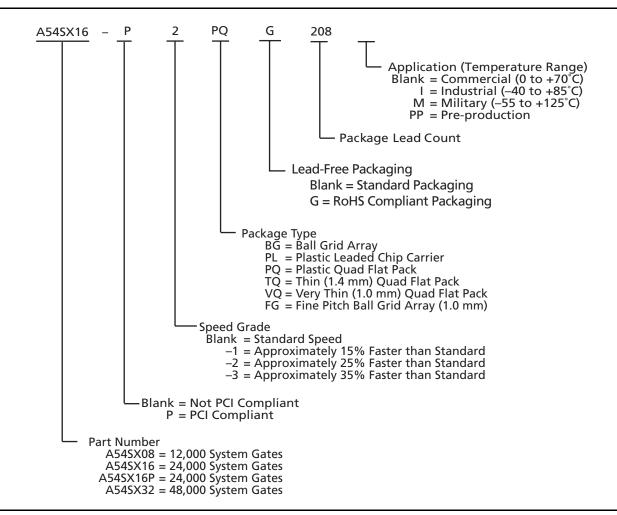


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16-1pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Plastic Device Resources

	User I/Os (including clock buffers)											
Device	PLCC 84-Pin	VQFP 100-Pin	PQFP 208-Pin	TQFP 144-Pin	TQFP 176-Pin	PBGA 313-Pin	PBGA 329-Pin	FBGA 144-Pin				
A54SX08	69	81	130	113	128	_	_	111				
A54SX16	_	81	175	-	147	_	_	_				
A54SX16P	_	81	175	113	147	_	_	_				
A54SX32	_	-	174	113	147	249	249	_				

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier

PQFP = Plastic Quad Flat Pack

TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack

PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array

ii v3.2

General Description

The Actel SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications.

The Actel SX architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or "sea-of-modules"), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort.

Further complementing SX's flexible routing structure is a hardwired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clock-to-out or fast input setup times. SX devices have easy to use I/O cells that do not require HDL instantiation, facilitating design reuse and reducing design and verification time.

SX Family Architecture

The SX family architecture was designed to satisfy nextgeneration performance and integration requirements for production-volume designs in a broad range of applications.

Programmable Interconnect Element

The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules.

Interconnection between these logic modules is achieved using The Actel patented metal-to-metal programmable antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept.

Additionally, the interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

Logic Module Design

The SX family architecture is described as a "sea-of-modules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

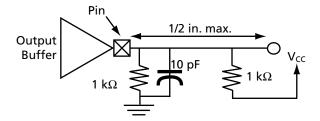

A54SX16P AC Specifications for (PCI Operation)

Table 1-7 • A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{1}$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^3$		-142	mA
I _{OL(AC)}	Switching Current High $V_{OUT} \ge 2.2^1$ 95	95		mA	
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^3$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

1-10 v3.2

Power-Up Sequencing

Table 1-10 • Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A545	SX16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11 • Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A54S	X16, A54SX32			_
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			•	_
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Step 1: Define Terms Used in Formula

	V_{CCA}	3.3
Module		
Number of logic modules switching at f_m (Used 50%)	m	264
Average logic modules switching rate f_m (MHz) (Guidelines: f/10)	f _m	20
Module capacitance C _{EQM} (pF)	C_{EQM}	4.0
Input Buffer		
Number of input buffers switching at f_n	n	1
Average input switching rate f _n (MHz) (Guidelines: f/5)	f _n	40
Input buffer capacitance C _{EQI} (pF)	C_{EQI}	3.4
Output Buffer		
Number of output buffers switching at f_p	p	1
Average output buffers switching rate fp(MHz) (Guidelines: f/10)	f_p	20
Output buffers buffer capacitance C _{EQO} (pF)	C_{EQO}	4.7
Output Load capacitance C _L (pF)	C_L	35
RCLKA		
Number of Clock loads q ₁	q_1	528
Capacitance of routed array clock (pF)	C_{EQCR}	1.6
Average clock rate (MHz)	f_{q1}	200
Fixed capacitance (pF)	r ₁	138
RCLKB		
Number of Clock loads q ₂	q_2	0
Capacitance of routed array clock (pF)	C_{EQCR}	1.6
Average clock rate (MHz)	f_{q2}	0
Fixed capacitance (pF)	r ₂	138
HCLK		
Number of Clock loads	s ₁	0
Variable capacitance of dedicated array clock (pF)	C_{EQHV}	0.61 5
Fixed capacitance of dedicated array clock (pF)	C_{EQHF}	96
Average clock rate (MHz)	f_{s1}	0

