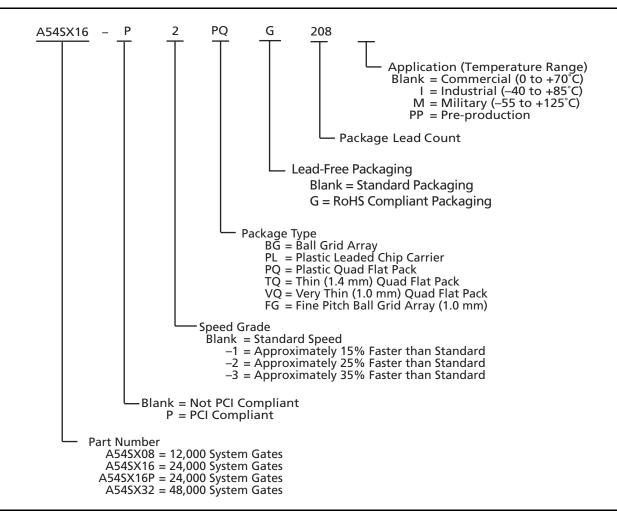


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	130
Number of Gates	12000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx08-pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Plastic Device Resources

	User I/Os (including clock buffers)										
Device	PLCC 84-Pin	VQFP 100-Pin	PQFP 208-Pin	TQFP 144-Pin	TQFP 176-Pin	PBGA 313-Pin	PBGA 329-Pin	FBGA 144-Pin			
A54SX08	69	81	130	113	128	_	_	111			
A54SX16	_	81	175	-	147	_	_	_			
A54SX16P	_	81	175	113	147	_	_	_			
A54SX32	_	-	174	113	147	249	249	_			

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier

PQFP = Plastic Quad Flat Pack

TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack

PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array

ii v3.2

Table of Contents

SX Family FPGAs
General Description 1-
SX Family Architecture
Programming
3.3 V / 5 V Operating Conditions 1-
PCI Compliance for the SX Family1-
A54SX16P AC Specifications for (PCI Operation)
A54SX16P DC Specifications (3.3 V PCI Operation)
A54SX16P AC Specifications (3.3 V PCI Operation)
Power-Up Sequencing 1-1
Power-Down Sequencing
Evaluating Power in SX Devices
SX Timing Model 1-2
Timing Characteristics 1-23
Package Pin Assignments
84-Pin PLCC
208-Pin PQFP
144-Pin TQFP
176-Pin TQFP
100-Pin VQFP
313-Pin PBGA
329-Pin PBGA
144-Pin FBGA
Datasheet Information
List of Changes
Datasheet Categories
International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)
NEULIALIUIIS (EAN)

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Table 1-1 • Supply Voltages

Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

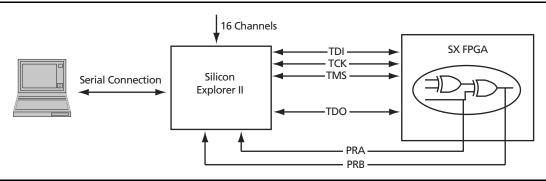


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions

Table 1-3 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V _{CCR} ²	DC Supply Voltage ³	-0.3 to + 6.0	V
V_{CCA}^2	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
V _I	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	−30 to + 5.0	mA
T _{STG}	Storage Temperature	–65 to +150	°C

Notes

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
- 2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.
- 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

Table 1-4 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to + 70	-40 to + 85	-55 to +125	°C
3.3 V Power Supply Tolerance	±10	±10	±10	%V _{CC}
5.0 V Power Supply Tolerance	±5	±10	±10	%V _{CC}

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Table 1-5 ● **Electrical Specifications**

