

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	81
Number of Gates	12000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx08-vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chip Architecture

The SX family chip architecture provides a unique approach to module organization and chip routing that delivers the best register/logic mix for a wide variety of new and emerging applications.

Module Organization

Actel has arranged all C-cell and R-cell logic modules into horizontal banks called *clusters*. There are two types of *clusters*: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

To increase design efficiency and device performance, Actel has further organized these modules into *SuperClusters* (Figure 1-4). SuperCluster 1 is a two-wide grouping of Type 1 clusters. SuperCluster 2 is a two-wide group containing one Type 1 cluster and one Type 2 cluster. SX devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

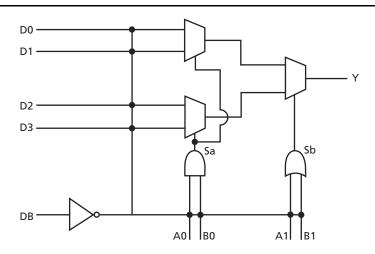


Figure 1-3 • C-Cell

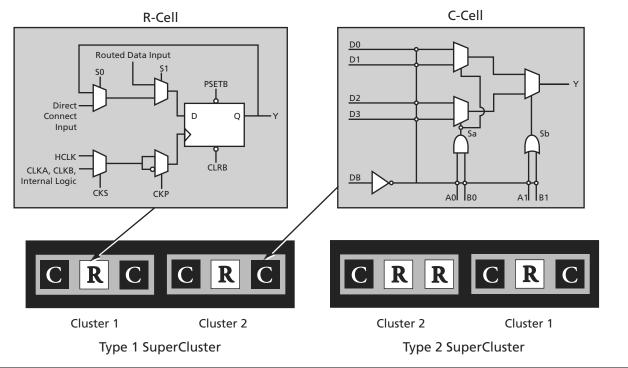


Figure 1-4 • Cluster Organization

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called *FastConnect* and *DirectConnect*, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

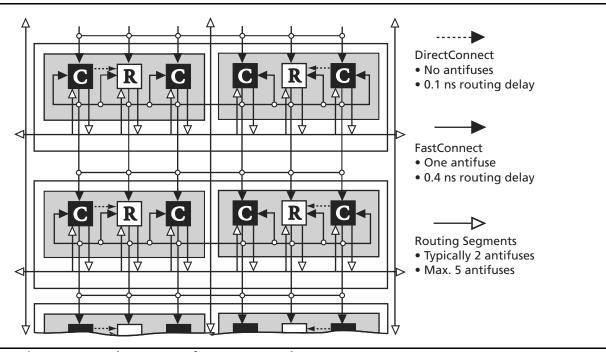


Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

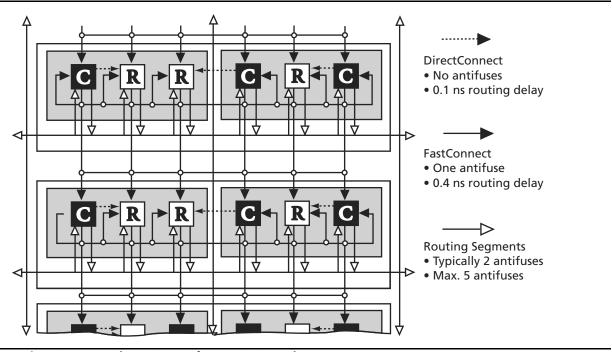


Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

1-4 v3.2

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Table 1-1 • Supply Voltages

Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

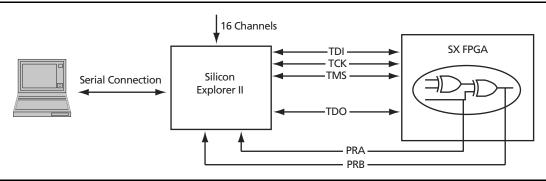


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions

Table 1-3 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V _{CCR} ²	DC Supply Voltage ³	-0.3 to + 6.0	V
V_{CCA}^2	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
V _I	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	−30 to + 5.0	mA
T _{STG}	Storage Temperature	–65 to +150	°C

Notes

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
- 2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.
- 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

PCI Compliance for the SX Family

The SX family supports 3.3 V and 5.0 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

