacitance C _L (pF)	CL	35
RCLKA		
Number of Clock loads q ₁	q ₁	528
Capacitance of routed array clock (pF)	C _{EQCR}	1.6
Average clock rate (MHz)	f _{q1}	200
Fixed capacitance (pF)	r ₁	138
RCLKB		
Number of Clock loads q ₂	q ₂	0
Capacitance of routed array clock (pF)	C _{EQCR}	1.6
Average clock rate (MHz)	f _{q2}	0
Fixed capacitance (pF)	r ₂	138
HCLK		
Number of Clock loads	s ₁	0
Variable capacitance of dedicated array clock (pF)	C _{EQHV}	0.61 5
Fixed capacitance of dedicated array clock (pF)	C _{EQHF}	96
Average clock rate (MHz)	f _{s1}	0

Step 2: Calculate Dynamic Power Consumption

$V_{CCA} \times V_{CCA}$	10.89
$m \times f_m \times C_{EQM}$	0.02112
$n \times f_n \times C_{EQI}$	0.000136
$p \times f_p \times (C_{EQO}+C_L)$	0.000794
$0.5 (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1})$	0.11208
$0.5(q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2})$	0
$0.5~(s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1})$	0
$P_{AC} = 1.461 \text{ W}$	

Step 3: Calculate DC Power Dissipation DC Power Dissipation

$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + (I_{standby}) \times V_{CCI} + X \times V_{OL} \times I_{OL} + Y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

EQ 1-12

For a rough estimate of DC Power Dissipation, only use $P_{DC} = (I_{standby}) \times V_{CCA}$. The rest of the formula provides a very small number that can be considered negligible.

$$P_{DC} = (I_{standby}) \times V_{CCA}$$
$$P_{DC} = .55 \text{ mA} \times 3.3 \text{ V}$$
$$P_{DC} = 0.001815 \text{ W}$$

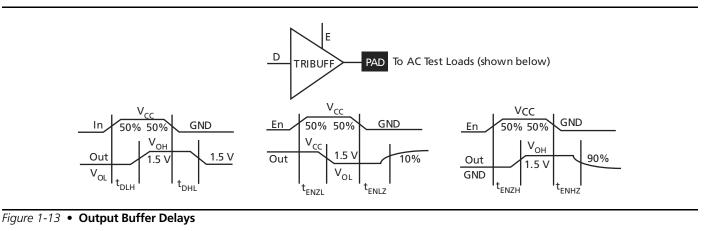
Step 4: Calculate Total Power Consumption

 $P_{Total} = P_{AC} + P_{DC}$ $P_{Total} = 1.461 + 0.001815$ $P_{Total} = 1.4628$ W

Step 5: Compare Estimated Power Consumption against Characterized Power Consumption

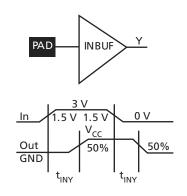
The estimated total power consumption for this design is 1.46 W. The characterized power consumption for this design at 200 MHz is 1.0164 W.

Table 1-15 • Package Thermal Characteristics


Package Type	Pin Count	θ _{jc}	θ _{ja} Still Air	$^{ heta_{ja}}$ 300 ft/min.	Units
Plastic Leaded Chip Carrier (PLCC)	84	12	32	22	°C/W
Thin Quad Flat Pack (TQFP)	144	11	32	24	°C/W
Thin Quad Flat Pack (TQFP)	176	11	28	21	°C/W
Very Thin Quad Flatpack (VQFP)	100	10	38	32	°C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader	208	8	30	23	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader	208	3.8	20	17	°C/W
Plastic Ball Grid Array (PBGA)	272	3	20	14.5	°C/W
Plastic Ball Grid Array (PBGA)	313	3	23	17	°C/W
Plastic Ball Grid Array (PBGA)	329	3	18	13.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	38.8	26.7	°C/W


Note: SX08 does not have a heat spreader.

