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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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SX Family FPGAs
SX Family FPGAs

General Description
The Actel SX family of FPGAs features a sea-of-modules
architecture that delivers device performance and
integration levels not currently achieved by any other
FPGA architecture. SX devices greatly simplify design
time, enable dramatic reductions in design costs and
power consumption, and further decrease time to
market for performance-intensive applications.

The Actel SX architecture features two types of logic
modules, the combinatorial cell (C-cell) and the register
cell (R-cell), each optimized for fast and efficient
mapping of synthesized logic functions. The routing and
interconnect resources are in the metal layers above the
logic modules, providing optimal use of silicon. This
enables the entire floor of the device to be spanned with
an uninterrupted grid of fine-grained, synthesis-friendly
logic modules (or “sea-of-modules”), which reduces the
distance signals have to travel between logic modules. To
minimize signal propagation delay, SX devices employ
both local and general routing resources. The high-speed
local routing resources (DirectConnect and FastConnect)
enable very fast local signal propagation that is optimal
for fast counters, state machines, and datapath logic.
The general system of segmented routing tracks allows
any logic module in the array to be connected to any
other logic or I/O module. Within this system,
propagation delay is minimized by limiting the number
of antifuse interconnect elements to five (90 percent of
connections typically use only three antifuses). The
unique local and general routing structure featured in
SX devices gives fast and predictable performance,
allows 100 percent pin-locking with full logic utilization,
enables concurrent PCB development, reduces design
time, and allows designers to achieve performance goals
with minimum effort.

Further complementing SX’s flexible routing structure is
a hardwired, constantly loaded clock network that has
been tuned to provide fast clock propagation with
minimal clock skew. Additionally, the high performance
of the internal logic has eliminated the need to embed
latches or flip-flops in the I/O cells to achieve fast clock-
to-out or fast input setup times. SX devices have easy to
use I/O cells that do not require HDL instantiation,
facilitating design reuse and reducing design and
verification time.

SX Family Architecture
The SX family architecture was designed to satisfy next-
generation performance and integration requirements
for production-volume designs in a broad range of
applications.

Programmable Interconnect Element
The SX family provides efficient use of silicon by locating
the routing interconnect resources between the Metal 2
(M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2).
This completely eliminates the channels of routing and
interconnect resources between logic modules (as
implemented on SRAM FPGAs and previous generations
of antifuse FPGAs), and enables the entire floor of the
device to be spanned with an uninterrupted grid of logic
modules.

Interconnection between these logic modules is achieved
using The Actel patented metal-to-metal programmable
antifuse interconnect elements, which are embedded
between the M2 and M3 layers. The antifuses are
normally open circuit and, when programmed, form a
permanent low-impedance connection.

The extremely small size of these interconnect elements
gives the SX family abundant routing resources and
provides excellent protection against design pirating.
Reverse engineering is virtually impossible because it is
extremely difficult to distinguish between programmed
and unprogrammed antifuses, and there is no
configuration bitstream to intercept.

Additionally, the interconnect elements (i.e., the
antifuses and metal tracks) have lower capacitance and
lower resistance than any other device of similar
capacity, leading to the fastest signal propagation in the
industry.

Logic Module Design
The SX family architecture is described as a “sea-of-
modules” architecture because the entire floor of the
device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. The Actel SX family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell).
v3.2 1-1



SX Family FPGAs
Routing Resources
Clusters and SuperClusters can be connected through the use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within
clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number
of antifuses required to complete a circuit, ensuring the highest possible performance.

Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses

FastConnect
• One antifuse
• 0.4 ns routing delay

DirectConnect
• No antifuses
• 0.1 ns routing delay

Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses

FastConnect
• One antifuse
• 0.4 ns routing delay

DirectConnect
• No antifuses
• 0.1 ns routing delay
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SX Family FPGAs
Boundary Scan Testing (BST)
All SX devices are IEEE 1149.1 compliant. SX devices offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
These functions are controlled through the special test
pins in conjunction with the program fuse. The
functionality of each pin is described in Table 1-2. In the
dedicated test mode, TCK, TDI, and TDO are dedicated
pins and cannot be used as regular I/Os. In flexible mode,
TMS should be set HIGH through a pull-up resistor of
10 kΩ. TMS can be pulled LOW to initiate the test
sequence.

