

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	111
Number of Gates	12000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx08-fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional

flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hardwired clock or the routed clock.

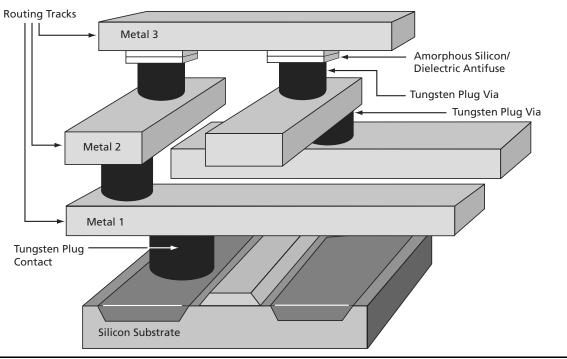


Figure 1-1 • SX Family Interconnect Elements

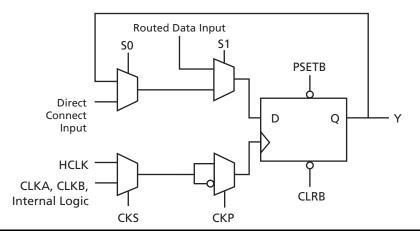


Figure 1-2 • R-Cell

The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX architecture. An example of the improved flexibility

enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time.

1-2 v3.2

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called *FastConnect* and *DirectConnect*, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

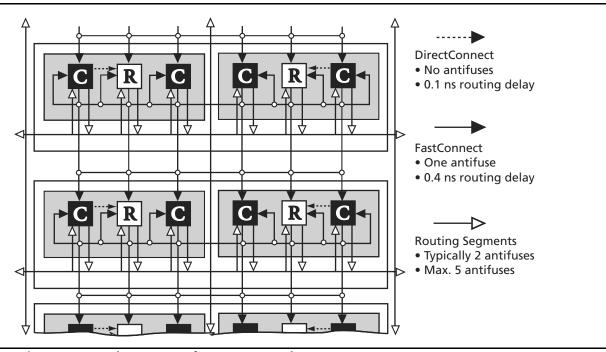


Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

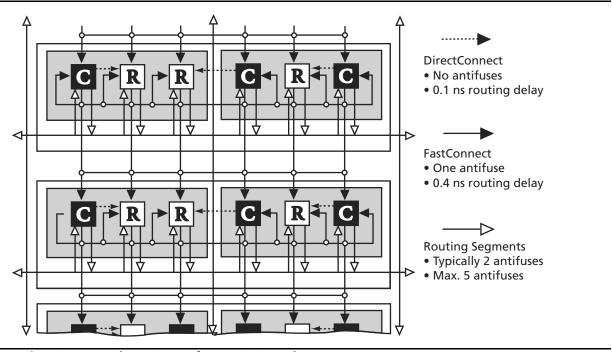


Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

1-4 v3.2

Boundary Scan Testing (BST)

All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 1-2. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of $10~\mathrm{k}\Omega$. TMS can be pulled LOW to initiate the test sequence.

The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode.

Table 1-2 ● **Boundary Scan Pin Functionality**

Program Fuse Blown (Dedicated Test Mode)	Program Fuse Not Blown (Flexible Mode)
TCK, TDI, TDO are dedicated BST pins.	TCK, TDI, TDO are flexible and may be used as I/Os.
No need for pull-up resistor for TMS	Use a pull-up resistor of 10 k Ω on TMS.

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-7). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8 for detailed specifications.

Figure 1-7 • Device Selection Wizard

Development Tool Support

The SX family of FPGAs is fully supported by both the Actel Libero® Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow diagram (located on the Actel website) for more information.

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators, and the simulation results can be cross-probed with Silicon Explorer II, Actel integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys[®], and Cadence® Design Systems. The Designer software is available for both the Windows® and UNIX® operating systems.

Probe Circuit Control Pins

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-8 on page 1-7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry.