Table 1-16 • Temperature and Voltage Derating Factors*


	Junction Temperature						
V _{CCA}	-55	-40	0	25	70	85	125
3.0	0.75	0.78	0.87	0.89	1.00	1.04	1.16
3.3	0.70	0.73	0.82	0.83	0.93	0.97	1.08
3.6	0.66	0.69	0.77	0.78	0.87	0.92	1.02

Note: *Normalized to worst-case commercial, $T_J = 70^{\circ}$ C, $V_{CCA} = 3.0 V$

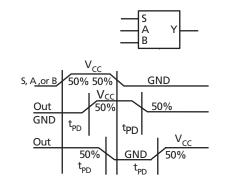


Figure 1-15 • Input Buffer Delays

Figure 1-16 • C-Cell Delays

Table 1-19 • A54SX16P Timing Characteristics (Continued)

(Worst-Case Commercial Conditions	, V _{CCR} = 4.75 V, V _C	_{CCA} ,V _{CCI} = 3.0 V, T _J = 70°C)
-----------------------------------	---	--

		'-3'	Speed	'-2' 9	5peed	'-1' 9	5peed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL/PCI Output Module Timing										
t _{DLH}	Data-to-Pad LOW to HIGH		1.5		1.7		2.0		2.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.9		2.2		2.4		2.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.3		2.6		3.0		3.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.5		1.7		1.9		2.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.7		3.1		3.5		4.1	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns
PCI Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.8		2.0		2.3		2.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.7		2.0		2.2		2.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		0.8		1.0		1.1		1.3	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.2		1.2		1.5		1.8	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.0		1.1		1.3		1.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.1		1.3		1.5		1.7	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.1		2.5		2.8		3.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.0		2.3		2.6		3.1	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.5		2.9		3.2		3.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.0		3.5		3.9		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.1		3.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

Table 1-20 • A54SX32 Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' !	5peed	'-1' \$	Speed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.3		0.4		0.4		0.5	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{rckh}	Input LOW to HIGH (light load) (pad to R-Cell input)		2.4		2.7		3.0		3.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		2.4		2.7		3.1		3.6	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		2.7		3.0		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.7		3.1		3.6		4.2	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		2.7		3.1		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.8		3.2		3.6		4.3	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.85		0.98		1.1		1.3	ns
t _{RCKSW}	Maximum Skew (50% load)		1.23		1.4		1.6		1.9	ns
t _{RCKSW}	Maximum Skew (100% load)		1.30		1.5		1.7		2.0	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{enhz}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

208-Pin PQFP

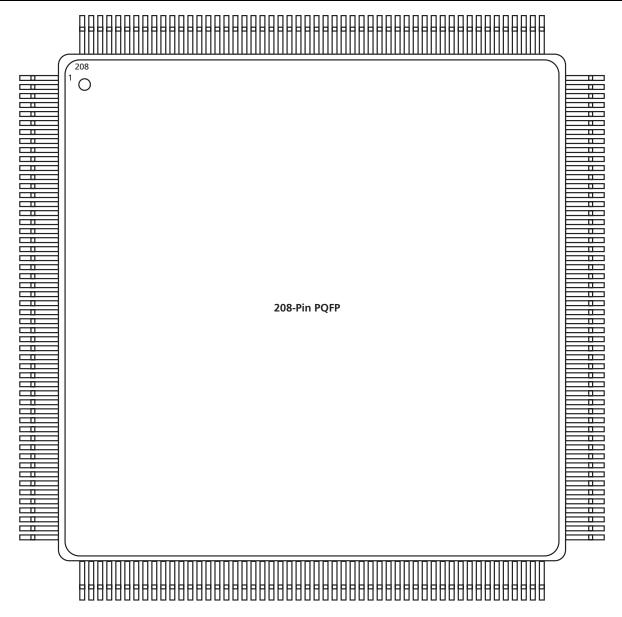


Figure 2-2 • 208-Pin PQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin TQFP