The program fuse determines whether the device is in
dedicated or flexible mode. The default (fuse not blown)
is flexible mode. 

Dedicated Test Mode
In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS
and TDI pins, and the TMS pin will function as defined in
the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG
pins in Actel's Designer software by checking the
"Reserve JTAG" box in "Device Selection Wizard"
(Figure 1-7). JTAG pins comply with LVTTL/TTL I/O
specification regardless of whether they are used as a
user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8
for detailed specifications.

Development Tool Support
The SX family of FPGAs is fully supported by both the
Actel Libero® Integrated Design Environment (IDE) and
Designer FPGA Development software. Actel Libero IDE
is a design management environment, seamlessly
integrating design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessary design data among tools. Libero IDE
allows users to integrate both schematic and HDL
synthesis into a single flow and verify the entire design
in a single environment. Libero IDE includes Synplify® for
Actel from Synplicity®, ViewDraw® for Actel from
Mentor Graphics®, ModelSim® HDL Simulator from
Mentor Graphics, WaveFormer Lite™ from
SynaptiCAD™, and Designer software from Actel. Refer
to the Libero IDE flow diagram (located on the Actel
website) for more information.

Actel Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
timing-driven place-and-route, and a world-class
integrated static timing analyzer and constraints editor.
With the Designer software, a user can select and lock
package pins while only minimally impacting the results
of place-and-route. Additionally, the back-annotation
flow is compatible with all the major simulators, and the
simulation results can be cross-probed with Silicon
Explorer II, Actel integrated verification and logic
analysis tool. Another tool included in the Designer
software is the SmartGen core generator, which easily
creates popular and commonly used logic functions for
implementation into your schematic or HDL design. Actel
Designer software is compatible with the most popular
FPGA design entry and verification tools from companies
such as Mentor Graphics, Synplicity, Synopsys®, and
Cadence® Design Systems. The Designer software is
available for both the Windows® and UNIX® operating
systems.

Probe Circuit Control Pins
The Silicon Explorer II tool uses the boundary scan ports
(TDI, TCK, TMS, and TDO) to select the desired nets for
verification. The selected internal nets are assigned to
the PRA/PRB pins for observation. Figure 1-8 on page 1-7
illustrates the interconnection between Silicon Explorer II
and the FPGA to perform in-circuit verification. 

Design Considerations
The TDI, TCK, TDO, PRA, and PRB pins should not be used
as input or bidirectional ports. Because these pins are
active during probing, critical signals input through
these pins are not available while probing. In addition,
the Security Fuse should not be programmed because
doing so disables the Probe Circuitry.

Table 1-2 • Boundary Scan Pin Functionality

Program Fuse Blown 
(Dedicated Test Mode)

Program Fuse Not Blown 
(Flexible Mode)

TCK, TDI, TDO are dedicated
BST pins.

TCK, TDI, TDO are flexible and
may be used as I/Os.

No need for pull-up resistor for
TMS

Use a pull-up resistor of 10 kΩ
on TMS.

Figure 1-7 • Device Selection Wizard
1-6 v3.2
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Programming
Device programming is supported through Silicon
Sculptor series of programmers. In particular, Silicon
Sculptor II are compact, robust, single-site and multi-site
device programmer for the PC.

With standalone software, Silicon Sculptor II allows
concurrent programming of multiple units from the
same PC, ensuring the fastest programming times
possible. Each fuse is subsequently verified by Silicon
Sculptor II to insure correct programming. In addition,
integrity tests ensure that no extra fuses are
programmed. Silicon Sculptor II also provides extensive
hardware self-testing capability.

The procedure for programming an SX device using
Silicon Sculptor II are as follows:

1. Load the .AFM file

2. Select the device to be programmed

3. Begin programming

When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via in-house
programming from the factory.

For more details on programming SX devices, refer to the
Programming Antifuse Devices application note and the
Silicon Sculptor II User's Guide.

