

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFCQFP with Tie Bar
Supplier Device Package	208-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16-1cq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

The Actel SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications.

The Actel SX architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or "sea-of-modules"), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort.

Further complementing SX's flexible routing structure is a hardwired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clock-to-out or fast input setup times. SX devices have easy to use I/O cells that do not require HDL instantiation, facilitating design reuse and reducing design and verification time.

SX Family Architecture

The SX family architecture was designed to satisfy nextgeneration performance and integration requirements for production-volume designs in a broad range of applications.

Programmable Interconnect Element

The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules.

Interconnection between these logic modules is achieved using The Actel patented metal-to-metal programmable antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept.

Additionally, the interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

Logic Module Design

The SX family architecture is described as a "sea-of-modules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional

flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hardwired clock or the routed clock.

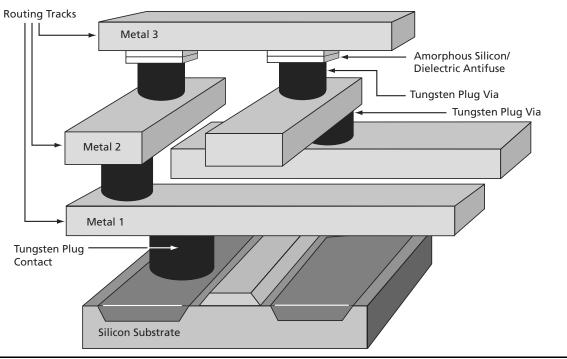


Figure 1-1 • SX Family Interconnect Elements

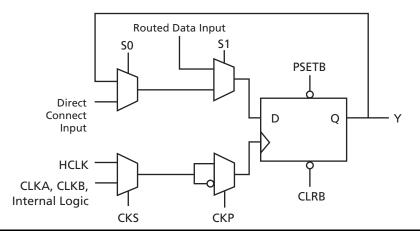


Figure 1-2 • R-Cell

The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX architecture. An example of the improved flexibility

enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time.

1-2 v3.2

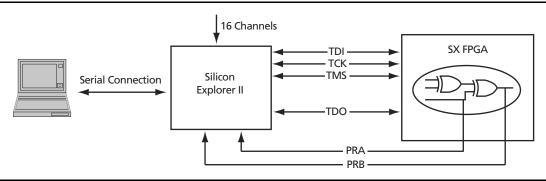


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions

Table 1-3 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V_{CCR}^2	DC Supply Voltage ³	-0.3 to + 6.0	V
V_{CCA}^2	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
V _I	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	−30 to + 5.0	mA
T _{STG}	Storage Temperature	–65 to +150	°C

Notes

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
- 2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.
- 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

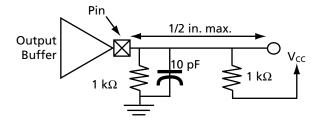

A54SX16P AC Specifications for (PCI Operation)

Table 1-7 • A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{1}$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^3$		-142	mA
I _{OL(AC)}	Switching Current High	$V_{OUT} \ge 2.2^1$	95		mA
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^3$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

1-10 v3.2

EQ 1-2

Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

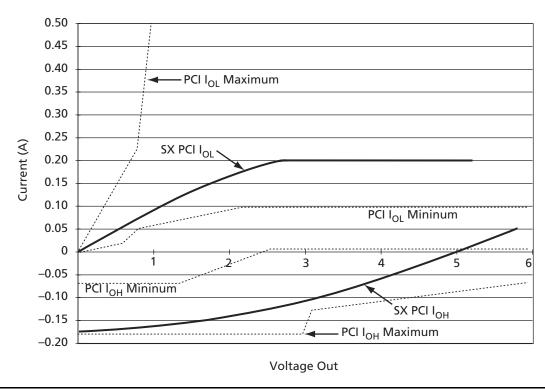


Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device

$$I_{OH} = 11.9 \times (V_{OUT} - 5.25) \times (V_{OUT} + 2.45)$$

$$I_{OL} = 78.5 \times V_{OUT} \times (4.4 - V_{OUT})$$
for $V_{CC} > V_{OUT} > 3.1 \text{ V}$

$$EQ 1-1$$

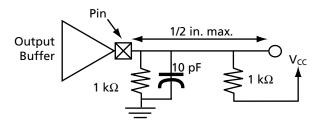

A54SX16P AC Specifications (3.3 V PCI Operation)