		Comm	ercial	Indus	Industrial		
Symbol	Parameter	Min.	Мах.	Min.	Max.	Units	
V _{OH}	(I _{OH} = -20 μA) (CMOS)	(V _{CCI} – 0.1)	V _{CCI}	(V _{CCI} – 0.1)	V _{CCI}	V	
	$(I_{OH} = -8 \text{ mA}) \text{ (TTL)}$	2.4	V_{CCI}				
	$(I_{OH} = -6 \text{ mA}) \text{ (TTL)}$			2.4	V_{CCI}		
V _{OL}	(I _{OL} = 20 μA) (CMOS)		0.10			V	
	$(I_{OL} = 12 \text{ mA}) \text{ (TTL)}$		0.50				
	$(I_{OL} = 8 \text{ mA}) \text{ (TTL)}$				0.50		
V_{IL}			8.0		0.8	V	
V_{IH}		2.0		2.0		V	
t _R , t _F	Input Transition Time t _R , t _F		50		50	ns	
C _{IO}	C _{IO} I/O Capacitance		10		10	pF	
I _{CC}	Standby Current, I _{CC}		4.0		4.0	mA	
$I_{CC(D)}$	I _{CC(D)} I _{Dynamic} V _{CC} Supply Current	See '	'Evaluating F	ower in SX Device	es" on page ´	1-16.	

1-8 v3.2

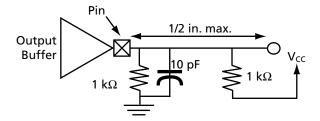

A54SX16P AC Specifications for (PCI Operation)

Table 1-7 • A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{1}$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^3$		-142	mA
I _{OL(AC)}	Switching Current High	$V_{OUT} \ge 2.2^1$	95		mA
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^3$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

1-10 v3.2

EQ 1-2

Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

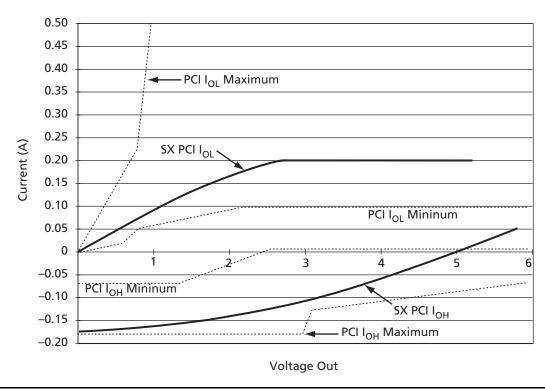


Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device

$$I_{OH} = 11.9 \times (V_{OUT} - 5.25) \times (V_{OUT} + 2.45)$$

$$I_{OL} = 78.5 \times V_{OUT} \times (4.4 - V_{OUT})$$
for $V_{CC} > V_{OUT} > 3.1 \text{ V}$

$$EQ 1-1$$

Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

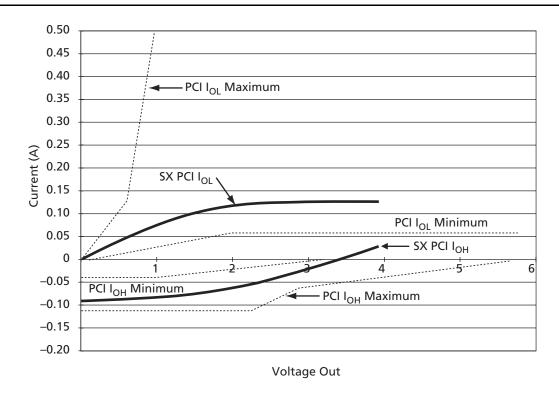


Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device

$$I_{OH} = (98.0 \text{ V_{CC}}) \times (V_{OUT} - V_{CC}) \times (V_{OUT} + 0.4 \text{ V_{CC}})$$