1-6 v3.2

A54SX16P DC Specifications (3.3 V PCI Operation)

Table 1-8 • A54SX16P DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V_{CCA}	Supply Voltage for Array		3.0	3.6	V
V_{CCR}	Supply Voltage required for Internal Biasing		3.0	3.6	V
V_{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V_{IH}	Input High Voltage		0.5V _{CC}	$V_{CC} + 0.5$	V
V_{IL}	Input Low Voltage		-0.5	0.3V _{CC}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CC}		V
I _{IL}	Input Leakage Current ²	$0 < V_{IN} < V_{CC}$		±10	μΑ
V_{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CC}		V
V_{OL}	Output Low Voltage	I _{OUT} = 1500 μA		0.1V _{CC}	V
C _{IN}	Input Pin Capacitance ³			10	pF
C _{CLK}	CLK Pin Capacitance		5	12	pF
C _{IDSEL}	IDSEL Pin Capacitance ⁴			8	pF

Notes:

- 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this input voltage.
- 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
- 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

1-12 v3.2

Step 1: Define Terms Used in Formula

	V_{CCA}	3.3
Module		
Number of logic modules switching at f_m (Used 50%)	m	264
Average logic modules switching rate f_m (MHz) (Guidelines: f/10)	f _m	20
Module capacitance C _{EQM} (pF)	C_{EQM}	4.0
Input Buffer		
Number of input buffers switching at f_n	n	1
Average input switching rate f _n (MHz) (Guidelines: f/5)	f _n	40
Input buffer capacitance C _{EQI} (pF)	C_{EQI}	3.4
Output Buffer		
Number of output buffers switching at f_p	p	1
Average output buffers switching rate f _p (MHz) (Guidelines: f/10)	f_p	20
Output buffers buffer capacitance C _{EQO} (pF)	C_{EQO}	4.7
Output Load capacitance C _L (pF)	C_L	35
RCLKA		
Number of Clock loads q ₁	q_1	528
Capacitance of routed array clock (pF)	C_{EQCR}	1.6
Average clock rate (MHz)	f_{q1}	200
Fixed capacitance (pF)	r ₁	138
RCLKB		
Number of Clock loads q ₂	q_2	0
Capacitance of routed array clock (pF)	C_{EQCR}	1.6
Average clock rate (MHz)	f_{q2}	0
Fixed capacitance (pF)	r ₂	138
HCLK		
Number of Clock loads	s ₁	0
Variable capacitance of dedicated array clock (pF)	C_{EQHV}	0.61 5
Fixed capacitance of dedicated array clock (pF)	C_{EQHF}	96
Average clock rate (MHz)	f_{s1}	0

Step 2: Calculate Dynamic Power Consumption

$V_{CCA} \times V_{CCA}$	10.89
$m \times f_m \times C_{EQM}$	0.02112
$n \times f_n \times C_{EQI}$	0.000136
$p \times f_p \times (C_{EQO} + C_L)$	0.000794
$0.5 (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1})$	0.11208
$0.5(q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2})$	0
$0.5 (s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1})$	0
$P_{AC} = 1.461 \text{ W}$	

Step 3: Calculate DC Power Dissipation DC Power Dissipation

$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + (I_{standby}) \times \\ V_{CCI} &+ X \times V_{OL} \times I_{OL} + Y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

EQ 1-12

For a rough estimate of DC Power Dissipation, only use $P_{DC} = (I_{standby}) \times V_{CCA}$. The rest of the formula provides a very small number that can be considered negligible.

$$P_{DC} = (I_{standby}) \times V_{CCA}$$

 $P_{DC} = .55 \text{ mA} \times 3.3 \text{ V}$
 $P_{DC} = 0.001815 \text{ W}$

Step 4: Calculate Total Power Consumption

$$P_{Total} = P_{AC} + P_{DC}$$

 $P_{Total} = 1.461 + 0.001815$
 $P_{Total} = 1.4628 W$

Step 5: Compare Estimated Power Consumption against Characterized Power Consumption