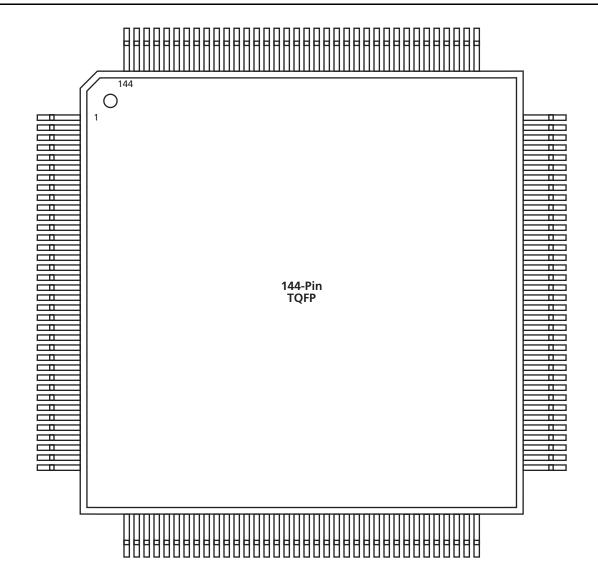


Figure 2-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function				
73	GND	GND	GND	109	GND	GND	GND				
74	I/O	I/O	I/O	110	I/O	I/O	I/O				
75	I/O	I/O	I/O	111	I/O	I/O	I/O				
76	I/O	I/O	I/O	112	I/O	I/O	I/O				
77	I/O	I/O	I/O	113	I/O	I/O	I/O				
78	I/O	I/O	I/O	114	I/O	I/O	I/O				
79	V _{CCA}	V _{CCA}	V _{CCA}	115	V _{CCI}	V _{CCI}	V _{CCI}				
80	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
81	GND	GND	GND	117	I/O	I/O	I/O				
82	I/O	I/O	I/O	118	I/O	I/O	I/O				
83	I/O	I/O	I/O	119	I/O	I/O	I/O				
84	I/O	I/O	I/O	120	I/O	I/O	I/O				
85	I/O	I/O	I/O	121	I/O	I/O	I/O				
86	I/O	I/O	I/O	122	I/O	I/O	I/O				
87	I/O	I/O	I/O	123	I/O	I/O	I/O				
88	I/O	I/O	I/O	124	I/O	I/O	I/O				
89	V _{CCA}	V _{CCA}	V _{CCA}	125	CLKA	CLKA	CLKA				
90	V _{CCR}	V _{CCR}	V _{CCR}	126	CLKB	CLKB	CLKB				
91	I/O	I/O	I/O	127	V _{CCR}	V _{CCR}	V _{CCR}				
92	I/O	I/O	I/O	128	GND	GND	GND				
93	I/O	I/O	I/O	129	V _{CCA}	V _{CCA}	V _{CCA}				
94	I/O	I/O	I/O	130	I/O	I/O	I/O				
95	I/O	I/O	I/O	131	PRA, I/O	PRA, I/O	PRA, I/O				
96	I/O	I/O	I/O	132	I/O	I/O	I/O				
97	I/O	I/O	I/O	133	I/O	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	134	I/O	I/O	I/O				
99	GND	GND	GND	135	I/O	I/O	I/O				
100	I/O	I/O	I/O	136	I/O	I/O	I/O				
101	GND	GND	GND	137	I/O	I/O	I/O				
102	V _{CCI}	V _{CCI}	V _{CCI}	138	I/O	I/O	I/O				
103	I/O	I/O	I/O	139	I/O	I/O	I/O				
104	I/O	I/O	I/O	140	V _{CCI}	V _{CCI}	V _{CCI}				
105	I/O	I/O	I/O	141	I/O	I/O	I/O				
106	I/O	I/O	I/O	142	I/O	I/O	I/O				
107	I/O	I/O	I/O	143	I/O	I/O	I/O				
108	I/O	I/O	I/O	144	TCK, I/O	TCK, I/O	TCK, I/O				