Table 1-6 • A54SX16P DC Specifications (5.0 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V_{CCA}	Supply Voltage for Array		3.0	3.6	V
V_{CCR}	Supply Voltage required for Internal Biasing		4.75	5.25	V
V_{CCI}	Supply Voltage for I/Os		4.75	5.25	V
V _{IH}	Input High Voltage ¹		2.0	$V_{CC} + 0.5$	V
V _{IL}	Input Low Voltage ¹		-0.5	0.8	V
I _{IH}	Input High Leakage Current	V _{IN} = 2.7		70	μΑ
I _{IL}	Input Low Leakage Current	V _{IN} = 0.5		-70	μΑ
V _{OH}	Output High Voltage	$I_{OUT} = -2 \text{ mA}$	2.4		V
V _{OL}	Output Low Voltage ²	I _{OUT} = 3 mA, 6 mA		0.55	V
C _{IN}	Input Pin Capacitance ³			10	рF
C _{CLK}	CLK Pin Capacitance		5	12	рF
C _{IDSEL}	IDSEL Pin Capacitance ⁴			8	pF

Notes:

- 1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
- 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

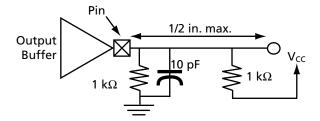

A54SX16P AC Specifications for (PCI Operation)

Table 1-7 • A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{1}$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^3$		-142	mA
I _{OL(AC)}	Switching Current High	$V_{OUT} \ge 2.2^1$	95		mA
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^3$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

1-10 v3.2

EQ 1-2

Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

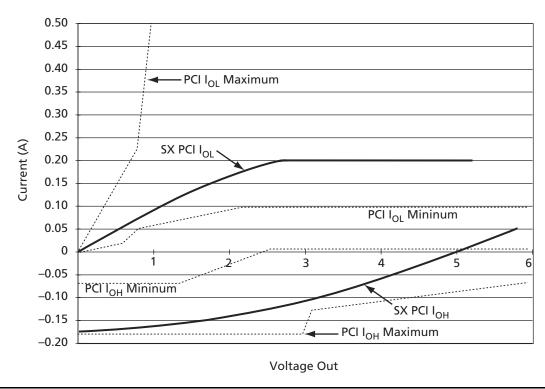


Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device

$$I_{OH} = 11.9 \times (V_{OUT} - 5.25) \times (V_{OUT} + 2.45)$$

$$I_{OL} = 78.5 \times V_{OUT} \times (4.4 - V_{OUT})$$
for $V_{CC} > V_{OUT} > 3.1 \text{ V}$

$$EQ 1-1$$

Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz.

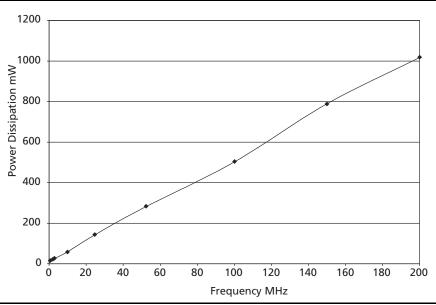


Figure 1-11 • Power Dissipation

Junction Temperature (T_J)

The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature.

Junction Temperature = $\Delta T + T_a$

EQ 1-13

Where:

T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient

 $\Delta T = \theta_{ja} \times P$

P = Power calculated from Estimating Power Consumption section

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section

Package Thermal Characteristics

The device junction to case thermal characteristic is θ_{jc} , and the junction to ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150 °C.

A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}}$$
 = $\frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{28^{\circ}\text{C/W}}$ = 2.86 W

v3.2

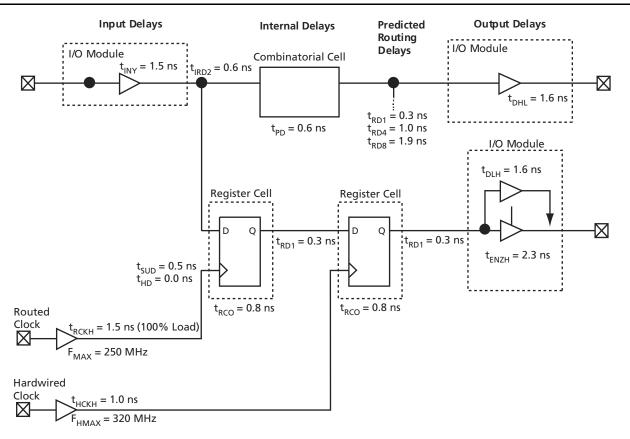
EQ 1-14

1-19

Table 1-15 ● Package Thermal Characteristics

Package Type	Pin Count	$\theta_{ extsf{jc}}$	θ _{ja} Still Air	$_{ m j_a}^{ heta_{ m ja}}$ 300 ft/min.	Units
Plastic Leaded Chip Carrier (PLCC)	84	12	32	22	°C/W
Thin Quad Flat Pack (TQFP)	144	11	32	24	°C/W
Thin Quad Flat Pack (TQFP)	176	11	28	21	°C/W
Very Thin Quad Flatpack (VQFP)	100	10	38	32	°C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader	208	8	30	23	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader	208	3.8	20	17	°C/W
Plastic Ball Grid Array (PBGA)	272	3	20	14.5	°C/W
Plastic Ball Grid Array (PBGA)	313	3	23	17	°C/W
Plastic Ball Grid Array (PBGA)	329	3	18	13.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	38.8	26.7	°C/W

Note: SX08 does not have a heat spreader.