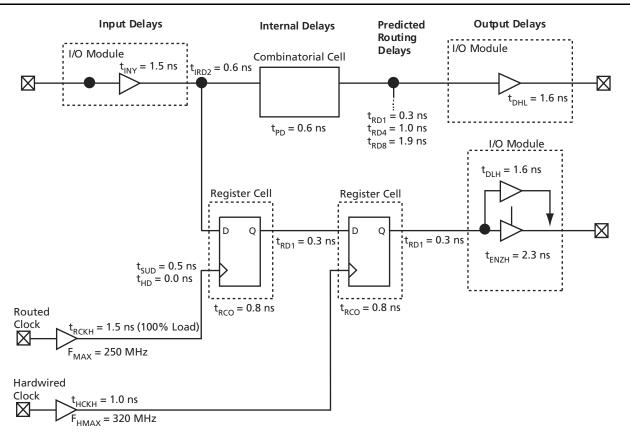
The estimated total power consumption for this design is 1.46 W. The characterized power consumption for this design at 200 MHz is 1.0164 W.

1-18 v3.2

Table 1-15 ● Package Thermal Characteristics

Package Type	Pin Count	$\theta_{ extsf{jc}}$	θ _{ja} Still Air	$_{ m j_a}^{ heta_{ m ja}}$ 300 ft/min.	Units
Plastic Leaded Chip Carrier (PLCC)	84	12	32	22	°C/W
Thin Quad Flat Pack (TQFP)	144	11	32	24	°C/W
Thin Quad Flat Pack (TQFP)	176	11	28	21	°C/W
Very Thin Quad Flatpack (VQFP)	100	10	38	32	°C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader	208	8	30	23	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader	208	3.8	20	17	°C/W
Plastic Ball Grid Array (PBGA)	272	3	20	14.5	°C/W
Plastic Ball Grid Array (PBGA)	313	3	23	17	°C/W
Plastic Ball Grid Array (PBGA)	329	3	18	13.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	38.8	26.7	°C/W

Note: SX08 does not have a heat spreader.


Table 1-16 • Temperature and Voltage Derating Factors*

	Junction Temperature							
V _{CCA}	-55	-40	0	25	70	85	125	
3.0	0.75	0.78	0.87	0.89	1.00	1.04	1.16	
3.3	0.70	0.73	0.82	0.83	0.93	0.97	1.08	
3.6	0.66	0.69	0.77	0.78	0.87	0.92	1.02	

Note: *Normalized to worst-case commercial, $T_J = 70$ °C, $V_{CCA} = 3.0 \text{ V}$

1-20 v3.2

SX Timing Model

Note: Values shown for A54SX08-3, worst-case commercial conditions.

Figure 1-12 • SX Timing Model

Hardwired Clock Routed Clock External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns= 1.5 + 0.3 + 0.5 - 1.5 = 0.8 nsEQ 1-15 EQ 1-17 Clock-to-Out (Pin-to-Pin) Clock-to-Out (Pin-to-Pin) $= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns= 1.52 + 0.8 + 0.3 + 1.6 = 4.2 nsEQ 1-16 EQ 1-18

v3.2 1-21

Register Cell Timing Characteristics

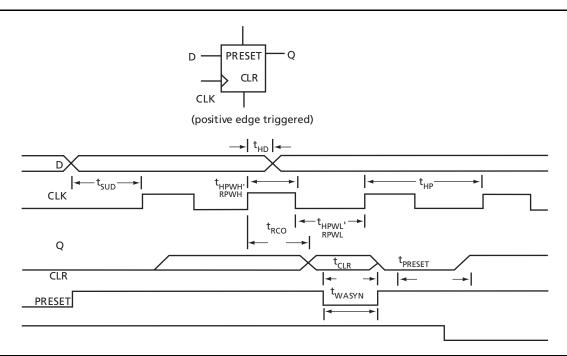


Figure 1-17 • Flip-Flops

Timing Characteristics

Timing characteristics for SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO = 24) routing delays in the datasheet specifications section.