Table 1-9 • A54SX16P AC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CC}^{1}$			mA
		$0.3V_{CC} \le V_{OUT} < 0.9V_{CC}^{1}$	–12V _{CC}		mA
I _{OH(AC)}		$0.7V_{CC} < V_{OUT} < V_{CC}^{1, 2}$	-17.1 + (V _{CC} - V _{OUT})	EQ 1-3 on page 1-14	
	(Test Point)	$V_{OUT} = 0.7V_{CC}^2$		-32V _{CC}	mA
	Switching Current High	$V_{CC} > V_{OUT} \ge 0.6 V_{CC}^{1}$			mA
1		$0.6V_{CC} > V_{OUT} > 0.1V_{CC}^{1}$	16V _{CC}		mA
I _{OL(AC)}		$0.18V_{CC} > V_{OUT} > 0^{1, 2}$	26.7V _{OUT}	EQ 1-4 on page 1-14	mA
	(Test Point)	$V_{OUT} = 0.18V_{CC}^2$		38V _{CC}	
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015		mA
I _{CH}	High Clamp Current	$-3 < V_{IN} \le -1$	25 + (V _{IN} – V _{OUT} – 1)/0.015		mA
slew _R	Output Rise Slew Rate ³	0.2V _{CC} to 0.6V _{CC} load	1	4	V/ns
slew _F	Output Fall Slew Rate ³	0.6V _{CC} to 0.2V _{CC} load	1	4	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. "Switching Current High" specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.
- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Evaluating Power in SX Devices

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

You should complete a power evaluation early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- Estimate the power consumption of the application.
- Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Consumption

The total power dissipation for the SX family is the sum of the DC power dissipation and the AC power dissipation. Use EQ 1-5 to calculate the estimated power consumption of your application.

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 1-5

n

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. The Standby power is shown in Table 1-12 for commercial, worst-case conditions (70°C).

Table 1-12 • Standby Power

I _{CC}	V _{CC}	Power
4 mA	3.6 V	14.4 mW

The DC power dissipation is defined in EQ 1-6.

$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + \\ (I_{standby}) \times V_{CCI} + xV_{OL} \times I_{OL} + y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

EQ 1-6

AC Power Dissipation

The power dissipation of the SX Family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined in EQ 1-7 and EQ 1-8.

EQ 1-7

$$\begin{split} P_{AC} &= V_{CCA}^2 \times [(m \times C_{EQM} \times f_m)_{Module} + \\ (n \times C_{EQI} \times f_n)_{Input \ Buffer} + (p \times (C_{EQO} + C_L) \times f_p)_{Output \ Buffer} + \\ (0.5 \times (q_1 \times C_{EQCR} \times f_{q_1}) + (r_1 \times f_{q_1}))_{RCLKA} + \\ (0.5 \times (q_2 \times CEQCR \times f_{q_2}) + (r_2 \times f_{q_2}))_{RCLKB} + \\ (0.5 \times (s_1 \times C_{EOHV} \times f_{s_1}) + (C_{EOHF} \times f_{s_1}))_{HCLK}] \end{split}$$

EQ 1-8

Definition of Terms Used in Formula

 $m = Number of logic modules switching at <math>f_m$

Number of input buffers switching at f_n

p = Number of output buffers switching at f_p

q₁ = Number of clock loads on the first routed array clock

q₂ = Number of clock loads on the second routed array clock

x = Number of I/Os at logic low

y = Number of I/Os at logic high

r₁ = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

s₁ = Number of clock loads on the dedicated array

C_{EOM} = Equivalent capacitance of logic modules in pF

C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EOO} = Equivalent capacitance of output buffers in pF