Table 1-16 • Temperature and Voltage Derating Factors*

	Junction Temperature						
V _{CCA}	-55	-40	0	25	70	85	125
3.0	0.75	0.78	0.87	0.89	1.00	1.04	1.16
3.3	0.70	0.73	0.82	0.83	0.93	0.97	1.08
3.6	0.66	0.69	0.77	0.78	0.87	0.92	1.02

Note: *Normalized to worst-case commercial, $T_J = 70$ °C, $V_{CCA} = 3.0 \text{ V}$

1-20 v3.2

SX Timing Model

Note: Values shown for A54SX08-3, worst-case commercial conditions.

Figure 1-12 • SX Timing Model

Hardwired Clock Routed Clock External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns= 1.5 + 0.3 + 0.5 - 1.5 = 0.8 nsEQ 1-15 EQ 1-17 Clock-to-Out (Pin-to-Pin) Clock-to-Out (Pin-to-Pin) $= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns= 1.52 + 0.8 + 0.3 + 1.6 = 4.2 nsEQ 1-16 EQ 1-18

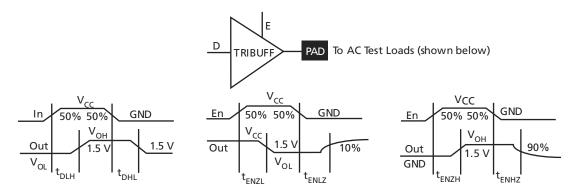


Figure 1-13 • Output Buffer Delays

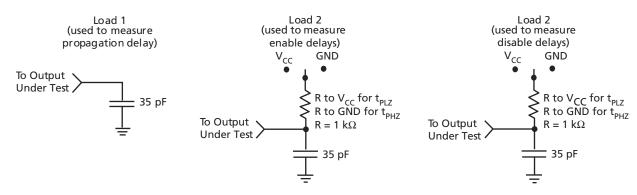


Figure 1-14 • AC Test Loads

Figure 1-15 • Input Buffer Delays

Figure 1-16 • C-Cell Delays

1-22 v3.2

Register Cell Timing Characteristics

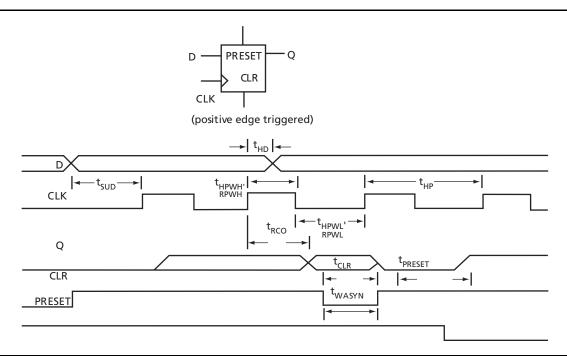


Figure 1-17 • Flip-Flops

Timing Characteristics

Timing characteristics for SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO = 24) routing delays in the datasheet specifications section.

Timing Derating

SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Table 1-17 • A54SX08 Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	Speed	'-2' \$	Speed	'-1' 9	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.0		1.1		1.3		1.5	ns
t_{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.0		1.2		1.4		1.6	ns
t_{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t_{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.1		0.2		0.2		0.2	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f_{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.3		1.5		1.7		2.0	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell Input)		1.4		1.6		1.8		2.1	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.4		1.7		1.9		2.2	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		1.5		1.7		2.0		2.3	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.5		1.7		1.9		2.2	ns
t_{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		1.5		1.8		2.0		2.3	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.1		0.2		0.2		0.2	ns
t _{RCKSW}	Maximum Skew (50% load)		0.3		0.3		0.4		0.4	ns
t _{RCKSW}	Maximum Skew (100% load)		0.3		0.3		0.4		0.4	ns
TTL Output	Module Timing1									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t_{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns

Note:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn}$, $t_{RCO}+t_{RD1}+t_{PDn}$, or $t_{PD1}+t_{RD1}+t_{SUD}$, whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A54SX16 Timing Characteristics

