

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16-pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

SX Family FPGAs
General Description 1-
SX Family Architecture
Programming
3.3 V / 5 V Operating Conditions 1-
PCI Compliance for the SX Family1-
A54SX16P AC Specifications for (PCI Operation)
A54SX16P DC Specifications (3.3 V PCI Operation)
A54SX16P AC Specifications (3.3 V PCI Operation)
Power-Up Sequencing 1-1
Power-Down Sequencing
Evaluating Power in SX Devices
SX Timing Model 1-2
Timing Characteristics 1-23
Package Pin Assignments
84-Pin PLCC
208-Pin PQFP
144-Pin TQFP
176-Pin TQFP
100-Pin VQFP
313-Pin PBGA
329-Pin PBGA
144-Pin FBGA
Datasheet Information
List of Changes
Datasheet Categories
International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)
NEULIALIUIIS (EAN)

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called *FastConnect* and *DirectConnect*, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

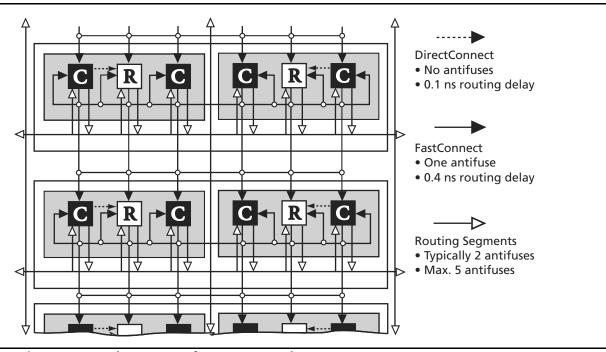


Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

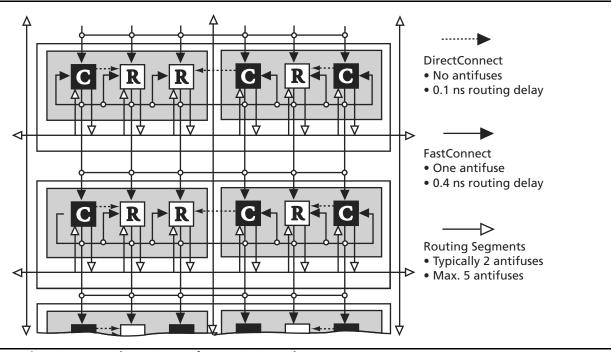


Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

1-4 v3.2

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Table 1-1 • Supply Voltages

Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

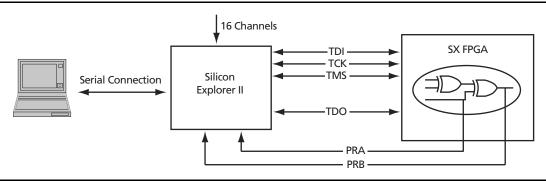


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions

Table 1-3 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V _{CCR} ²	DC Supply Voltage ³	-0.3 to + 6.0	V
V_{CCA}^2	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
V _I	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	−30 to + 5.0	mA
T _{STG}	Storage Temperature	–65 to +150	°C

Notes

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
- 2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.
- 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

Table 1-4 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to + 70	-40 to + 85	-55 to +125	°C
3.3 V Power Supply Tolerance	±10	±10	±10	%V _{CC}
5.0 V Power Supply Tolerance	±5	±10	±10	%V _{CC}

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Table 1-5 • **Electrical Specifications**

		Comm	ercial	Indus	Industrial		
Symbol	Parameter	Min.	Мах.	Min.	Max.	Units	
V _{OH}	(I _{OH} = -20 μA) (CMOS)	(V _{CCI} – 0.1)	V _{CCI}	(V _{CCI} – 0.1)	V _{CCI}	V	
	$(I_{OH} = -8 \text{ mA}) \text{ (TTL)}$	2.4	V_{CCI}				
	$(I_{OH} = -6 \text{ mA}) \text{ (TTL)}$			2.4	V_{CCI}		
V _{OL}	(I _{OL} = 20 μA) (CMOS)		0.10			V	
	$(I_{OL} = 12 \text{ mA}) \text{ (TTL)}$		0.50				
	$(I_{OL} = 8 \text{ mA}) \text{ (TTL)}$				0.50		
V_{IL}			8.0		0.8	V	
V_{IH}		2.0		2.0		V	
t _R , t _F	Input Transition Time t _R , t _F		50		50	ns	
C _{IO}	C _{IO} I/O Capacitance		10		10	pF	
I _{CC}	Standby Current, I _{CC}		4.0		4.0	mA	
$I_{CC(D)}$	I _{CC(D)} I _{Dynamic} V _{CC} Supply Current	See '	'Evaluating F	ower in SX Device	es" on page ´	1-16.	