	176-Pi	n TQFP		176-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function				
137	I/O	I/O	I/O	157	Pra, I/O	PRA, I/O	PRA, I/O				
138	I/O	I/O	I/O	158	I/O	I/O	I/O				
139	I/O	I/O	I/O	159	I/O	I/O	I/O				
140	V _{CCI}	V _{CCI}	V _{CCI}	160	I/O	I/O	I/O				
141	I/O	I/O	I/O	161	I/O	I/O	I/O				
142	I/O	I/O	I/O	162	I/O	I/O	I/O				
143	I/O	I/O	I/O	163	I/O	I/O	I/O				
144	I/O	I/O	I/O	164	I/O	I/O	I/O				
145	I/O	I/O	I/O	165	I/O	I/O	I/O				
146	I/O	I/O	I/O	166	I/O	I/O	I/O				
147	I/O	I/O	I/O	167	I/O	I/O	I/O				
148	I/O	I/O	I/O	168	NC	I/O	I/O				
149	I/O	I/O	I/O	169	V _{CCI}	V _{CCI}	V _{CCI}				
150	I/O	I/O	I/O	170	I/O	I/O	I/O				
151	I/O	I/O	I/O	171	NC	I/O	I/O				
152	CLKA	CLKA	CLKA	172	NC	I/O	I/O				
153	CLKB	CLKB	CLKB	173	NC	I/O	I/O				
154	V _{CCR}	V _{CCR}	V _{CCR}	174	I/O	I/O	I/O				
155	GND	GND	GND	175	I/O	I/O	I/O				
156	V _{CCA}	V _{CCA}	V _{CCA}	176	TCK, I/O	TCK, I/O	TCK, I/O				

	100-Pin VQF	P							
Pin Number									
1	GND	GND							
2	TDI, I/O	TDI, I/O							
3	I/O	I/O							
4	I/O	I/O							
5	I/O	I/O							
6	I/O	I/O							
7	TMS	TMS							
8	V _{CCI}	V _{CCI}							
9	GND	GND							
10	I/O	I/O							
11	I/O	I/O							
12	I/O	I/O							
13	I/O	I/O							
14	I/O	I/O							
15	I/O	I/O							
16	I/O	I/O							
17	I/O	I/O							
18	I/O	I/O							
19	I/O	I/O							
20	V _{CCI}	V _{CCI}							
21	I/O	I/O							
22	I/O	I/O							
23	I/O	I/O							
24	I/O	I/O							
25	I/O	I/O							
26	I/O	I/O							
27	I/O	I/O							
28	I/O	I/O							
29	I/O	I/O							
30	I/O	I/O							
31	I/O	I/O							
32	I/O	I/O							
33	I/O	I/O							
34	PRB, I/O	PRB, I/O							

100-Pin VQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function					
35	V _{CCA}	V _{CCA}					
36	GND	GND					
37	V _{CCR}	V _{CCR}					
38	I/O	I/O					
39	HCLK	HCLK					
40	I/O	I/O					
41	I/O	I/O					
42	I/O	I/O					
43	I/O	I/O					
44	V _{CCI}	V _{CCI}					
45	I/O	I/O					
46	I/O	I/O					
47	I/O	I/O					
48	I/O	I/O					
49	TDO, I/O	TDO, I/O					
50	I/O	I/O					
51	GND	GND					
52	I/O	I/O					
53	I/O	I/O					
54	I/O	I/O					
55	I/O	I/O					
56	I/O	I/O					
57	V _{CCA}	V _{CCA}					
58	V _{CCI}	V _{CCI}					
59	I/O	I/O					
60	I/O	I/O					
61	I/O	I/O					
62	I/O	I/O					
63	I/O	I/O					
64	I/O	I/O					
65	I/O	I/O					
66	I/O	I/O					
67	V _{CCA}	V _{CCA}					
68	GND	GND					