Table 1-18 • A54SX16 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

	(Norse case commercial conditions, t		Speed		Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ıg									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		8.0		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ile Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Notes:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn},\ t_{RCO}+t_{RD1}+t_{PDn},\ or\ t_{PD1}+t_{RD1}+t_{SUD},\ whichever\ is\ appropriate.$
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

1-26 v3.2

Package Pin Assignments

84-Pin PLCC

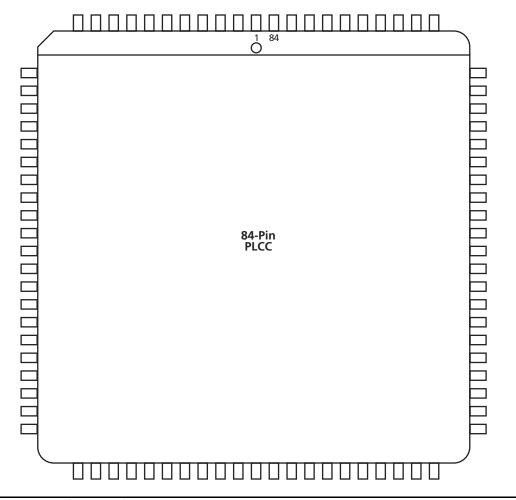


Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-1

144-Pin TQFP

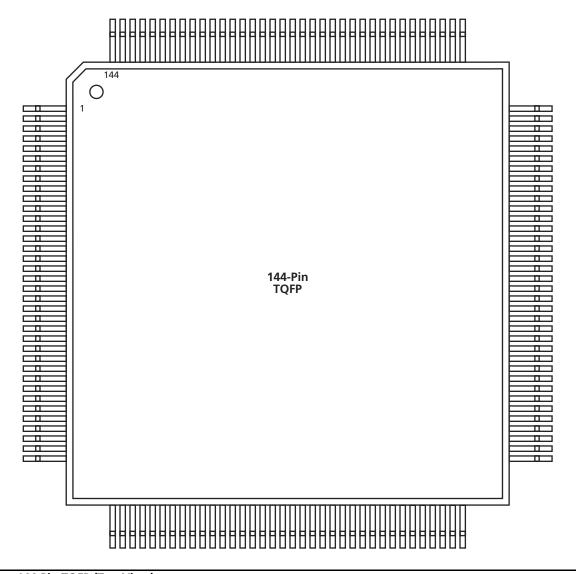


Figure 2-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-7

176-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function				
69	HCLK	HCLK	HCLK				
70	I/O	I/O	I/O				
71	I/O	1/0	I/O				
72	I/O	I/O	I/O				
73	I/O	I/O	I/O				
74	I/O	I/O	I/O				
75	I/O	I/O	I/O				
76	I/O	I/O	I/O				
77	I/O	I/O	I/O				
78	I/O	I/O	I/O				
79	NC	1/0	I/O				
80	I/O	1/0	I/O				
81	NC	1/0	I/O				
82	V _{CCI}	V _{CCI}	V _{CCI}				
83	I/O	I/O	I/O				
84	I/O	I/O	I/O				
85	I/O	1/0	I/O				
86	I/O	1/0	I/O				
87	TDO, I/O	TDO, I/O	TDO, I/O				
88	I/O	I/O	I/O				
89	GND	GND	GND				
90	NC	1/0	I/O				
91	NC	I/O	I/O				
92	I/O	I/O	I/O				
93	I/O	1/0	I/O				
94	I/O	I/O	I/O				
95	I/O	I/O	I/O				
96	I/O	I/O	I/O				
97	I/O	I/O	I/O				
98	V_{CCA}	V _{CCA}	V_{CCA}				
99	V _{CCI}	V _{CCI}	V _{CCI}				
100	I/O	I/O	I/O				
101	I/O	I/O	I/O				
102	I/O	1/0	I/O				

176-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function				
103	1/0	1/0	I/O				
104	I/O	1/0	1/0				
105	I/O	1/0	1/0				
106	I/O	1/0	I/O				
107	I/O	I/O	1/0				
108	GND	GND	GND				
109	V_{CCA}	V_{CCA}	V_{CCA}				
110	GND	GND	GND				
111	I/O	I/O	1/0				
112	I/O	I/O	1/0				
113	I/O	I/O	1/0				
114	I/O	I/O	I/O				
115	I/O	I/O	1/0				
116	I/O	I/O	1/0				
117	I/O	I/O	I/O				
118	NC	I/O	1/0				
119	I/O	I/O	1/0				
120	NC	1/0	I/O				
121	NC	1/0	I/O				
122	V_{CCA}	V _{CCA}	V_{CCA}				
123	GND	GND	GND				
124	V _{CCI}	V _{CCI}	V _{CCI}				
125	I/O	I/O	1/0				
126	I/O	I/O	1/0				
127	I/O	I/O	1/0				
128	I/O	I/O	1/0				
129	I/O	I/O	1/0				
130	1/0	I/O	1/0				
131	NC	I/O	I/O				
132	NC	I/O	1/0				
133	GND	GND	GND				
134	I/O	I/O	I/O				
135	I/O	I/O	I/O				
136	I/O	1/0	I/O				