1-8 v3.2

Table 1-13 shows capacitance values for various devices.

Table 1-13 • Capacitance Values for Devices

	A545X08	A54SX16	A54SX16P	A54SX32
C _{EQM} (pF)	4.0	4.0	4.0	4.0
C _{EQI} (pF)	3.4	3.4	3.4	3.4
C _{EQO} (pF)	4.7	4.7	4.7 4.7	
C _{EQCR} (pF)	1.6	1.6	1.6	1.6
C _{EQHV}	0.615	0.615	0.615	0.615
C _{EQHF}	60	96	96	140
r ₁ (pF)	87	138	138	171
r ₂ (pF)	87	138	138	171

Guidelines for Calculating Power Consumption

The power consumption guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are shown in Table 1-14.

Sample Power Calculation

One of the designs used to characterize the SX family was a 528 bit serial-in, serial-out shift register. The design utilized 100 percent of the dedicated flip-flops of an A54SX16P device. A pattern of 0101... was clocked into the device at frequencies ranging from 1 MHz to 200 MHz. Shifting in a series of 0101... caused 50 percent of the flip-flops to toggle from low to high at every clock cycle.

Table 1-14 • Power Consumption Guidelines

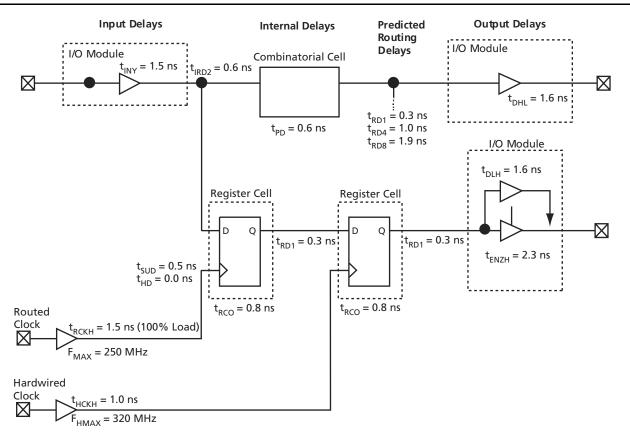
Description	Power Consumption Guideline
Logic Modules (m)	20% of modules
Inputs Switching (n)	# inputs/4
Outputs Switching (p)	# outputs/4
First Routed Array Clock Loads (q ₁)	20% of register cells
Second Routed Array Clock Loads (q ₂)	20% of register cells
Load Capacitance (C _L)	35 pF
Average Logic Module Switching Rate (f _m)	f/10
Average Input Switching Rate (f _n)	f/5
Average Output Switching Rate (f _p)	f/10
Average First Routed Array Clock Rate (f _{q1})	f/2
Average Second Routed Array Clock Rate (f _{q2})	f/2
Average Dedicated Array Clock Rate (f _{s1})	f
Dedicated Clock Array Clock Loads (s ₁)	20% of regular modules

EQ 1-9

Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption.

The total power dissipation for the SX family is the sum of the AC power dissipation and the DC power dissipation.

$$P_{Total} = P_{AC}$$
 (dynamic power) + P_{DC} (static power)


AC Power Dissipation

EQ 1-10

$$\begin{split} P_{AC} &= V_{CCA}^2 \times [(m \times C_{EQM} \times f_m)_{Module} + \\ (n \times C_{EQI} \times f_n)_{Input \ Buffer} + (p \times (C_{EQO} + C_L) \times f_p)_{Output \ Buffer} + \\ (0.5 \ (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1}))_{RCLKA} + \\ (0.5 \ (q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2}))_{RCLKB} + \\ (0.5 \ (s_1 \times C_{EOHV} \times f_{s1}) + (C_{EOHF} \times f_{s1}))_{HCLK}] \end{split}$$

EQ 1-11

SX Timing Model

Note: Values shown for A54SX08-3, worst-case commercial conditions.