3.3 V / 5 V Operating Conditions  

Figure 1-8 • Probe Setup

 SX FPGATDI
TCK

TDO

TMS

PRA
PRB

Serial Connection

16 Channels

Silicon
Explorer II

Table 1-3 • Absolute Maximum Ratings1

Symbol Parameter Limits Units

VCCR
2 DC Supply Voltage3 –0.3 to + 6.0 V

VCCA
2 DC Supply Voltage –0.3 to + 4.0 V

VCCI
2 DC Supply Voltage (A54SX08, A54SX16, A54SX32) –0.3 to + 4.0 V

VCCI
2 DC Supply Voltage (A54SX16P) –0.3 to + 6.0 V

VI Input Voltage –0.5 to + 5.5 V

VO Output Voltage –0.5 to + 3.6 V

IIO I/O Source Sink Current3 –30 to + 5.0 mA

TSTG Storage Temperature –65 to +150 °C

Notes:

1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the
Recommended Operating Conditions.

2. VCCR in the A54SX16P must be greater than or equal to VCCI during power-up and power-down sequences and during normal
operation.

3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC +
0.5 V or less than GND – 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.
v3.2 1-7
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SX Family FPGAs
Step 3: Calculate DC Power Dissipation
DC Power Dissipation

PDC = (Istandby) × VCCA + (Istandby) × VCCR + (Istandby) × 
VCCI + X × VOL × IOL + Y(VCCI – VOH) × VOH

EQ 1-12

For a rough estimate of DC Power Dissipation, only use
PDC = (Istandby) × VCCA. The rest of the formula provides a
very small number that can be considered negligible.

PDC = (Istandby) × VCCA

PDC = .55 mA × 3.3 V

PDC  = 0.001815 W

Step 4: Calculate Total Power Consumption
PTotal = PAC + PDC

PTotal = 1.461 + 0.001815

PTotal = 1.4628 W

Step 5: Compare Estimated Power Consumption 
against Characterized Power Consumption
The estimated total power consumption for this design is
1.46 W. The characterized power consumption for this
design at 200 MHz is 1.0164 W.

Step 1: Define Terms Used in Formula  
VCCA 3.3

Module

Number of logic modules switching 
at fm (Used 50%)

m 264

Average logic modules switching rate 
fm (MHz) (Guidelines: f/10)

fm 20

Module capacitance CEQM (pF) CEQM 4.0

Input Buffer

Number of input buffers switching at fn n 1

Average input switching rate fn (MHz)
(Guidelines: f/5)

fn 40

Input buffer capacitance CEQI (pF) CEQI 3.4

Output Buffer

Number of output buffers switching at fp p 1

Average output buffers switching rate 
fp(MHz) (Guidelines: f/10)

fp 20

Output buffers buffer capacitance 
CEQO (pF)

CEQO 4.7

Output Load capacitance CL (pF) CL 35

RCLKA

Number of Clock loads q1 q1 528

Capacitance of routed array clock (pF) CEQCR 1.6

Average clock rate (MHz) fq1 200

Fixed capacitance (pF) r1 138

RCLKB

Number of Clock loads q2 q2 0

Capacitance of routed array clock (pF) CEQCR 1.6

Average clock rate (MHz) fq2 0

Fixed capacitance (pF) r2 138

HCLK

Number of Clock loads s1 0

Variable capacitance of dedicated 
array clock (pF)

CEQHV 0.61
5

Fixed capacitance of dedicated 
array clock (pF)

CEQHF 96

Average clock rate (MHz) fs1 0

Step 2: Calculate Dynamic Power Consumption
VCCA × VCCA 10.89

m × fm × CEQM 0.02112

n × fn × CEQI 0.000136

p × fp × (CEQO+CL) 0.000794

0.5 (q1 × CEQCR × fq1) + (r1 × fq1) 0.11208

0.5(q2 × CEQCR × fq2) + (r2 × fq2) 0

0.5 (s1 × CEQHV × fs1) + (CEQHF × fs1) 0

PAC   = 1.461 W
1-18 v3.2



SX Family FPGAs
SX Timing Model 

Hardwired Clock
External Setup = tINY + tIRD1 + tSUD – tHCKH

= 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns

EQ 1-15

Clock-to-Out (Pin-to-Pin)