Timing Derating

SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

v3.2 1-23

A54SX16 Timing Characteristics

Table 1-18 • A54SX16 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

	(Norse case commercial conditions, t		Speed		Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ıg									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		8.0		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ile Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Notes:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn},\ t_{RCO}+t_{RD1}+t_{PDn},\ or\ t_{PD1}+t_{RD1}+t_{SUD},\ whichever\ is\ appropriate.$
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

1-26 v3.2

A54SX16P Timing Characteristics

Table 1-19 • A54SX16P Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA},V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' \$	Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.9		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ıle Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

1-28 v3.2

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' 9	Speed	'-1' 9	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ıle Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn_r} t_{RCO} + t_{RD1} + t_{PDn_r} or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

v3.2 1-31

Table 1-20 • A54SX32 Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	Speed	'-2' \$	Speed	'-1' 9	peed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.3		0.4		0.4		0.5	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		2.4		2.7		3.0		3.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		2.4		2.7		3.1		3.6	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		2.7		3.0		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.7		3.1		3.6		4.2	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		2.7		3.1		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.8		3.2		3.6		4.3	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.85		0.98		1.1		1.3	ns
t _{RCKSW}	Maximum Skew (50% load)		1.23		1.4		1.6		1.9	ns
t _{RCKSW}	Maximum Skew (100% load)		1.30		1.5		1.7		2.0	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

1-32 v3.2

Package Pin Assignments

84-Pin PLCC

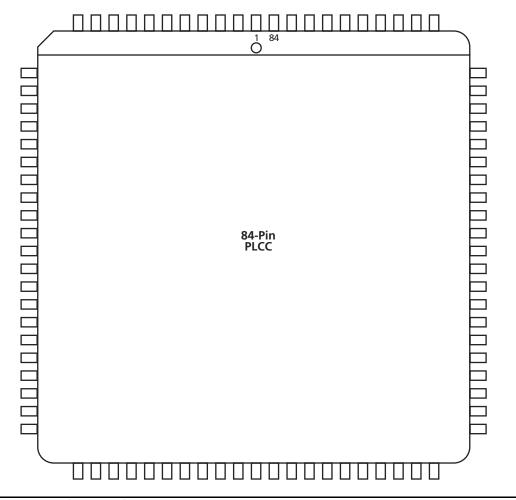


Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-1

Pin Number A54SX08 Function 1 V _{CCR} 2 GND 3 V _{CCA} 4 PRA, I/O 5 I/O 6 I/O 7 V _{CCI} 8 I/O 9 I/O 10 I/O 11 TCK, I/O 12 TDI, I/O 13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
2 GND 3 V _{CCA} 4 PRA, VO 5 VO 6 VO 7 V _{CCI} 8 VO 9 VO 10 I/O 11 TCK, VO 12 TDI, I/O 13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O	
3 V _{CCA} 4 PRA, I/O 5 I/O 6 I/O 7 V _{CCI} 8 I/O 9 I/O 10 I/O 11 TCK, I/O 12 TDI, I/O 13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O	
4 PRA, I/O 5 I/O 6 I/O 7 V _{CCI} 8 I/O 9 I/O 10 I/O 11 TCK, I/O 12 TDI, I/O 13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O	
5	
6	
7 V _{CCI} 8 VO 9 VO 10 VO 11 TCK, VO 12 TDI, VO 13 VO 14 VO 15 VO 16 TMS 17 VO 18 VO 20 VO	
8	
9	
10	
11 TCK, I/O 12 TDI, I/O 13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
12 TDI, I/O 13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
13 I/O 14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
14 I/O 15 I/O 16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
15 I/O 16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
16 TMS 17 I/O 18 I/O 19 I/O 20 I/O	
17 I/O 18 I/O 19 I/O 20 I/O	
18 I/O 19 I/O 20 I/O	
19 I/O 20 I/O	
20 I/O	
21 1/0	
Z1 I/U	
22 I/O	
23 1/0	
24 I/O	
25 I/O	
26 I/O	
27 GND	
28 V _{CCI}	
29 1/0	
30 I/O	
31 1/0	
32 I/O	
33 1/0	
34 1/0	
35 I/O	