Step 2: Calculate Dynamic Power Consumption

$V_{CCA} \times V_{CCA}$	10.89
$m \times f_m \times C_{EQM}$	0.02112
$n \times f_n \times C_{EQI}$	0.000136
$p \times f_p \times (C_{EQO} + C_L)$	0.000794
$0.5 (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1})$	0.11208
$0.5(q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2})$	0
$0.5 (s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1})$	0
$P_{AC} = 1.461 \text{ W}$	

Step 3: Calculate DC Power Dissipation DC Power Dissipation

$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + (I_{standby}) \times \\ V_{CCI} &+ X \times V_{OL} \times I_{OL} + Y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

EQ 1-12

For a rough estimate of DC Power Dissipation, only use $P_{DC} = (I_{standby}) \times V_{CCA}$. The rest of the formula provides a very small number that can be considered negligible.

$$P_{DC} = (I_{standby}) \times V_{CCA}$$

 $P_{DC} = .55 \text{ mA} \times 3.3 \text{ V}$
 $P_{DC} = 0.001815 \text{ W}$

Step 4: Calculate Total Power Consumption

$$P_{Total} = P_{AC} + P_{DC}$$

 $P_{Total} = 1.461 + 0.001815$
 $P_{Total} = 1.4628 W$

Step 5: Compare Estimated Power Consumption against Characterized Power Consumption

The estimated total power consumption for this design is 1.46 W. The characterized power consumption for this design at 200 MHz is 1.0164 W.

1-18 v3.2

Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz.

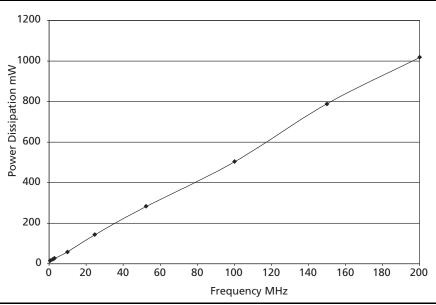


Figure 1-11 • Power Dissipation

Junction Temperature (T_J)

The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature.

Junction Temperature = $\Delta T + T_a$

EQ 1-13

Where:

T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient

 $\Delta T = \theta_{ja} \times P$

P = Power calculated from Estimating Power Consumption section

 θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section

Package Thermal Characteristics

The device junction to case thermal characteristic is θ_{jc} , and the junction to ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150 °C.

A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}}$$
 = $\frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{28^{\circ}\text{C/W}}$ = 2.86 W

v3.2

EQ 1-14

1-19

A54SX16 Timing Characteristics

Table 1-18 • A54SX16 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

	(Norse case commercial conditions, t		Speed		Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ıg									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		8.0		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ile Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Notes:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn},\ t_{RCO}+t_{RD1}+t_{PDn},\ or\ t_{PD1}+t_{RD1}+t_{SUD},\ whichever\ is\ appropriate.$
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

1-26 v3.2

Table 1-18 • A54SX16 Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	peed	'-2' 9	Speed	'-1' 9	peed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.2		1.4		1.5		1.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.2		1.4		1.6		1.9	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.2		0.2		0.3		0.3	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.6		1.8		2.1		2.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		1.8		2.0		2.3		2.7	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.8		2.1		2.5		2.8	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.8		2.1		2.4		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.5		0.5		0.5		0.7	ns
t _{RCKSW}	Maximum Skew (50% load)		0.5		0.6		0.7		8.0	ns
t _{RCKSW}	Maximum Skew (100% load)		0.5		0.6		0.7		8.0	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Notes:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA},V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	peed	'-2' \$	Speed	'-1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.2		1.4		1.5		1.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.2		1.4		1.6		1.9	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.2		0.2		0.3		0.3	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.6		1.8		2.1		2.5	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (pad to R-Cell input)		1.8		2.0		2.3		2.7	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.8		2.1		2.5		2.8	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.8		2.1		2.4		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.5		0.5		0.5		0.7	ns
t _{RCKSW}	Maximum Skew (50% load)		0.5		0.6		0.7		8.0	ns
t _{RCKSW}	Maximum Skew (100% load)		0.5		0.6		0.7		8.0	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.4		2.8		3.1		3.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.3		2.9		3.2		3.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		3.0		3.4		3.9		4.6	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.3		3.8		4.3		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.0		3.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.7		4.3	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 10 pF loading.

Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

			peed	'Std'	Speed					
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL/PCI Out	out Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		1.5		1.7		2.0		2.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.9		2.2		2.4		2.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.3		2.6		3.0		3.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.5		1.7		1.9		2.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.7		3.1		3.5		4.1	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns
PCI Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.8		2.0		2.3		2.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.7		2.0		2.2		2.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		8.0		1.0		1.1		1.3	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.2		1.2		1.5		1.8	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.0		1.1		1.3		1.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.1		1.3		1.5		1.7	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.1		2.5		2.8		3.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.0		2.3		2.6		3.1	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.5		2.9		3.2		3.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.0		3.5		3.9		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.1		3.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns

Note:

3. Delays based on 10 pF loading.

1-30 v3.2

^{1.} For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.

^{2.} Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' 9	Speed	'-1' 9	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ıle Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + $t_{PDn'}$ t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Pin Description

CLKA/B Clock A and B

These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.)

GND Ground

LOW supply voltage.

HCLK Dedicated (hardwired) Array Clock

This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

NC No Connection

This pin is not connected to circuitry within the device.

PRA, I/O Probe A

The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

PRB. I/O Probe B

The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-2 on page 1-6). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 1-1 on page 1-5.

V_{CCA} Supply Voltage

Supply voltage for Array. See Table 1-1 on page 1-5.

V_{CCR} Supply Voltage

Supply voltage for input tolerance (required for internal biasing). See Table 1-1 on page 1-5.

144-Pin TQFP

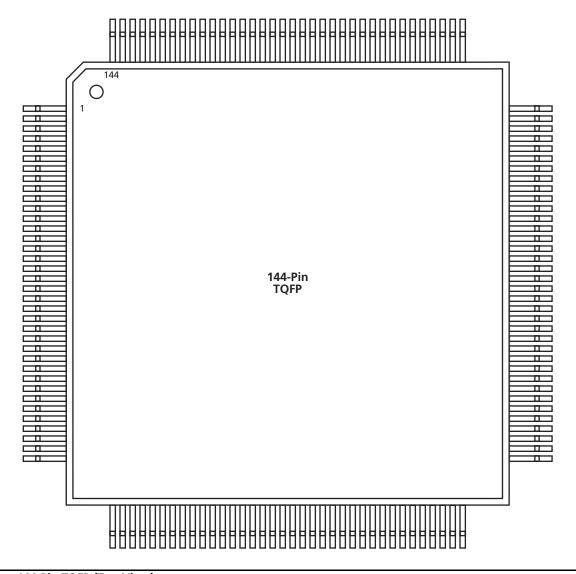


Figure 2-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-7

144-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function
1	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O
3	I/O	1/0	I/O
4	I/O	1/0	I/O
5	I/O	1/0	I/O
6	I/O	1/0	1/0
7	I/O	1/0	I/O
8	I/O	I/O	1/0
9	TMS	TMS	TMS
10	V _{CCI}	V_{CCI}	V _{CCI}
11	GND	GND	GND
12	I/O	I/O	1/0
13	I/O	1/0	I/O
14	I/O	I/O	1/0
15	I/O	I/O	1/0
16	I/O	I/O	I/O
17	I/O	1/0	1/0
18	I/O	I/O	1/0
19	V_{CCR}	V_{CCR}	V_{CCR}
20	V_{CCA}	V_{CCA}	V_{CCA}
21	I/O	1/0	I/O
22	I/O	1/0	I/O
23	I/O	1/0	I/O
24	I/O	1/0	I/O
25	I/O	1/0	I/O
26	I/O	1/0	I/O
27	I/O	1/0	I/O
28	GND	GND	GND
29	V _{CCI}	V _{CCI}	V _{CCI}
30	V_{CCA}	V _{CCA}	V _{CCA}
31	I/O	1/0	I/O
32	I/O	1/0	I/O
33	I/O	I/O	1/0
34	I/O	I/O	1/0
35	I/O	I/O	I/O
36	GND	GND	GND