= tHCKH + tRCO + tRD1 + tDHL

= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns

EQ 1-16

Routed Clock
External Setup = tINY + tIRD1 + tSUD – tRCKH

= 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns

EQ 1-17

Clock-to-Out (Pin-to-Pin)

= tRCKH + tRCO + tRD1 + tDHL

= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns

EQ 1-18

   

Note: Values shown for A54SX08-3, worst-case commercial conditions.
Figure 1-12 • SX Timing Model

D Q

Routed 
Clock

FMAX = 250 MHz

tRCKH = 1.5 ns (100% Load)

tINY = 1.5 ns

Output DelaysInput Delays

I/O Module Combinatorial Cell

Register Cell

I/O Module

I/O Module

Hardwired 
Clock

D Q

Predicted
Routing
Delays

tIRD2 = 0.6 ns

tPD = 0.6 ns
tRD1 = 0.3 ns
tRD4 = 1.0 ns
tRD8 = 1.9 ns

tDLH = 1.6 ns

tDHL = 1.6 ns

FHMAX = 320 MHz

tHCKH = 1.0 ns

tRCO = 0.8 ns

tRD1 = 0.3 ns
tENZH = 2.3 ns

Internal Delays

tRD1 = 0.3 ns

tSUD = 0.5 ns
tHD = 0.0 ns

Register Cell

tRCO = 0.8 ns
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Figure 1-13 • Output Buffer Delays

Figure 1-14 • AC Test Loads

To AC Test Loads (shown below)PADD

E

TRIBUFF

In 50%

Out

VOL

1.5 V

50%

1.5 V

En 50%

Out
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GND
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Under Test

VCC GND

35 pF
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To Output 
Under Test

Figure 1-15 • Input Buffer Delays

PAD YINBUF
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3 V

0 V1.5 V

Out
GND

VCC

50%

tINY

1.5 V

50%

tINY

Figure 1-16 • C-Cell Delays
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SX Family FPGAs
Register Cell Timing Characteristics 

Timing Characteristics
Timing characteristics for SX devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all SX family members.
Internal routing delays are device-dependent. Design
dependency means actual delays are not determined
until after placement and routing of the user’s design is
complete. Delay values may then be determined by using
the DirectTime Analyzer utility or performing simulation
with post-layout delays.

Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most time-
critical paths. Critical nets are determined by net
property assignment prior to placement and routing. Up
to 6% of the nets in a design may be designated as
critical, while 90% of the nets in a design are typical.

Long Tracks
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows,
columns, or modules. Long tracks employ three and
sometimes five antifuse connections. This increases
capacitance and resistance, resulting in longer net delays
for macros connected to long tracks. Typically up to 6
percent of nets in a fully utilized device require long
tracks. Long tracks contribute approximately 4 ns to 8.4
ns delay. This additional delay is represented statistically
in higher fanout (FO = 24) routing delays in the
datasheet specifications section.

Timing Derating
SX devices are manufactured in a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process variations. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case
processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating
temperature, and worst-case processing.

Figure 1-17 • Flip-Flops
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SX Family FPGAs
A54SX08 Timing Characteristics 

Table 1-17 • A54SX08 Timing Characteristics 
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)

Parameter Description

'–3' Speed '–2' Speed '–1' Speed 'Std' Speed

Min. Max. Min. Max. Min. Max. Min. Max. Units

C-Cell Propagation Delays1

tPD Internal Array Module 0.6 0.7 0.8 0.9 ns

Predicted Routing Delays2

tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns

tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns

tRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns

tRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns

tRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns

tRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns

tRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns

tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns

Input Module Propagation Delays

tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns

tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns

Input Module Predicted Routing Delays2

tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns

tIRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns

tIRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns

tIRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns

tIRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns

tIRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns

Note:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating

device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
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Dedicated (Hardwired) Array Clock Network

tHCKH Input LOW to HIGH (pad to R-Cell input) 1.2 1.4 1.5 1.8 ns

tHCKL Input HIGH to LOW (pad to R-Cell input) 1.2 1.4 1.6 1.9 ns

tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns

tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns

tHCKSW Maximum Skew 0.2 0.2 0.3 0.3 ns

tHP Minimum Period 2.7 3.1 3.6 4.2 ns

fHMAX Maximum Frequency 350 320 280 240 MHz

Routed Array Clock Networks

tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)