84-Pin PLCC		
A545X08		
Pin Number	Function	
36	1/0	
37	1/0	
38	I/O	
39	I/O	
40	PRB, I/O	
41	V_{CCA}	
42	GND	
43	V_{CCR}	
44	I/O	
45	HCLK	
46	I/O	
47	I/O	
48	I/O	
49	I/O	
50	I/O	
51	I/O	
52	TDO, I/O	
53	I/O	
54	I/O	
55	I/O	
56	I/O	
57	I/O	
58	I/O	
59	V_{CCA}	
60	V _{CCI}	
61	GND	
62	I/O	
63	I/O	
64	1/0	
65	I/O	
66	I/O	
67	I/O	
68	V_{CCA}	
69	GND	
70	I/O	

84-Pin PLCC		
Pin Number	A54SX08 Function	
71	I/O	
72	I/O	
73	I/O	
74	I/O	
75	I/O	
76	I/O	
77	I/O	
78	I/O	
79	I/O	
80	I/O	
81	I/O	
82	I/O	
83	CLKA	
84	CLKB	

2-2 v3.2

208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
1	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O
3	I/O	1/0	I/O
4	NC	1/0	I/O
5	I/O	1/0	I/O
6	NC	1/0	I/O
7	I/O	1/0	I/O
8	I/O	1/0	I/O
9	I/O	1/0	I/O
10	I/O	1/0	I/O
11	TMS	TMS	TMS
12	V _{CCI}	V _{CCI}	V _{CCI}
13	I/O	1/0	I/O
14	NC	1/0	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	NC	1/0	I/O
18	I/O	1/0	I/O
19	I/O	1/0	I/O
20	NC	1/0	I/O
21	I/O	I/O	I/O
22	I/O	I/O	I/O
23	NC	1/0	I/O
24	I/O	I/O	I/O
25	V_{CCR}	V_{CCR}	V_{CCR}
26	GND	GND	GND
27	V_{CCA}	V _{CCA}	V_{CCA}
28	GND	GND	GND
29	I/O	1/0	I/O
30	I/O	1/0	I/O
31	NC	1/0	I/O
32	I/O	I/O	I/O
33	I/O	I/O	I/O
34	I/O	I/O	I/O
35	NC	I/O	I/O
36	I/O	I/O	I/O

208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
37	I/O	I/O	I/O
38	I/O	I/O	I/O
39	NC	I/O	I/O
40	V _{CCI}	V _{CCI}	V _{CCI}
41	V_{CCA}	V_{CCA}	V_{CCA}
42	I/O	I/O	I/O
43	I/O	I/O	I/O
44	I/O	I/O	I/O
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	NC	I/O	I/O
49	I/O	I/O	I/O
50	NC	I/O	I/O
51	I/O	I/O	I/O
52	GND	GND	GND
53	I/O	1/0	I/O
54	I/O	1/0	I/O
55	I/O	I/O	I/O
56	I/O	I/O	I/O
57	I/O	I/O	I/O
58	I/O	I/O	I/O
59	I/O	I/O	I/O
60	V _{CCI}	V _{CCI}	V _{CCI}
61	NC	I/O	I/O
62	I/O	I/O	I/O
63	I/O	I/O	I/O
64	NC	I/O	I/O
65*	I/O	I/O	NC*
66	I/O	I/O	I/O
67	NC	I/O	I/O
68	I/O	I/O	I/O
69	I/O	I/O	I/O
70	NC	I/O	I/O
71	I/O	I/O	I/O
72	I/O	I/O	I/O

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).