 C_{EQCR} = Equivalent capacitance of routed array clock in pF

C_{EQHV} = Variable capacitance of dedicated array clock

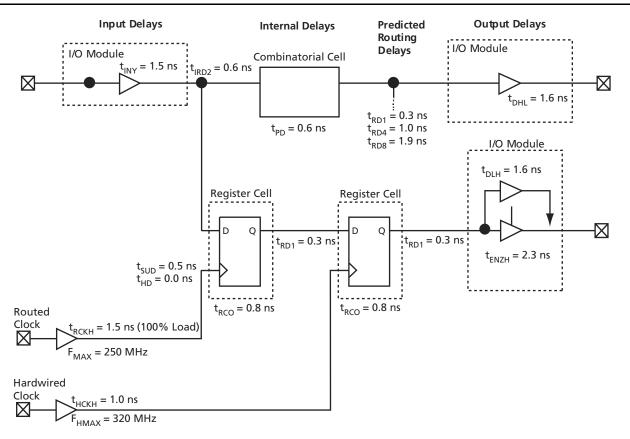
C_{EOHF} = Fixed capacitance of dedicated array clock

C_I = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_p = Average output buffer switching rate in MHz


 f_{q1} = Average first routed array clock rate in MHz

f_{q2} = Average second routed array clock rate in MHz

f_{s1} = Average dedicated array clock rate in MHz

1-16 v3.2

SX Timing Model

Note: Values shown for A54SX08-3, worst-case commercial conditions.

Figure 1-12 • SX Timing Model

Hardwired Clock Routed Clock External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns= 1.5 + 0.3 + 0.5 - 1.5 = 0.8 nsEQ 1-15 EQ 1-17 Clock-to-Out (Pin-to-Pin) Clock-to-Out (Pin-to-Pin) $= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns= 1.52 + 0.8 + 0.3 + 1.6 = 4.2 nsEQ 1-16 EQ 1-18

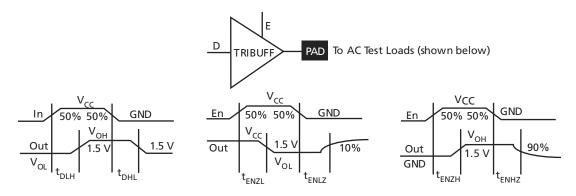


Figure 1-13 • Output Buffer Delays

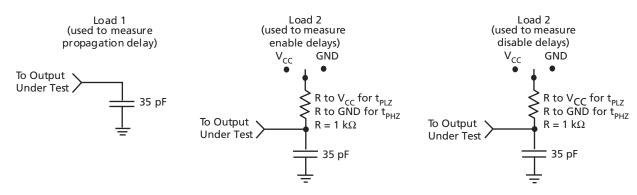


Figure 1-14 • AC Test Loads

Figure 1-15 • Input Buffer Delays

Figure 1-16 • C-Cell Delays

1-22 v3.2

Register Cell Timing Characteristics

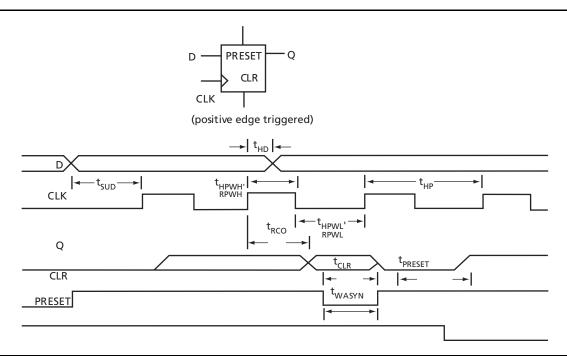


Figure 1-17 • Flip-Flops

Timing Characteristics

Timing characteristics for SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO = 24) routing delays in the datasheet specifications section.