1.6 1.8 2.1 2.5 ns

tRCKL Input HIGH to LOW (light load)
(pad to R-Cell input)

1.8 2.0 2.3 2.7 ns

tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)

1.8 2.1 2.5 2.8 ns

tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)

2.0 2.2 2.5 3.0 ns

tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)

1.8 2.1 2.4 2.8 ns

tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)

2.0 2.2 2.5 3.0 ns

tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns

tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns

tRCKSW Maximum Skew (light load) 0.5 0.5 0.5 0.7 ns

tRCKSW Maximum Skew (50% load) 0.5 0.6 0.7 0.8 ns

tRCKSW Maximum Skew (100% load) 0.5 0.6 0.7 0.8 ns

TTL Output Module Timing3

tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns

tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns

tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns

tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns

tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns

tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns

Table 1-18 • A54SX16 Timing Characteristics  (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA ,VCCI = 3.0 V, TJ = 70°C)

Parameter Description

'–3' Speed '–2' Speed '–1' Speed 'Std' Speed

Min. Max. Min. Max. Min. Max. Min. Max. Units

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating

device performance.   Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF.
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Table 1-19 • A54SX16P Timing Characteristics 
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)

Parameter Description

'–3' Speed '–2' Speed '–1' Speed 'Std' Speed

Min. Max. Min. Max. Min. Max. Min. Max. Units

C-Cell Propagation Delays1

tPD Internal Array Module 0.6 0.7 0.8 0.9 ns

Predicted Routing Delays2

tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns

tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns

tRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns

tRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns

tRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns

tRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns

tRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.9 1.1 1.3 1.4 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns

tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns

Input Module Propagation Delays

tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns

tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns

Predicted Input Routing Delays2

tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns

tIRD2 FO = 2 Routing Delay 0.6 0.7 0.8 0.9 ns

tIRD3 FO = 3 Routing Delay 0.8 0.9 1.0 1.2 ns

tIRD4 FO = 4 Routing Delay 1.0 1.2 1.4 1.6 ns

tIRD8 FO = 8 Routing Delay 1.9 2.2 2.5 2.9 ns

tIRD12 FO = 12 Routing Delay 2.8 3.2 3.7 4.3 ns

Note:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating

device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.
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Dedicated (Hardwired) Array Clock Network

tHCKH Input LOW to HIGH (pad to R-Cell input) 1.2 1.4 1.5 1.8 ns

tHCKL Input HIGH to LOW (pad to R-Cell input) 1.2 1.4 1.6 1.9 ns

tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns

tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns

tHCKSW Maximum Skew 0.2 0.2 0.3 0.3 ns

tHP Minimum Period 2.7 3.1 3.6 4.2 ns

fHMAX Maximum Frequency 350 320 280 240 MHz

Routed Array Clock Networks

tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)

1.6 1.8 2.1 2.5 ns

tRCKL Input HIGH to LOW (Light Load)
(pad to R-Cell input)

1.8 2.0 2.3 2.7 ns

tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)

1.8 2.1 2.5 2.8 ns

tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)

2.0 2.2 2.5 3.0 ns

tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)

1.8 2.1 2.4 2.8 ns

tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)

2.0 2.2 2.5 3.0 ns

tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns

tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns

tRCKSW Maximum Skew (light load) 0.5 0.5 0.5 0.7 ns

tRCKSW Maximum Skew (50% load) 0.5 0.6 0.7 0.8 ns

tRCKSW Maximum Skew (100% load) 0.5 0.6 0.7 0.8 ns

TTL Output Module Timing

tDLH Data-to-Pad LOW to HIGH 2.4 2.8 3.1 3.7 ns

tDHL Data-to-Pad HIGH to LOW 2.3 2.9 3.2 3.8 ns

tENZL Enable-to-Pad, Z to L 3.0 3.4 3.9 4.6 ns

tENZH Enable-to-Pad, Z to H 3.3 3.8 4.3 5.0 ns

tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.0 3.5 ns

tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.7 4.3 ns

Table 1-19 • A54SX16P Timing Characteristics  (Continued)
(Worst-Case Commercial Conditions, VCCR = 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)