2-4 v3.2

100-Pin VQFP

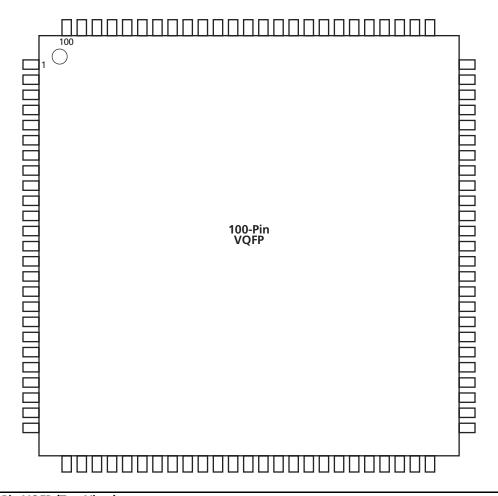


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

313-Pin PBGA

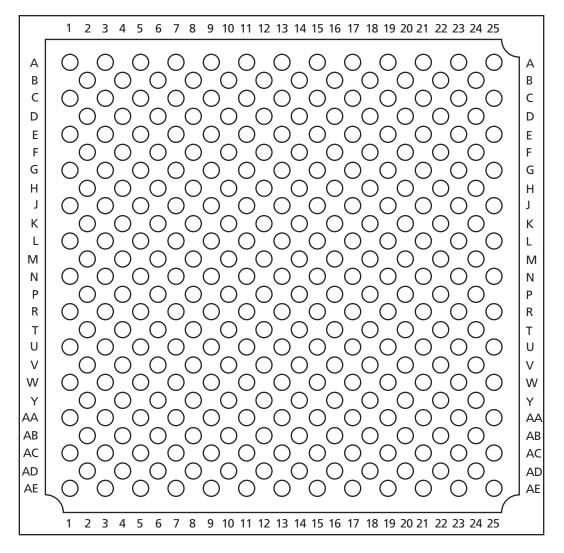


Figure 2-6 • 313-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-16 v3.2

329-Pin PBGA		
Pin Number	A54SX32 Function	
A1	GND	
A2	GND	
A3	V _{CCI}	
A4	NC	
A5	I/O	
A6	I/O	
A7	V _{CCI}	
A8	NC	
A9	I/O	
A10	I/O	
A11	I/O	
A12	I/O	
A13	CLKB	
A14	I/O	
A15	I/O	
A16	I/O	
A17	I/O	
A18	I/O	
A19	I/O	
A20	I/O	
A21	NC	
A22	V _{CCI}	
A23	GND	
AA1	V _{CCI}	
AA2	I/O	
AA3	GND	
AA4	I/O	
AA5	1/0	
AA6	I/O	
AA7	I/O	
AA8	I/O	
AA9	I/O	
AA10	I/O	
AA11	I/O	
AA12	1/0	

329-Pin PBGA		
Pin Number	A54SX32 Function	
AA13	1/0	
AA14	1/0	
AA15	I/O	
AA16	I/O	
AA17	1/0	
AA18	I/O	
AA19	I/O	
AA20	TDO, I/O	
AA21	V _{CCI}	
AA22	1/0	
AA23	V _{CCI}	
AB1	1/0	
AB2	GND	
AB3	1/0	
AB4	1/0	
AB5	1/0	
AB6	1/0	
AB7	1/0	
AB8	1/0	
AB9	1/0	
AB10	1/0	
AB11	PRB, I/O	
AB12	1/0	
AB13	HCLK	
AB14	1/0	
AB15	1/0	
AB16	1/0	
AB17	1/0	
AB18	1/0	
AB19	1/0	
AB20	I/O	
AB21	I/O	
AB22	GND	
AB23	1/0	
AC1	GND	

329-Pin PBGA		
Pin Number	A54SX32 Function	
AC2	V _{CCI}	
AC3	NC	
AC4	1/0	
AC5	I/O	
AC6	I/O	
AC7	I/O	
AC8	I/O	
AC9	V _{CCI}	
AC10	I/O	
AC11	I/O	
AC12	I/O	
AC13	I/O	
AC14	I/O	
AC15	NC	
AC16	I/O	
AC17	I/O	
AC18	I/O	
AC19	I/O	
AC20	I/O	
AC21	NC	
AC22	V _{CCI}	
AC23	GND	
B1	V _{CCI}	
B2	GND	
В3	I/O	
В4	I/O	
B5	I/O	
В6	I/O	
В7	I/O	
B8	I/O	
В9	I/O	
B10	I/O	
B11	I/O	
B12	PRA, I/O	
B13	CLKA	