Timing Derating

SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

A54SX08 Timing Characteristics

Table 1-17 • A54SX08 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	Speed	'-2' 9	peed	'-1' !	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
C-Cell Propagation Delays ¹										
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	Routing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t_{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timi	ng									
t _{RCO}	Sequential Clock-to-Q		8.0		1.1		1.2		1.4	ns
t_{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t_{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t_{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Mod	ule Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Input Mod	ule Predicted Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1-24 v3.2

^{1.} For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.

^{2.} Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Pin Description

CLKA/B Clock A and B

These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.)

GND Ground

LOW supply voltage.

HCLK Dedicated (hardwired) Array Clock

This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

NC No Connection

This pin is not connected to circuitry within the device.

PRA, I/O Probe A

The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

PRB. I/O Probe B

The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-2 on page 1-6). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 1-1 on page 1-5.

V_{CCA} Supply Voltage

Supply voltage for Array. See Table 1-1 on page 1-5.

V_{CCR} Supply Voltage

Supply voltage for input tolerance (required for internal biasing). See Table 1-1 on page 1-5.

Package Pin Assignments

84-Pin PLCC

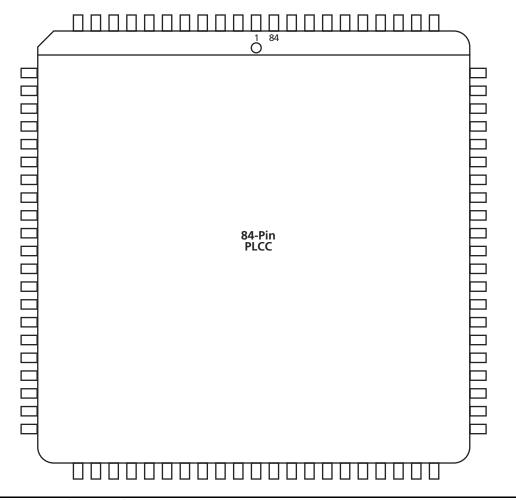


Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-1

208-Pin PQFP

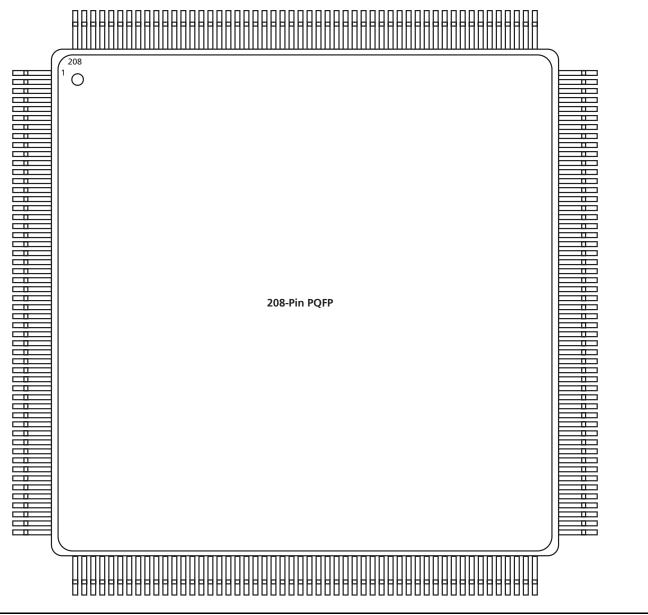


Figure 2-2 • 208-Pin PQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-3

144-Pin TQFP				
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	
1	GND	GND	GND	
2	TDI, I/O	TDI, I/O	TDI, I/O	
3	I/O	1/0	I/O	
4	I/O	1/0	I/O	
5	I/O	1/0	I/O	
6	I/O	1/0	1/0	
7	I/O	1/0	I/O	
8	I/O	I/O	1/0	
9	TMS	TMS	TMS	
10	V _{CCI}	V_{CCI}	V _{CCI}	
11	GND	GND	GND	
12	I/O	I/O	1/0	
13	I/O	1/0	I/O	
14	I/O	I/O	1/0	
15	I/O	I/O	1/0	
16	I/O	I/O	I/O	
17	I/O	1/0	1/0	
18	I/O	I/O	1/0	
19	V_{CCR}	V_{CCR}	V_{CCR}	
20	V_{CCA}	V_{CCA}	V_{CCA}	
21	I/O	1/0	I/O	
22	I/O	1/0	I/O	
23	I/O	1/0	I/O	
24	I/O	1/0	I/O	
25	I/O	1/0	I/O	
26	I/O	1/0	I/O	
27	I/O	1/0	I/O	
28	GND	GND	GND	
29	V _{CCI}	V _{CCI}	V _{CCI}	
30	V_{CCA}	V _{CCA}	V _{CCA}	
31	I/O	1/0	I/O	
32	I/O	1/0	I/O	
33	I/O	I/O	1/0	
34	I/O	I/O	1/0	
35	I/O	I/O	I/O	
36	GND	GND	GND	

144-Pin TQFP				
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	
37	I/O	1/0	I/O	
38	I/O	1/0	I/O	
39	I/O	1/0	I/O	
40	I/O	1/0	I/O	
41	I/O	1/0	I/O	
42	I/O	1/0	I/O	
43	I/O	1/0	I/O	
44	V _{CCI}	V _{CCI}	V _{CCI}	
45	I/O	I/O	I/O	
46	I/O	I/O	I/O	
47	I/O	I/O	I/O	
48	I/O	I/O	I/O	
49	I/O	I/O	I/O	
50	I/O	1/0	I/O	
51	I/O	1/0	I/O	
52	I/O	I/O	I/O	
53	I/O	1/0	I/O	
54	PRB, I/O	PRB, I/O	PRB, I/O	
55	I/O	I/O	I/O	
56	V_{CCA}	V_{CCA}	V_{CCA}	
57	GND	GND	GND	
58	V_{CCR}	V_{CCR}	V_{CCR}	
59	I/O	I/O	I/O	
60	HCLK	HCLK	HCLK	
61	I/O	I/O	I/O	
62	I/O	1/0	I/O	
63	I/O	I/O	I/O	
64	I/O	1/0	I/O	
65	I/O	I/O	I/O	
66	I/O	I/O	I/O	
67	I/O	I/O	I/O	
68	V _{CCI}	V _{CCI}	V _{CCI}	
69	I/O	I/O	I/O	
70	I/O	1/0	I/O	
71	TDO, I/O	TDO, I/O	TDO, I/O	
72	I/O	I/O	I/O	
		-		