Parameter Description

'–3' Speed '–2' Speed '–1' Speed 'Std' Speed

Min. Max. Min. Max. Min. Max. Min. Max. Units

Note:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating

device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.
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Table 1-20 • A54SX32 Timing Characteristics 
(Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)

Parameter Description

'–3' Speed '–2' Speed '–1' Speed 'Std' Speed

Min. Max. Min. Max. Min. Max. Min. Max. Units

C-Cell Propagation Delays1

tPD Internal Array Module 0.6 0.7 0.8 0.9 ns

Predicted Routing Delays2

tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns

tRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns

tRD2 FO = 2 Routing Delay 0.7 0.8 0.9 1.0 ns

tRD3 FO = 3 Routing Delay 1.0 1.2 1.4 1.6 ns

tRD4 FO = 4 Routing Delay 1.4 1.6 1.8 2.1 ns

tRD8 FO = 8 Routing Delay 2.7 3.1 3.5 4.1 ns

tRD12 FO = 12 Routing Delay 4.0 4.7 5.3 6.2 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.8 1.1 1.3 1.4 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns

tSUD Flip-Flop Data Input Set-Up 0.5 0.6 0.7 0.8 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns

Input Module Propagation Delays

tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns

tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns

Predicted Input Routing Delays2

tIRD1 FO = 1 Routing Delay 0.3 0.4 0.4 0.5 ns

tIRD2 FO = 2 Routing Delay 0.7 0.8 0.9 1.0 ns

tIRD3 FO = 3 Routing Delay 1.0 1.2 1.4 1.6 ns

tIRD4 FO = 4 Routing Delay 1.4 1.6 1.8 2.1 ns

tIRD8 FO = 8 Routing Delay 2.7 3.1 3.5 4.1 ns

tIRD12 FO = 12 Routing Delay 4.0 4.7 5.3 6.2 ns

Note:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating

device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.
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SX Family FPGAs
Dedicated (Hardwired) Array Clock Network

tHCKH Input LOW to HIGH (pad to R-Cell input) 1.9 2.1 2.4 2.8 ns

tHCKL Input HIGH to LOW (pad to R-Cell input) 1.9 2.1 2.4 2.8 ns

tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns

tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns

tHCKSW Maximum Skew 0.3 0.4 0.4 0.5 ns

tHP Minimum Period 2.7 3.1 3.6 4.2 ns

fHMAX Maximum Frequency 350 320 280 240 MHz

Routed Array Clock Networks

tRCKH Input LOW to HIGH (light load)
(pad to R-Cell input)

2.4 2.7 3.0 3.5 ns

tRCKL Input HIGH to LOW (light load)
(pad to R-Cell input)

2.4 2.7 3.1 3.6 ns

tRCKH Input LOW to HIGH (50% load)
(pad to R-Cell input)

2.7 3.0 3.5 4.1 ns

tRCKL Input HIGH to LOW (50% load)
(pad to R-Cell input)

2.7 3.1 3.6 4.2 ns

tRCKH Input LOW to HIGH (100% load)
(pad to R-Cell input)

2.7 3.1 3.5 4.1 ns

tRCKL Input HIGH to LOW (100% load)
(pad to R-Cell input)

2.8 3.2 3.6 4.3 ns

tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns

tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns

tRCKSW Maximum Skew (light load) 0.85 0.98 1.1 1.3 ns

tRCKSW Maximum Skew (50% load) 1.23 1.4 1.6 1.9 ns

tRCKSW Maximum Skew (100% load) 1.30 1.5 1.7 2.0 ns

TTL Output Module Timing3

tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns

tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns

tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns

tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns

tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns

tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns

Table 1-20 • A54SX32 Timing Characteristics  (Continued)
(Worst-Case Commercial Conditions, VCCR= 4.75 V, VCCA,VCCI = 3.0 V, TJ = 70°C)