2-12 v3.2

100-Pin VQFP

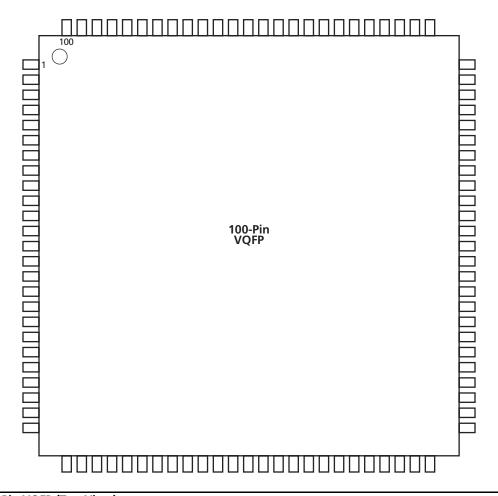


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

329-Pin PBGA				
Pin	A54SX32			
Number	Function			
D3	I/O			
D4	TCK, I/O			
D5	I/O			
D6	I/O			
D7	I/O			
D8	I/O			
D9	I/O			
D10	I/O			
D11	V_{CCA}			
D12	V_{CCR}			
D13	I/O			
D14	I/O			
D15	I/O			
D16	I/O			
D17	I/O			
D18	I/O			
D19	I/O			
D20	I/O			
D21	I/O			
D22	I/O			
D23	I/O			
E1	V _{CCI}			
E2	I/O			
E3	I/O			
E4	I/O			
E20	I/O			
E21	I/O			
E22	I/O			
E23	I/O			
F1	I/O			
F2	TMS			
F3	I/O			
F4	I/O			
F20	I/O			
F21	I/O			

329-Pin PBGA		
Pin	A54SX32	
Number	Function	
F22	1/0	
F23	1/0	
G1	I/O	
G2	I/O	
G3	I/O	
G4	1/0	
G20	1/0	
G21	1/0	
G22	1/0	
G23	GND	
H1	1/0	
H2	1/0	
Н3	1/0	
H4	1/0	
H20	V _{CCA}	
H21	1/0	
H22	1/0	
H23	1/0	
J1	NC	
J2	I/O	
J3	1/0	
J4	I/O	
J20	1/0	
J21	1/0	
J22	I/O	
J23	1/0	
K1	I/O	
K2	I/O	
K3	1/0	
K4	I/O	
K10	GND	
K11	GND	
K12	GND	
K13	GND	
1/4 4	CNID	

K14

GND

329-Pin PBGA	
Pin	A54SX32
Number	Function
K20	1/0
K21	1/0
K22	I/O
K23	I/O
L1	I/O
L2	I/O
L3	I/O
L4	V_{CCR}
L10	GND
L11	GND
L12	GND
L13	GND
L14	GND
L20	V_{CCR}
L21	I/O
L22	I/O
L23	NC
M1	I/O
M2	I/O
M3	I/O
M4	V_{CCA}
M10	GND
M11	GND
M12	GND
M13	GND
M14	GND
M20	V_{CCA}
M21	I/O
M22	I/O
M23	V _{CCI}
N1	I/O
N2	I/O
N3	I/O
N4	I/O
N10	GND

329-Pin PBGA	
Pin Number	A54SX32 Function
N11	GND
N12	GND
N13	GND
N14	GND
N20	NC
N21	I/O
N22	I/O
N23	I/O
P1	I/O
P2	I/O
Р3	I/O
P4	I/O
P10	GND
P11	GND
P12	GND
P13	GND
P14	GND
P20	1/0
P21	1/0
P22	I/O
P23	I/O
R1	I/O
R2	I/O
R3	1/0
R4	I/O
R20	I/O
R21	I/O
R22	I/O
R23	I/O
T1	I/O
T2	I/O
T3	I/O
T4	I/O
T20	I/O
T21	I/O

v3.2 2-21

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom

Phone +44 (0) 1276 401 450 **Fax** +44 (0) 1276 401 490

Actel Japan

www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

Phone +81.03.3445.7671 **Fax** +81.03.3445.7668

Actel Hong Kong

www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 **Fax** +852 2185 6488