$$I_{OL} = (256 \text{ V_{CC}}) \times V_{OUT} \times (V_{CC} - V_{OUT})$$

$$\text{for } 0 \text{ V_{CC}} \times V_{OUT} \times (0.18 \text{ V_{CC}})$$

$$EQ 1-3$$

$$EQ 1-4$$

1-14 v3.2

Power-Up Sequencing

Table 1-10 • Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A545	SX16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11 • Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A54S	X16, A54SX32			_
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			•	_
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' S	peed	'-2' \$	peed	'-1' \$	peed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL/PCI Out	out Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		1.5		1.7		2.0		2.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.9		2.2		2.4		2.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.3		2.6		3.0		3.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.5		1.7		1.9		2.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.7		3.1		3.5		4.1	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns
PCI Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.8		2.0		2.3		2.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.7		2.0		2.2		2.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		8.0		1.0		1.1		1.3	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.2		1.2		1.5		1.8	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.0		1.1		1.3		1.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.1		1.3		1.5		1.7	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.1		2.5		2.8		3.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.0		2.3		2.6		3.1	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.5		2.9		3.2		3.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.0		3.5		3.9		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.1		3.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns

Note:

3. Delays based on 10 pF loading.

1-30 v3.2

^{1.} For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.

^{2.} Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' 9	Speed	'-1' 9	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ıle Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn_r} t_{RCO} + t_{RD1} + t_{PDn_r} or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Pin Description

CLKA/B Clock A and B

These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.)

GND Ground

LOW supply voltage.

HCLK Dedicated (hardwired) Array Clock

This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

NC No Connection

This pin is not connected to circuitry within the device.

PRA, I/O Probe A

The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

PRB. I/O Probe B

The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-2 on page 1-6). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 1-1 on page 1-5.

V_{CCA} Supply Voltage

Supply voltage for Array. See Table 1-1 on page 1-5.

V_{CCR} Supply Voltage

Supply voltage for input tolerance (required for internal biasing). See Table 1-1 on page 1-5.

Package Pin Assignments

84-Pin PLCC

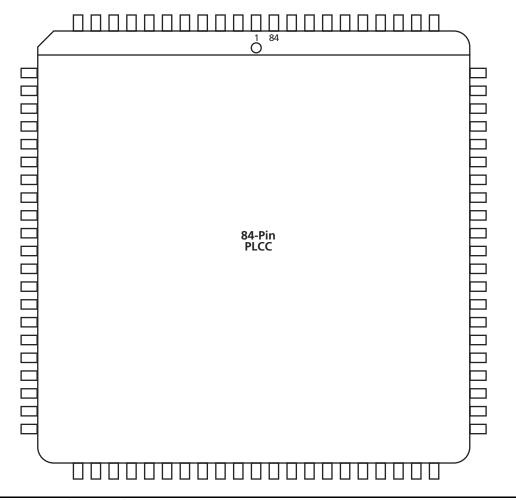


Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-1

208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
1	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O
3	I/O	1/0	I/O
4	NC	1/0	I/O
5	I/O	1/0	I/O
6	NC	1/0	I/O
7	I/O	1/0	I/O
8	I/O	1/0	I/O
9	I/O	1/0	I/O
10	I/O	1/0	I/O
11	TMS	TMS	TMS
12	V _{CCI}	V _{CCI}	V _{CCI}
13	I/O	1/0	I/O
14	NC	1/0	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	NC	1/0	I/O
18	I/O	1/0	I/O
19	I/O	1/0	I/O
20	NC	1/0	I/O
21	I/O	I/O	I/O
22	I/O	I/O	I/O
23	NC	I/O	I/O
24	I/O	I/O	I/O
25	V_{CCR}	V_{CCR}	V_{CCR}
26	GND	GND	GND
27	V_{CCA}	V _{CCA}	V_{CCA}
28	GND	GND	GND
29	I/O	1/0	I/O
30	I/O	1/0	I/O
31	NC	1/0	I/O
32	I/O	I/O	I/O
33	I/O	I/O	I/O
34	I/O	I/O	I/O
35	NC	I/O	I/O
36	I/O	I/O	I/O