Figure 1-12 • SX Timing Model

Hardwired Clock Routed Clock External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns= 1.5 + 0.3 + 0.5 - 1.5 = 0.8 nsEQ 1-15 EQ 1-17 Clock-to-Out (Pin-to-Pin) Clock-to-Out (Pin-to-Pin) $= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns= 1.52 + 0.8 + 0.3 + 1.6 = 4.2 nsEQ 1-16 EQ 1-18

A54SX16 Timing Characteristics

Table 1-18 • A54SX16 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

	(Norse case commercial conditions, t		Speed		Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ıg									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		8.0		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ile Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Notes:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn},\ t_{RCO}+t_{RD1}+t_{PDn},\ or\ t_{PD1}+t_{RD1}+t_{SUD},\ whichever\ is\ appropriate.$
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

1-26 v3.2

Table 1-18 • A54SX16 Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	peed	'-2' 9	Speed	'-1' 9	peed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.2		1.4		1.5		1.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.2		1.4		1.6		1.9	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.2		0.2		0.3		0.3	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.6		1.8		2.1		2.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		1.8		2.0		2.3		2.7	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.8		2.1		2.5		2.8	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.8		2.1		2.4		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.5		0.5		0.5		0.7	ns
t _{RCKSW}	Maximum Skew (50% load)		0.5		0.6		0.7		8.0	ns
t _{RCKSW}	Maximum Skew (100% load)		0.5		0.6		0.7		8.0	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Notes:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

A54SX16P Timing Characteristics

Table 1-19 • A54SX16P Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA},V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' \$	Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.9		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ıle Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

1-28 v3.2

Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA},V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	peed	'-2' \$	Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Network										
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.2		1.4		1.5		1.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.2		1.4		1.6		1.9	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.2		0.2		0.3		0.3	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.6		1.8		2.1		2.5	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (pad to R-Cell input)		1.8		2.0		2.3		2.7	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.8		2.1		2.5		2.8	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.8		2.1		2.4		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.5		0.5		0.5		0.7	ns
t _{RCKSW}	Maximum Skew (50% load)		0.5		0.6		0.7		8.0	ns
t _{RCKSW}	Maximum Skew (100% load)		0.5		0.6		0.7		8.0	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.4		2.8		3.1		3.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.3		2.9		3.2		3.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		3.0		3.4		3.9		4.6	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.3		3.8		4.3		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.0		3.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.7		4.3	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 10 pF loading.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' 9	Speed	'-1' 9	Speed	'Std'	Speed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ıle Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		8.0		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn_r} t_{RCO} + t_{RD1} + t_{PDn_r} or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

208-Pin PQFP				
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	
1	GND	GND	GND	
2	TDI, I/O	TDI, I/O	TDI, I/O	
3	I/O	1/0	I/O	
4	NC	1/0	I/O	
5	I/O	1/0	I/O	
6	NC	1/0	I/O	
7	I/O	1/0	I/O	
8	I/O	1/0	I/O	
9	I/O	1/0	I/O	
10	I/O	1/0	I/O	
11	TMS	TMS	TMS	
12	V _{CCI}	V _{CCI}	V _{CCI}	
13	I/O	1/0	I/O	
14	NC	1/0	I/O	
15	I/O	I/O	I/O	
16	I/O	I/O	I/O	
17	NC	1/0	I/O	
18	I/O	1/0	I/O	
19	I/O	1/0	I/O	
20	NC	1/0	I/O	
21	I/O	I/O	I/O	
22	I/O	I/O	I/O	
23	NC	1/0	I/O	
24	I/O	I/O	I/O	
25	V_{CCR}	V_{CCR}	V_{CCR}	
26	GND	GND	GND	
27	V_{CCA}	V _{CCA}	V_{CCA}	
28	GND	GND	GND	
29	I/O	1/0	I/O	
30	I/O	1/0	I/O	
31	NC	1/0	I/O	
32	I/O	I/O	I/O	
33	I/O	I/O	I/O	
34	I/O	I/O	I/O	
35	NC	I/O	I/O	
36	I/O	I/O	I/O	