Parameter Description

'–3' Speed '–2' Speed '–1' Speed 'Std' Speed

Min. Max. Min. Max. Min. Max. Min. Max. Units

Note:

1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating

device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.
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54SX Family FPGAs
73 NC I/O I/O

74 I/O I/O I/O

75 NC I/O I/O

76 PRB, I/O PRB, I/O PRB, I/O

77 GND GND GND

78 VCCA VCCA VCCA

79 GND GND GND

80 VCCR VCCR VCCR

81 I/O I/O I/O

82 HCLK HCLK HCLK

83 I/O I/O I/O

84 I/O I/O I/O

85 NC I/O I/O

86 I/O I/O I/O

87 I/O I/O I/O

88 NC I/O I/O

89 I/O I/O I/O

90 I/O I/O I/O

91 NC I/O I/O

92 I/O I/O I/O

93 I/O I/O I/O

94 NC I/O I/O

95 I/O I/O I/O

96 I/O I/O I/O

97 NC I/O I/O

98 VCCI VCCI VCCI

99 I/O I/O I/O

100 I/O I/O I/O

101 I/O I/O I/O

102 I/O I/O I/O

103 TDO, I/O TDO, I/O TDO, I/O

104 I/O I/O I/O

105 GND GND GND

106 NC I/O I/O

107 I/O I/O I/O

108 NC I/O I/O

208-Pin PQFP

Pin Number
A54SX08 
Function

A54SX16, 
A54SX16P 
Function

A54SX32 
Function

109 I/O I/O I/O

110 I/O I/O I/O

111 I/O I/O I/O

112 I/O I/O I/O

113 I/O I/O I/O

114 VCCA VCCA VCCA

115 VCCI VCCI VCCI

116 NC I/O I/O

117 I/O I/O I/O

118 I/O I/O I/O

119 NC I/O I/O

120 I/O I/O I/O

121 I/O I/O I/O

122 NC I/O I/O

123 I/O I/O I/O

124 I/O I/O I/O

125 NC I/O I/O

126 I/O I/O I/O

127 I/O I/O I/O

128 I/O I/O I/O

129 GND GND GND

130 VCCA VCCA VCCA

131 GND GND GND

132 VCCR VCCR VCCR

133 I/O I/O I/O

134 I/O I/O I/O

135 NC I/O I/O

136 I/O I/O I/O

137 I/O I/O I/O

138 NC I/O I/O

139 I/O I/O I/O

140 I/O I/O I/O

141 NC I/O I/O

142 I/O I/O I/O

143 NC I/O I/O

144 I/O I/O I/O

208-Pin PQFP

Pin Number
A54SX08 
Function

A54SX16, 
A54SX16P 
Function

A54SX32 
Function

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
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54SX Family FPGAs
145 VCCA VCCA VCCA