144-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function
37	I/O	1/0	I/O
38	I/O	1/0	I/O
39	I/O	1/0	I/O
40	I/O	1/0	I/O
41	I/O	1/0	I/O
42	I/O	1/0	I/O
43	I/O	1/0	I/O
44	V _{CCI}	V _{CCI}	V _{CCI}
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	I/O	I/O	I/O
49	I/O	I/O	I/O
50	I/O	1/0	I/O
51	I/O	1/0	I/O
52	I/O	I/O	I/O
53	I/O	1/0	I/O
54	PRB, I/O	PRB, I/O	PRB, I/O
55	I/O	I/O	I/O
56	V_{CCA}	V_{CCA}	V_{CCA}
57	GND	GND	GND
58	V_{CCR}	V_{CCR}	V_{CCR}
59	I/O	I/O	I/O
60	HCLK	HCLK	HCLK
61	I/O	I/O	I/O
62	I/O	1/0	I/O
63	I/O	I/O	I/O
64	I/O	1/0	I/O
65	I/O	I/O	I/O
66	I/O	I/O	I/O
67	I/O	I/O	I/O
68	V _{CCI}	V _{CCI}	V _{CCI}
69	I/O	I/O	I/O
70	I/O	1/0	I/O
71	TDO, I/O	TDO, I/O	TDO, I/O
72	I/O	I/O	I/O
		-	

2-8 v3.2

100-Pin VQFP

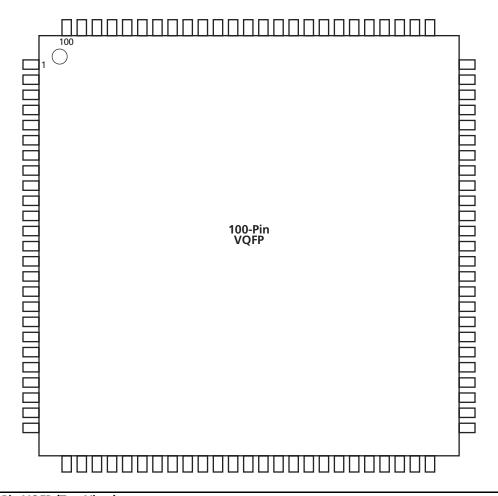


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

100-Pin VQFP		
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function
1	GND	GND
2	TDI, I/O	TDI, I/O
3	1/0	I/O
4	I/O	I/O
5	1/0	I/O
6	I/O	I/O
7	TMS	TMS
8	V _{CCI}	V _{CCI}
9	GND	GND
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O
13	1/0	I/O
14	1/0	I/O
15	I/O	I/O
16	I/O	I/O
17	I/O	I/O
18	I/O	I/O
19	I/O	I/O
20	V _{CCI}	V _{CCI}
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	I/O	1/0
33	I/O	1/0
34	PRB, I/O	PRB, I/O

100-Pin VQFP		
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function
35	V_{CCA}	V_{CCA}
36	GND	GND
37	V_{CCR}	V_{CCR}
38	1/0	I/O
39	HCLK	HCLK
40	1/0	I/O
41	1/0	I/O
42	1/0	I/O
43	1/0	I/O
44	V _{CCI}	V _{CCI}
45	1/0	I/O
46	1/0	I/O
47	1/0	I/O
48	1/0	I/O
49	TDO, I/O	TDO, I/O
50	1/0	I/O
51	GND	GND
52	1/0	I/O
53	1/0	I/O
54	1/0	I/O
55	1/0	I/O
56	I/O	I/O
57	V_{CCA}	V_{CCA}
58	V _{CCI}	V _{CCI}
59	1/0	I/O
60	I/O	I/O
61	I/O	I/O
62	I/O	I/O
63	I/O	I/O
64	I/O	I/O
65	I/O	I/O
66	I/O	I/O
67	V_{CCA}	V _{CCA}
68	GND	GND

100-Pin VQFP		
Pin Number	A545X08 Function	A54SX16, A54SX16P Function
69	GND	GND
70	I/O	1/0
71	I/O	1/0
72	I/O	1/0
73	I/O	1/0
74	I/O	1/0
75	1/0	1/0
76	I/O	1/0
77	I/O	1/0
78	I/O	I/O
79	I/O	1/0
80	I/O	I/O
81	1/0	1/0
82	V _{CCI}	V _{CCI}
83	1/0	I/O
84	I/O	I/O
85	I/O	1/0
86	I/O	1/0
87	CLKA	CLKA
88	CLKB	CLKB
89	V_{CCR}	V_{CCR}
90	V_{CCA}	V_{CCA}
91	GND	GND
92	PRA, I/O	PRA, I/O
93	I/O	I/O
94	I/O	1/0
95	1/0	1/0
96	1/0	1/0
97	1/0	1/0
98	I/O	1/0
99	1/0	1/0
100	TCK, I/O	TCK, I/O