208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
37	I/O	I/O	I/O
38	I/O	I/O	I/O
39	NC	I/O	I/O
40	V _{CCI}	V _{CCI}	V _{CCI}
41	V_{CCA}	V_{CCA}	V_{CCA}
42	I/O	I/O	I/O
43	I/O	I/O	I/O
44	I/O	I/O	I/O
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	NC	I/O	I/O
49	I/O	I/O	I/O
50	NC	I/O	I/O
51	I/O	I/O	I/O
52	GND	GND	GND
53	I/O	1/0	I/O
54	I/O	1/0	I/O
55	I/O	I/O	I/O
56	I/O	I/O	I/O
57	I/O	I/O	I/O
58	I/O	I/O	I/O
59	I/O	I/O	I/O
60	V _{CCI}	V _{CCI}	V _{CCI}
61	NC	I/O	I/O
62	I/O	I/O	I/O
63	I/O	I/O	I/O
64	NC	I/O	I/O
65*	I/O	I/O	NC*
66	I/O	I/O	I/O
67	NC	I/O	I/O
68	I/O	I/O	I/O
69	I/O	I/O	I/O
70	NC	I/O	I/O
71	I/O	I/O	I/O
72	I/O	I/O	I/O

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).

2-4 v3.2

208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
145	V_{CCA}	V_{CCA}	V_{CCA}
146	GND	GND	GND
147	I/O	I/O	I/O
148	V _{CCI}	V _{CCI}	V _{CCI}
149	I/O	I/O	1/0
150	I/O	I/O	1/0
151	I/O	I/O	1/0
152	I/O	I/O	1/0
153	I/O	I/O	1/0
154	I/O	I/O	1/0
155	NC	I/O	I/O
156	NC	I/O	I/O
157	GND	GND	GND
158	I/O	I/O	I/O
159	I/O	1/0	I/O
160	I/O	I/O	I/O
161	I/O	I/O	I/O
162	I/O	I/O	I/O
163	I/O	I/O	I/O
164	V _{CCI}	V _{CCI}	V _{CCI}
165	I/O	I/O	I/O
166	I/O	I/O	I/O
167	NC	I/O	I/O
168	I/O	I/O	I/O
169	I/O	I/O	I/O
170	NC	I/O	I/O
171	I/O	I/O	I/O
172	I/O	I/O	I/O
173	NC	I/O	I/O
174	I/O	I/O	I/O
175	I/O	I/O	I/O
176	NC	I/O	I/O
177	I/O	I/O	I/O
178	I/O	1/0	I/O
179	I/O	1/0	I/O
180	CLKA	CLKA	CLKA

208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
181	CLKB	CLKB	CLKB
182	V_{CCR}	V_{CCR}	V_{CCR}
183	GND	GND	GND
184	V_{CCA}	V _{CCA}	V_{CCA}
185	GND	GND	GND
186	PRA, I/O	PRA, I/O	PRA, I/O
187	I/O	1/0	1/0
188	I/O	1/0	1/0
189	NC	I/O	I/O
190	I/O	I/O	I/O
191	I/O	I/O	I/O
192	NC	I/O	I/O
193	I/O	1/0	1/0
194	I/O	I/O	I/O
195	NC	I/O	I/O
196	I/O	I/O	I/O
197	I/O	1/0	I/O
198	NC	I/O	I/O
199	I/O	I/O	I/O
200	I/O	I/O	I/O
201	V _{CCI}	V _{CCI}	V _{CCI}
202	NC	I/O	I/O
203	NC	1/0	I/O
204	I/O	I/O	I/O
205	NC	1/0	I/O
206	I/O	1/0	I/O
207	I/O	1/0	I/O
208	TCK, I/O	TCK, I/O	TCK, I/O

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).