329-Pin PBGA		
Pin Number	A54SX32 Function	
B14	1/0	
B15	1/0	
B16		
	1/0	
B17	1/0	
B18	1/0	
B19	1/0	
B20	I/O	
B21	I/O	
B22	GND	
B23	V _{CCI}	
C1	NC	
C2	TDI, I/O	
C3	GND	
C4	I/O	
C5	I/O	
C6	I/O	
C7	I/O	
C8	I/O	
С9	I/O	
C10	I/O	
C11	I/O	
C12	I/O	
C13	I/O	
C14	I/O	
C15	I/O	
C16	I/O	
C17	I/O	
C18	I/O	
C19	I/O	
C20	I/O	
C21	V _{CCI}	
C22	GND	
C23	NC	
D1	I/O	
D2	I/O	

2-20 v3.2

329-Pin PBGA		
Pin	A54SX32	
Number	Function	
D3	I/O	
D4	TCK, I/O	
D5	I/O	
D6	I/O	
D7	I/O	
D8	I/O	
D9	I/O	
D10	I/O	
D11	V _{CCA}	
D12	V_{CCR}	
D13	I/O	
D14	I/O	
D15	I/O	
D16	I/O	
D17	I/O	
D18	I/O	
D19	I/O	
D20	I/O	
D21	I/O	
D22	I/O	
D23	I/O	
E1	V _{CCI}	
E2	I/O	
E3	I/O	
E4	I/O	
E20	I/O	
E21	I/O	
E22	I/O	
E23	I/O	
F1	I/O	
F2	TMS	
F3	I/O	
F4	I/O	
F20	I/O	
F21	I/O	

329-Pin PBGA		
Pin	A54SX32	
Number	Function	
F22	1/0	
F23	1/0	
G1	I/O	
G2	I/O	
G3	I/O	
G4	1/0	
G20	1/0	
G21	1/0	
G22	1/0	
G23	GND	
H1	1/0	
H2	1/0	
Н3	1/0	
H4	1/0	
H20	V _{CCA}	
H21	1/0	
H22	1/0	
H23	1/0	
J1	NC	
J2	I/O	
J3	1/0	
J4	I/O	
J20	1/0	
J21	1/0	
J22	I/O	
J23	1/0	
K1	I/O	
K2	I/O	
K3	1/0	
K4	I/O	
K10	GND	
K11	GND	
K12	GND	
K13	GND	
1/4 4	CNID	

K14

GND

329-Pin PBGA		
Pin	A54SX32	
Number	Function	
K20	1/0	
K21	1/0	
K22	I/O	
K23	I/O	
L1	I/O	
L2	I/O	
L3	I/O	
L4	V_{CCR}	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	GND	
L20	V_{CCR}	
L21	1/0	
L22	I/O	
L23	NC	
M1	I/O	
M2	1/0	
M3	I/O	
M4	V_{CCA}	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	GND	
M20	V_{CCA}	
M21	I/O	
M22	I/O	
M23	V _{CCI}	
N1	I/O	
N2	I/O	
N3	I/O	
N4	I/O	
N10	GND	

329-Pin PBGA		
Pin Number	A54SX32 Function	
N11	GND	
N12	GND	
N13	GND	
N14	GND	
N20	NC	
N21	I/O	
N22	I/O	
N23	I/O	
P1	I/O	
P2	I/O	
Р3	I/O	
P4	I/O	
P10	GND	
P11	GND	
P12	GND	
P13	GND	
P14	GND	
P20	1/0	
P21	1/0	
P22	I/O	
P23	I/O	
R1	I/O	
R2	I/O	
R3	1/0	
R4	I/O	
R20	1/0	
R21	1/0	
R22	I/O	
R23	I/O	
T1	I/O	
T2	I/O	
T3	I/O	
T4	I/O	
T20	I/O	
T21	I/O	

v3.2 2-21

144-Pin FBGA

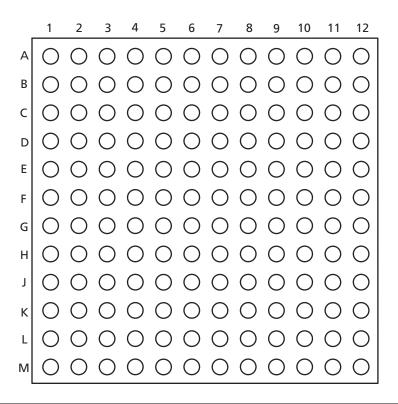


Figure 2-8 • 144-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-23