v3.2 2-15

329-Pin PBGA

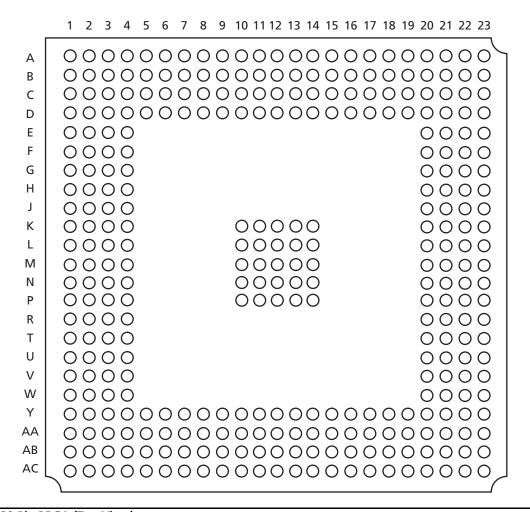


Figure 2-7 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

v3.2 2-19

329-Pin PBGA		
Pin Number	A54SX32 Function	
A1	GND	
A2	GND	
A3	V _{CCI}	
A4	NC	
A5	I/O	
A6	I/O	
A7	V _{CCI}	
A8	NC	
A9	I/O	
A10	I/O	
A11	I/O	
A12	I/O	
A13	CLKB	
A14	I/O	
A15	I/O	
A16	I/O	
A17	I/O	
A18	I/O	
A19	I/O	
A20	I/O	
A21	NC	
A22	V _{CCI}	
A23	GND	
AA1	V _{CCI}	
AA2	I/O	
AA3	GND	
AA4	I/O	
AA5	1/0	
AA6	I/O	
AA7	I/O	
AA8	I/O	
AA9	I/O	
AA10	I/O	
AA11	I/O	
AA12	1/0	

329-Pin PBGA		
Pin Number	A54SX32 Function	
AA13	1/0	
AA14	1/0	
AA15	I/O	
AA16	I/O	
AA17	1/0	
AA18	I/O	
AA19	I/O	
AA20	TDO, I/O	
AA21	V _{CCI}	
AA22	1/0	
AA23	V _{CCI}	
AB1	1/0	
AB2	GND	
AB3	1/0	
AB4	1/0	
AB5	1/0	
AB6	1/0	
AB7	1/0	
AB8	1/0	
AB9	1/0	
AB10	1/0	
AB11	PRB, I/O	
AB12	1/0	
AB13	HCLK	
AB14	1/0	
AB15	1/0	
AB16	1/0	
AB17	1/0	
AB18	1/0	
AB19	1/0	
AB20	I/O	
AB21	I/O	
AB22	GND	
AB23	1/0	
AC1	GND	

329-Pin PBGA		
Pin Number	A54SX32 Function	
AC2	V _{CCI}	
AC3	NC	
AC4	1/0	
AC5	I/O	
AC6	I/O	
AC7	I/O	
AC8	I/O	
AC9	V _{CCI}	
AC10	I/O	
AC11	I/O	
AC12	I/O	
AC13	I/O	
AC14	I/O	
AC15	NC	
AC16	I/O	
AC17	I/O	
AC18	I/O	
AC19	I/O	
AC20	I/O	
AC21	NC	
AC22	V _{CCI}	
AC23	GND	
B1	V _{CCI}	
B2	GND	
В3	I/O	
В4	I/O	
B5	I/O	
В6	I/O	
В7	I/O	
B8	I/O	
В9	I/O	
B10	I/O	
B11	I/O	
B12	PRA, I/O	
B13	CLKA	

329-Pin PBGA		
Pin Number	A54SX32 Function	
B14	1/0	
B15	1/0	
B16		
	1/0	
B17	1/0	
B18	1/0	
B19	1/0	
B20	I/O	
B21	I/O	
B22	GND	
B23	V _{CCI}	
C1	NC	
C2	TDI, I/O	
C3	GND	
C4	I/O	
C5	I/O	
C6	I/O	
C7	I/O	
C8	I/O	
С9	I/O	
C10	I/O	
C11	I/O	
C12	I/O	
C13	I/O	
C14	I/O	
C15	I/O	
C16	I/O	
C17	I/O	
C18	I/O	
C19	I/O	
C20	I/O	
C21	V _{CCI}	
C22	GND	
C23	NC	
D1	I/O	
D2	I/O	