208-Pin PQFP				
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	
37	I/O	I/O	I/O	
38	I/O	I/O	I/O	
39	NC	I/O	I/O	
40	V _{CCI}	V _{CCI}	V _{CCI}	
41	V_{CCA}	V_{CCA}	V_{CCA}	
42	I/O	I/O	I/O	
43	I/O	I/O	I/O	
44	I/O	I/O	I/O	
45	I/O	I/O	I/O	
46	I/O	I/O	I/O	
47	I/O	I/O	I/O	
48	NC	I/O	I/O	
49	I/O	I/O	I/O	
50	NC	I/O	I/O	
51	I/O	I/O	I/O	
52	GND	GND	GND	
53	I/O	1/0	I/O	
54	I/O	1/0	I/O	
55	I/O	I/O	I/O	
56	I/O	I/O	I/O	
57	I/O	I/O	I/O	
58	I/O	I/O	I/O	
59	I/O	I/O	I/O	
60	V _{CCI}	V _{CCI}	V _{CCI}	
61	NC	I/O	I/O	
62	I/O	I/O	I/O	
63	I/O	I/O	I/O	
64	NC	I/O	I/O	
65*	I/O	I/O	NC*	
66	I/O	I/O	I/O	
67	NC	I/O	I/O	
68	I/O	I/O	I/O	
69	I/O	I/O	I/O	
70	NC	I/O	I/O	
71	I/O	I/O	I/O	
72	I/O	I/O	I/O	

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).

2-4 v3.2

100-Pin VQFP

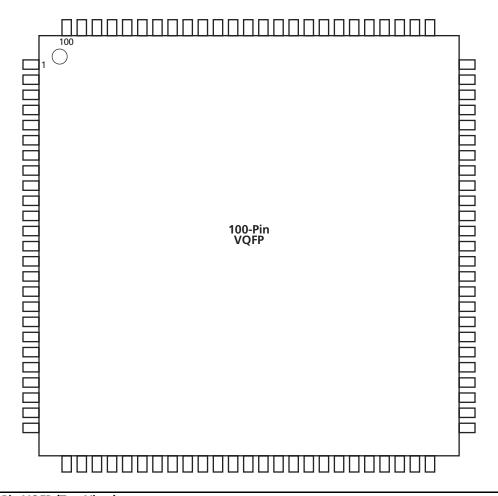


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

100-Pin VQFP					
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function			
1	GND	GND			
2	TDI, I/O	TDI, I/O			
3	1/0	I/O			
4	I/O	I/O			
5	1/0	I/O			
6	I/O	I/O			
7	TMS	TMS			
8	V _{CCI}	V _{CCI}			
9	GND	GND			
10	I/O	I/O			
11	I/O	I/O			
12	I/O	I/O			
13	1/0	I/O			
14	1/0	I/O			
15	I/O	I/O			
16	I/O	I/O			
17	I/O	I/O			
18	I/O	I/O			
19	I/O	I/O			
20	V _{CCI}	V _{CCI}			
21	I/O	I/O			
22	I/O	I/O			
23	I/O	I/O			
24	I/O	I/O			
25	I/O	I/O			
26	I/O	I/O			
27	I/O	I/O			
28	I/O	I/O			
29	I/O	I/O			
30	I/O	I/O			
31	I/O	I/O			
32	I/O	1/0			
33	I/O	1/0			
34	PRB, I/O	PRB, I/O			

100-Pin VQFP				
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function		
35	V_{CCA}	V_{CCA}		
36	GND	GND		
37	V_{CCR}	V_{CCR}		
38	1/0	I/O		
39	HCLK	HCLK		
40	1/0	I/O		
41	1/0	I/O		
42	1/0	I/O		
43	1/0	I/O		
44	V _{CCI}	V _{CCI}		
45	1/0	I/O		
46	1/0	I/O		
47	1/0	I/O		
48	1/0	I/O		
49	TDO, I/O	TDO, I/O		
50	1/0	I/O		
51	GND	GND		
52	1/0	I/O		
53	1/0	I/O		
54	1/0	I/O		
55	1/0	I/O		
56	I/O	I/O		
57	V_{CCA}	V_{CCA}		
58	V _{CCI}	V _{CCI}		
59	1/0	I/O		
60	I/O	I/O		
61	I/O	I/O		
62	I/O	I/O		
63	I/O	I/O		
64	I/O	I/O		
65	I/O	I/O		
66	I/O	I/O		
67	V _{CCA}	V _{CCA}		
68	GND	GND		