	100-Pin VQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function						
69	GND	GND						
70	I/O	I/O						
71	I/O	I/O						
72	I/O	I/O						
73	I/O	I/O						
74	I/O	I/O						
75	I/O	I/O						
76	I/O	I/O						
77	I/O	I/O						
78	I/O	I/O						
79	I/O	I/O						
80	I/O	I/O						
81	I/O	I/O						
82	V _{CCI}	V _{CCI}						
83	I/O	I/O						
84	I/O	I/O						
85	I/O	I/O						
86	I/O	I/O						
87	CLKA	CLKA						
88	CLKB	CLKB						
89	V _{CCR}	V _{CCR}						
90	V _{CCA}	V _{CCA}						
91	GND	GND						
92	PRA, I/O	PRA, I/O						
93	I/O	I/O						
94	I/O	I/O						
95	I/O	I/O						
96	I/O	I/O						
97	I/O	I/O						
98	I/O	I/O						
99	I/O	I/O						
100	TCK, I/O	TCK, I/O						

Actel

54SX Family FPGAs

329-Pin PBGA

_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٦
В	0	0	Õ	0	~	~	0	~	~	ž	~	~	~	~	0	~	ž	~	~	$\overline{}$	0	~	0	
С	Ŭ	č	~	-	-	-	-	-	-	-	_	Ξ.	-	-	-	_	_	-	_	0	-	-	-	
D	•	0	·	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	~	0	~	
E F	-	0	-	-																-	-	0	_	
G	-		·	-																	0	0	0	
н	_	$\overline{0}$	_	_																		0		
J	-	\tilde{O}	Ξ.	-																-	-	õ	-	
к		Õ	<u> </u>	-						0	0	0	0	0						-	-	ŏ	-	
L	0	0	Ο	0						0	Ο	0	0	Ο						0	0	0	Ο	
м	0	0	Ο	Ο						0	Ο	Ο	0	Ο						0	Ο	Ο	Ο	
N	<u> </u>	0	<u> </u>	<u> </u>							Õ									\sim	Õ	\sim	Õ	
P		0								0	0	Ο	Ο	Ο						-	0	-	O	
R	•	0	·	-																<u> </u>	0	<u> </u>	0	
T U	-	0	-	0																Ŭ	0	Ŭ	0	
v	· ·		<u> </u>	0																<u> </u>	00	<u> </u>	0	
ŵ	-	0	-	-																	0	-	$\hat{\mathbf{O}}$	
Y	-	-	_	$\tilde{0}$	\cap	0	\cap	\cap	0	<u> </u>	<u> </u>	~	$\tilde{0}$											
AA	č	\tilde{O}	\tilde{O}	õ	õ	õ	õ	õ	_	õ	_	_	_	_	_	õ	_	õ	õ	_	õ	~	õ	
AB	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	
AC	, Ō	0	Ο	0	Ο	Ō	Ō	Ō	Ō	Ō	0	0	0	0	Ō	0	Ō	Ō	Ō	0	Ō	0	Ō	

Figure 2-7 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pir	n PBGA
Pin Number	A54SX32 Function
T22	I/O
T23	I/O
U1	I/O
U2	I/O
U3	V _{CCA}
U4	I/O
U20	I/O
U21	V _{CCA}
U22	I/O
U23	I/O
V1	V _{CCI}
V2	I/O
V3	I/O

329-Pir	n PBGA
Pin Number	A54SX32 Function
V4	I/O
V20	I/O
V21	I/O
V22	I/O
V23	I/O
W1	I/O
W2	I/O
W3	I/O
W4	I/O
W20	I/O
W21	I/O
W22	I/O

329-Pir	n PBGA
Pin Number	A54SX32 Function
W23	NC
Y1	NC
Y2	I/O
Y3	I/O
Y4	GND
Y5	I/O
Y6	I/O
Y7	I/O
Y8	I/O
Y9	I/O
Y10	I/O
Y11	I/O