2-8 v3.2

176-Pin TQFP

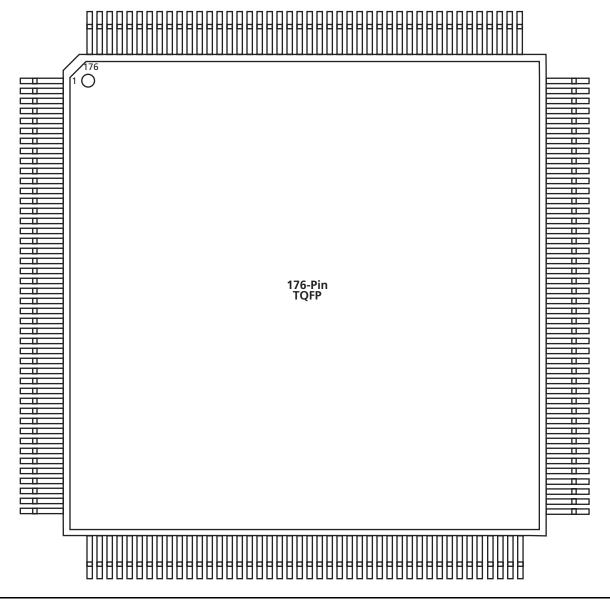


Figure 2-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-10 v3.2

100-Pin VQFP

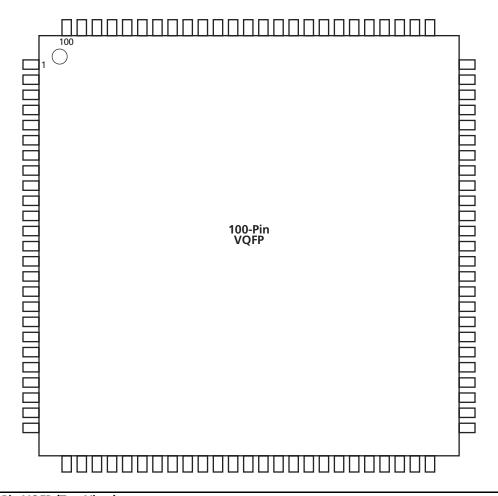


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

329-Pin PBGA			
Pin	A54SX32		
Number	Function		
D3	I/O		
D4	TCK, I/O		
D5	I/O		
D6	I/O		
D7	I/O		
D8	I/O		
D9	I/O		
D10	I/O		
D11	V _{CCA}		
D12	V_{CCR}		
D13	I/O		
D14	I/O		
D15	I/O		
D16	I/O		
D17	I/O		
D18	I/O		
D19	I/O		
D20	I/O		
D21	I/O		
D22	I/O		
D23	I/O		
E1	V _{CCI}		
E2	I/O		
E3	I/O		
E4	I/O		
E20	I/O		
E21	I/O		
E22	I/O		
E23	I/O		
F1	I/O		
F2	TMS		
F3	I/O		
F4	I/O		
F20	I/O		
F21	I/O		

329-Pin PBGA				
Pin	A54SX32			
Number	Function			
F22	1/0			
F23	1/0			
G1	I/O			
G2	I/O			
G3	I/O			
G4	1/0			
G20	1/0			
G21	1/0			
G22	1/0			
G23	GND			
H1	1/0			
H2	1/0			
Н3	1/0			
H4	1/0			
H20	V _{CCA}			
H21	1/0			
H22	1/0			
H23	1/0			
J1	NC			
J2	I/O			
J3	1/0			
J4	I/O			
J20	1/0			
J21	1/0			
J22	I/O			
J23	1/0			
K1	I/O			
K2	I/O			
K3	1/0			
K4	I/O			
K10	GND			
K11	GND			
K12	GND			
K13	GND			
1/4 4	CNID			

K14

GND

329-Pin PBGA			
Pin	A54SX32		
Number	Function		
K20	1/0		
K21	1/0		
K22	I/O		
K23	I/O		
L1	I/O		
L2	I/O		
L3	I/O		
L4	V_{CCR}		
L10	GND		
L11	GND		
L12	GND		
L13	GND		
L14	GND		
L20	V_{CCR}		
L21	I/O		
L22	I/O		
L23	NC		
M1	I/O		
M2	1/0		
M3	I/O		
M4	V_{CCA}		
M10	GND		
M11	GND		
M12	GND		
M13	GND		
M14	GND		
M20	V_{CCA}		
M21	I/O		
M22	I/O		
M23	V _{CCI}		
N1	I/O		
N2	I/O		
N3	I/O		
N4	I/O		
N10	GND		

329-Pin PBGA	
Pin Number	A54SX32 Function
N11	GND
N12	GND
N13	GND
N14	GND
N20	NC
N21	I/O
N22	I/O
N23	I/O
P1	I/O
P2	I/O
Р3	I/O
P4	I/O
P10	GND
P11	GND
P12	GND
P13	GND
P14	GND
P20	1/0
P21	1/0
P22	I/O
P23	I/O
R1	I/O
R2	I/O
R3	1/0
R4	I/O
R20	I/O
R21	I/O
R22	I/O
R23	I/O
T1	I/O
T2	I/O
T3	I/O
T4	I/O
T20	I/O
T21	I/O

v3.2 2-21

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom

Phone +44 (0) 1276 401 450 **Fax** +44 (0) 1276 401 490

Actel Japan

www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

Phone +81.03.3445.7671 **Fax** +81.03.3445.7668

Actel Hong Kong

www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 **Fax** +852 2185 6488