2-6 v3.2

100-Pin VQFP

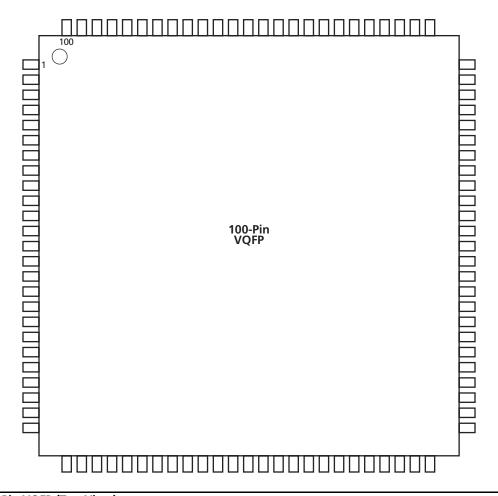


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

329-Pin PBGA		
Pin	A54SX32	
Number	Function	
D3	I/O	
D4	TCK, I/O	
D5	I/O	
D6	I/O	
D7	I/O	
D8	I/O	
D9	I/O	
D10	I/O	
D11	V_{CCA}	
D12	V_{CCR}	
D13	I/O	
D14	I/O	
D15	I/O	
D16	I/O	
D17	I/O	
D18	I/O	
D19	I/O	
D20	I/O	
D21	I/O	
D22	I/O	
D23	I/O	
E1	V _{CCI}	
E2	I/O	
E3	I/O	
E4	I/O	
E20	I/O	
E21	I/O	
E22	I/O	
E23	I/O	
F1	I/O	
F2	TMS	
F3	I/O	
F4	I/O	
F20	I/O	
F21	I/O	

329-Pin PBGA		
Pin A54SX32		
Number	Function	
F22	1/0	
F23	1/0	
G1	I/O	
G2	I/O	
G3	I/O	
G4	1/0	
G20	1/0	
G21	1/0	
G22	1/0	
G23	GND	
H1	1/0	
H2	1/0	
Н3	1/0	
H4	1/0	
H20	V _{CCA}	
H21	1/0	
H22	1/0	
H23	1/0	
J1	NC	
J2	I/O	
J3	1/0	
J4	I/O	
J20	1/0	
J21	1/0	
J22	I/O	
J23	1/0	
K1	I/O	
K2	I/O	
K3	1/0	
K4	I/O	
K10	GND	
K11	GND	
K12	GND	
K13	GND	
1/4 4	CNID	

K14

GND

329-Pin PBGA		
Pin A54SX32		
Number	Function	
K20	1/0	
K21	1/0	
K22	I/O	
K23	I/O	
L1	I/O	
L2	I/O	
L3	I/O	
L4	V_{CCR}	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	GND	
L20	V_{CCR}	
L21	I/O	
L22	I/O	
L23	NC	
M1	I/O	
M2	1/0	
M3	I/O	
M4	V_{CCA}	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	GND	
M20	V_{CCA}	
M21	I/O	
M22	I/O	
M23	V _{CCI}	
N1	I/O	
N2	I/O	
N3	I/O	
N4	I/O	
N10	GND	

329-Pin PBGA		
Pin Number	A54SX32 Function	
N11	GND	
N12	GND	
N13	GND	
N14	GND	
N20	NC	
N21	I/O	
N22	I/O	
N23	I/O	
P1	I/O	
P2	I/O	
Р3	I/O	
P4	I/O	
P10	GND	
P11	GND	
P12	GND	
P13	GND	
P14	GND	
P20	1/0	
P21	1/0	
P22	I/O	
P23	I/O	
R1	I/O	
R2	I/O	
R3	1/0	
R4	I/O	
R20	1/0	
R21	1/0	
R22	I/O	
R23	I/O	
T1	I/O	
T2	I/O	
T3	I/O	
T4	I/O	
T20	I/O	
T21	I/O	