329-Pi	n PBGA
Pin Number	A54SX32 Function
Y12	V _{CCA}
Y13	V _{CCR}
Y14	I/O
Y15	I/O
Y16	I/O
Y17	I/O
Y18	I/O
Y19	I/O
Y20	GND
Y21	I/O
Y22	I/O
Y23	I/O

144-Pin FBGA		144-Pin FBGA		144-Pin FBGA		144-Pin FBGA	
Pin Number	A54SX08 Function	Pin Number	A54SX08 Function	Pin Number	A54SX08 Function	Pin Number	A54SX08 Function
A1	I/O	D1	I/O	G1	I/O	K1	I/O
A2	I/O	D2	V _{CCI}	G2	GND	K2	I/O
A3	I/O	D3	TDI, I/O	G3	I/O	К3	I/O
A4	I/O	D4	I/O	G4	I/O	К4	I/O
A5	V _{CCA}	D5	I/O	G5	GND	K5	I/O
A6	GND	D6	I/O	G6	GND	К6	I/O
A7	CLKA	D7	I/O	G7	GND	К7	GND
A8	I/O	D8	I/O	G8	V _{CCI}	K8	I/O
A9	I/O	D9	I/O	G9	I/O	К9	I/O
A10	I/O	D10	I/O	G10	I/O	K10	GND
A11	I/O	D11	I/O	G11	I/O	K11	I/O
A12	I/O	D12	I/O	G12	I/O	K12	I/O
B1	I/O	E1	I/O	H1	I/O	L1	GND
B2	GND	E2	I/O	H2	I/O	L2	I/O
B3	I/O	E3	I/O	H3	I/O	L3	I/O
B4	I/O	E4	I/O	H4	I/O	L4	I/O
B5	I/O	E5	TMS	H5	V _{CCA}	L5	I/O
B6	I/O	E6	V _{CCI}	H6	V _{CCA}	L6	I/O
B7	CLKB	E7	V _{CCI}	H7	V _{CCI}	L7	HCLK
B8	I/O	E8	V _{CCI}	H8	V _{CCI}	L8	I/O
B9	I/O	E9	V _{CCA}	H9	V _{CCA}	L9	I/O
B10	I/O	E10	I/O	H10	I/O	L10	I/O
B11	GND	E11	GND	H11	I/O	L11	I/O
B12	I/O	E12	I/O	H12	V _{CCR}	L12	I/O
C1	I/O	F1	I/O	J1	I/O	M1	I/O
C2	I/O	F2	I/O	J2	I/O	M2	I/O
C3	TCK, I/O	F3	V _{CCR}	J3	I/O	M3	I/O
C4	I/O	F4	I/O	J4	I/O	M4	I/O
C5	I/O	F5	GND	J5	I/O	M5	I/O
C6	PRA, I/O	F6	GND	J6	PRB, I/O	M6	I/O
C7	I/O	F7	GND	J7	I/O	M7	V _{CCA}
C8	I/O	F8	V _{CCI}	J8	I/O	M8	I/O
С9	I/O	F9	1/0	J9	I/O	M9	I/O
C10	I/O	F10	GND	J10	I/O	M10	I/O
C11	I/O	F11	I/O	J11	I/O	M11	TDO, I/O
C12	I/O	F12	I/O	J12	V _{CCA}	M12	I/O

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v3.2)	Page
v3.1	The "Ordering Information" was updated to include RoHS information.	
(June 2003)	The Product Plan was removed since all products have been released.	
	Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.	
	The "Dedicated Test Mode" section is new.	
	The "Programming" section is new.	
	A note was added to the "Power-Up Sequencing" table.	1-15
	A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32.	1-15
	U11 and U13 were added to the "313-Pin PBGA" table.	2-17
v3.0.1	Storage temperature in Table 1-3 was updated.	1-7
	Table 1-1 was updated.	1-5

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.