2-20 v3.2

329-Pin PBGA		
Pin	A54SX32	
Number	Function	
D3	I/O	
D4	TCK, I/O	
D5	I/O	
D6	I/O	
D7	I/O	
D8	I/O	
D9	I/O	
D10	I/O	
D11	V _{CCA}	
D12	V_{CCR}	
D13	I/O	
D14	I/O	
D15	I/O	
D16	I/O	
D17	I/O	
D18	I/O	
D19	I/O	
D20	I/O	
D21	I/O	
D22	I/O	
D23	I/O	
E1	V _{CCI}	
E2	I/O	
E3	I/O	
E4	I/O	
E20	I/O	
E21	I/O	
E22	I/O	
E23	I/O	
F1	I/O	
F2	TMS	
F3	I/O	
F4	I/O	
F20	I/O	
F21	I/O	

329-Pin PBGA		
Pin A54SX32		
Number	Function	
F22	1/0	
F23	1/0	
G1	I/O	
G2	I/O	
G3	I/O	
G4	1/0	
G20	1/0	
G21	1/0	
G22	1/0	
G23	GND	
H1	1/0	
H2	1/0	
Н3	1/0	
H4	1/0	
H20	V _{CCA}	
H21	1/0	
H22	1/0	
H23	1/0	
J1	NC	
J2	I/O	
J3	1/0	
J4	I/O	
J20	1/0	
J21	1/0	
J22	I/O	
J23	1/0	
K1	I/O	
K2	I/O	
K3	1/0	
K4	I/O	
K10	GND	
K11	GND	
K12	GND	
K13	GND	
1/4 4	CNID	

K14

GND

329-Pin PBGA		
Pin A54SX32		
Number	Function	
K20	1/0	
K21	1/0	
K22	I/O	
K23	I/O	
L1	I/O	
L2	I/O	
L3	I/O	
L4	V_{CCR}	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	GND	
L20	V_{CCR}	
L21	I/O	
L22	I/O	
L23	NC	
M1	I/O	
M2	1/0	
M3	I/O	
M4	V_{CCA}	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	GND	
M20	V_{CCA}	
M21	I/O	
M22	I/O	
M23	V _{CCI}	
N1	I/O	
N2	I/O	
N3	I/O	
N4	I/O	
N10	GND	

329-Pin PBGA		
Pin Number	A54SX32 Function	
N11	GND	
N12	GND	
N13	GND	
N14	GND	
N20	NC	
N21	I/O	
N22	I/O	
N23	I/O	
P1	I/O	
P2	I/O	
Р3	I/O	
P4	I/O	
P10	GND	
P11	GND	
P12	GND	
P13	GND	
P14	GND	
P20	1/0	
P21	1/0	
P22	I/O	
P23	I/O	
R1	I/O	
R2	I/O	
R3	1/0	
R4	I/O	
R20	I/O	
R21	I/O	
R22	I/O	
R23	I/O	
T1	I/O	
T2	I/O	
T3	I/O	
T4	I/O	
T20	I/O	
T21	I/O	

v3.2 2-21

329-Pin PBGA	
Pin Number	A54SX32 Function
T22	I/O
T23	I/O
U1	I/O
U2	1/0
U3	V_{CCA}
U4	1/0
U20	I/O
U21	V_{CCA}
U22	I/O
U23	I/O
V1	V _{CCI}
V2	I/O
V3	I/O

329-Pin PBGA		
Pin Number	A54SX32 Function	
V4	I/O	
V20	I/O	
V21	I/O	
V22	I/O	
V23	I/O	
W1	I/O	
W2	I/O	
W3	I/O	
W4	I/O	
W20	I/O	
W21	I/O	
W22	I/O	

329-Pin PBGA	
Pin Number	A54SX32 Function
W23	NC
Y1	NC
Y2	I/O
Y3	1/0
Y4	GND
Y5	I/O
Y6	1/0
Y7	1/0
Y8	1/0
Y9	1/0
Y10	1/0
Y11	I/O

329-Pin PBGA		
Pin Number	A54SX32 Function	
Y12	V_{CCA}	
Y13	V_{CCR}	
Y14	1/0	
Y15	1/0	
Y16	1/0	
Y17	I/O	
Y18	I/O	
Y19	I/O	
Y20	GND	
Y21	I/O	
Y22	I/O	
Y23	I/O	

2-22 v3.2