146 GND GND GND

147 I/O I/O I/O

148 VCCI VCCI VCCI

149 I/O I/O I/O

150 I/O I/O I/O

151 I/O I/O I/O

152 I/O I/O I/O

153 I/O I/O I/O

154 I/O I/O I/O

155 NC I/O I/O

156 NC I/O I/O

157 GND GND GND

158 I/O I/O I/O

159 I/O I/O I/O

160 I/O I/O I/O

161 I/O I/O I/O

162 I/O I/O I/O

163 I/O I/O I/O

164 VCCI VCCI VCCI

165 I/O I/O I/O

166 I/O I/O I/O

167 NC I/O I/O

168 I/O I/O I/O

169 I/O I/O I/O

170 NC I/O I/O

171 I/O I/O I/O

172 I/O I/O I/O

173 NC I/O I/O

174 I/O I/O I/O

175 I/O I/O I/O

176 NC I/O I/O

177 I/O I/O I/O

178 I/O I/O I/O

179 I/O I/O I/O

180 CLKA CLKA CLKA

208-Pin PQFP

Pin Number
A54SX08 
Function

A54SX16, 
A54SX16P 
Function

A54SX32 
Function

181 CLKB CLKB CLKB

182 VCCR VCCR VCCR

183 GND GND GND

184 VCCA VCCA VCCA

185 GND GND GND

186 PRA, I/O PRA, I/O PRA, I/O

187 I/O I/O I/O

188 I/O I/O I/O

189 NC I/O I/O

190 I/O I/O I/O

191 I/O I/O I/O

192 NC I/O I/O

193 I/O I/O I/O

194 I/O I/O I/O

195 NC I/O I/O

196 I/O I/O I/O

197 I/O I/O I/O

198 NC I/O I/O

199 I/O I/O I/O

200 I/O I/O I/O

201 VCCI VCCI VCCI

202 NC I/O I/O

203 NC I/O I/O

204 I/O I/O I/O

205 NC I/O I/O

206 I/O I/O I/O

207 I/O I/O I/O

208 TCK, I/O TCK, I/O TCK, I/O

208-Pin PQFP

Pin Number
A54SX08 
Function

A54SX16, 
A54SX16P 
Function

A54SX32 
Function

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
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54SX Family FPGAs
H20 I/O

H22 VCCI

H24 I/O

J1 I/O

J3 I/O

J5 I/O

J7 NC

J9 I/O

J11 I/O

J13 CLKA

J15 I/O

J17 I/O

J19 I/O

J21 GND

J23 I/O

J25 I/O

K2 I/O

K4 I/O

K6 I/O

K8 VCCI

K10 I/O

K12 I/O

K14 I/O

K16 I/O

K18 I/O

K20 VCCA

K22 I/O

K24 I/O

L1 I/O

L3 I/O

L5 I/O

L7 I/O

L9 I/O

L11 I/O

L13 GND

L15 I/O

L17 I/O

L19 I/O

L21 I/O

L23 I/O

313-Pin PBGA

Pin 
Number

A54SX32 
Function

L25 I/O

M2 I/O

M4 I/O

M6 I/O

M8 I/O

M10 I/O

M12 GND

M14 GND

M16 VCCI

M18 I/O

M20 I/O

M22 I/O

M24 I/O

N1 I/O

N3 VCCA

N5 VCCR

N7 I/O

N9 VCCI

N11 GND

N13 GND

N15 GND

N17 I/O

N19 I/O

N21 I/O

N23 VCCR

N25 VCCA

P2 I/O

P4 I/O

P6 I/O

P8 I/O

P10 I/O

P12 GND

P14 GND

P16 I/O

P18 I/O

P20 NC

P22 I/O

P24 I/O

R1 I/O

R3 I/O

313-Pin PBGA

Pin 
Number

A54SX32 
Function

R5 I/O

R7 I/O

R9 I/O

R11 I/O

R13 GND

R15 I/O

R17 I/O

R19 I/O

R21 I/O

R23 I/O

R25 I/O

T2 I/O

T4 I/O

T6 I/O

T8 I/O

T10 I/O

T12 I/O

T14 HCLK

T16 I/O

T18 I/O

T20 I/O

T22 I/O

T24 I/O

U1 I/O

U3 I/O

U5 VCCI

U7 I/O

U9 I/O

U11 I/O

U13 I/O

U15 I/O

U17 I/O

U19 I/O

U21 I/O

U23 I/O

U25 I/O

V2 VCCA

V4 I/O

V6 I/O

V8 I/O

313-Pin PBGA

Pin 
Number

A54SX32 
Function

V10 I/O

V12 I/O

V14 I/O

V16 NC

V18 I/O

V20 I/O

V22 VCCA

V24 VCCI

W1 I/O

W3 I/O

W5 I/O

W7 NC

W9 I/O

W11 I/O

W13 VCCI

W15 I/O

W17 I/O

W19 I/O

W21 I/O

W23 I/O

W25 I/O

Y2 I/O

Y4 I/O

Y6 I/O

Y8 I/O

Y10 I/O

Y12 I/O

Y14 I/O

Y16 I/O

Y18 I/O

Y20 NC

Y22 I/O

Y24 NC

313-Pin PBGA

Pin 
Number

A54SX32 
Function
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