v3.2 2-21

144-Pin FBGA		
Pin Number	A54SX08 Function	
A1	I/O	
A2	I/O	
А3	I/O	
A4	I/O	
A5	V_{CCA}	
A6	GND	
A7	CLKA	
A8	I/O	
A9	I/O	
A10	I/O	
A11	I/O	
A12	I/O	
B1	I/O	
B2	GND	
В3	I/O	
B4	I/O	
B5	I/O	
В6	I/O	
В7	CLKB	
B8	I/O	
B9	I/O	
B10	1/0	
B11	GND	
B12	1/0	
C1	I/O	
C2	I/O	
C3	TCK, I/O	
C4	I/O	
C5	I/O	
C6	PRA, I/O	
C7	I/O	
C8	I/O	
C9	I/O	
C10	I/O	
C11	I/O	
C12	I/O	

144-Pin FBGA		
Pin Number	A54SX08 Function	
D1	I/O	
D2	V _{CCI}	
D3	TDI, I/O	
D4	1/0	
D5	I/O	
D6	I/O	
D7	I/O	
D8	1/0	
D9	1/0	
D10	I/O	
D11	I/O	
D12	I/O	
E1	I/O	
E2	I/O	
E3	I/O	
E4	I/O	
E5	TMS	
E6	V _{CCI}	
E7	V _{CCI}	
E8	V _{CCI}	
E9	V_{CCA}	
E10	I/O	
E11	GND	
E12	1/0	
F1	1/0	
F2	I/O	
F3	V_{CCR}	
F4	1/0	
F5	GND	
F6	GND	
F7	GND	
F8	V _{CCI}	
F9	I/O	
F10	GND	
F11	I/O	
F12	I/O	

144-Pin FBGA		
Pin Number	A54SX08 Function	
G1	I/O	
G2	GND	
G3	I/O	
G4	I/O	
G5	GND	
G6	GND	
G7	GND	
G8	V _{CCI}	
G9	I/O	
G10	I/O	
G11	I/O	
G12	I/O	
H1	I/O	
H2	I/O	
Н3	I/O	
H4	I/O	
H5	V _{CCA} V _{CCA} V _{CCI} V _{CCI}	
H6	V_{CCA}	
H7	V _{CCI}	
Н8	V _{CCI}	
H9	V _{CCA}	
H10	1/0	
H11	1/0	
H12	V_{CCR}	
J1	1/0	
J2	I/O	
J3	I/O	
J4	I/O	
J5	1/0	
J6	PRB, I/O	
J7	I/O	
J8	I/O	
J9	I/O	
J10	I/O	
J11	I/O	
J12	V_{CCA}	

144-Pin FBGA		
Pin Number	A54SX08 Function	
K1	I/O	
K2	I/O	
K3	I/O	
K4	I/O	
K5	I/O	
K6	I/O	
K7	GND	
K8	I/O	
К9	I/O	
K10	GND	
K11	I/O	
K12	I/O	
L1	GND	
L2	I/O	
L3	I/O	
L4	I/O	
L5	I/O	
L6	I/O	
L7	HCLK	
L8	I/O	
L9	I/O	
L10	1/0	
L11	1/0	
L12	I/O	
M1	I/O	
M2	1/0	
M3	I/O	
M4	I/O	
M5	1/0	
M6	1/0	
M7	V_{CCA}	
M8	I/O	
M9	I/O	
M10	I/O	
M11	TDO, I/O	
M12	I/O	

2-24 v3.2

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v3.2)	Page
v3.1	The "Ordering Information" was updated to include RoHS information.	1-ii
(June 2003)	The Product Plan was removed since all products have been released.	N/A
	Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.	1-6
	The "Dedicated Test Mode" section is new.	1-6
	The "Programming" section is new.	1-7
	A note was added to the "Power-Up Sequencing" table.	1-15
	A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32.	1-15
	U11 and U13 were added to the "313-Pin PBGA" table.	2-17
v3.0.1	Storage temperature in Table 1-3 was updated.	1-7
	Table 1-1 was updated.	1-5

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.