100-Pin VQFP				
Pin Number	A545X08 Function	A54SX16, A54SX16P Function		
69	GND	GND		
70	I/O	1/0		
71	I/O	1/0		
72	I/O	1/0		
73	I/O	1/0		
74	I/O	1/0		
75	1/0	1/0		
76	I/O	1/0		
77	I/O	1/0		
78	I/O	I/O		
79	I/O	1/0		
80	I/O	I/O		
81	1/0	1/0		
82	V _{CCI}	V _{CCI}		
83	1/0	I/O		
84	I/O	I/O		
85	I/O	1/0		
86	I/O	1/0		
87	CLKA	CLKA		
88	CLKB	CLKB		
89	V_{CCR}	V_{CCR}		
90	V_{CCA}	V_{CCA}		
91	GND	GND		
92	PRA, I/O	PRA, I/O		
93	I/O	I/O		
94	I/O	1/0		
95	1/0	1/0		
96	1/0	1/0		
97	1/0	1/0		
98	1/0	1/0		
99	1/0	1/0		
100	TCK, I/O	TCK, I/O		

v3.2 2-15

329-Pin PBGA				
Pin	A54SX32			
Number	Function			
D3	I/O			
D4	TCK, I/O			
D5	I/O			
D6	I/O			
D7	I/O			
D8	I/O			
D9	I/O			
D10	I/O			
D11	V _{CCA}			
D12	V_{CCR}			
D13	I/O			
D14	I/O			
D15	I/O			
D16	I/O			
D17	I/O			
D18	I/O			
D19	I/O			
D20	I/O			
D21	I/O			
D22	I/O			
D23	I/O			
E1	V _{CCI}			
E2	I/O			
E3	I/O			
E4	I/O			
E20	I/O			
E21	I/O			
E22	I/O			
E23	I/O			
F1	I/O			
F2	TMS			
F3	I/O			
F4	I/O			
F20	I/O			
F21	I/O			

329-Pin PBGA				
Pin	A54SX32			
Number	Function			
F22	1/0			
F23	1/0			
G1	I/O			
G2	I/O			
G3	I/O			
G4	1/0			
G20	1/0			
G21	1/0			
G22	1/0			
G23	GND			
H1	1/0			
H2	1/0			
Н3	1/0			
H4	1/0			
H20	V _{CCA}			
H21	1/0			
H22	1/0			
H23	1/0			
J1	NC			
J2	I/O			
J3	1/0			
J4	I/O			
J20	1/0			
J21	1/0			
J22	I/O			
J23	1/0			
K1	I/O			
K2	I/O			
K3	1/0			
K4	I/O			
K10	GND			
K11	GND			
K12	GND			
K13	GND			
1/4 4	CNID			

K14

GND

329-Pin PBGA				
Pin	A54SX32			
Number	Function			
K20	1/0			
K21	1/0			
K22	I/O			
K23	I/O			
L1	I/O			
L2	I/O			
L3	I/O			
L4	V_{CCR}			
L10	GND			
L11	GND			
L12	GND			
L13	GND			
L14	GND			
L20	V_{CCR}			
L21	I/O			
L22	I/O			
L23	NC			
M1	I/O			
M2	1/0			
M3	I/O			
M4	V_{CCA}			
M10	GND			
M11	GND			
M12	GND			
M13	GND			
M14	GND			
M20	V_{CCA}			
M21	I/O			
M22	I/O			
M23	V _{CCI}			
N1	I/O			
N2	I/O			
N3	I/O			
N4	I/O			
N10	GND			

329-Pin PBGA				
Pin Number	A54SX32 Function			
N11	GND			
N12	GND			
N13	GND			
N14	GND			
N20	NC			
N21	I/O			
N22	I/O			
N23	I/O			
P1	I/O			
P2	I/O			
Р3	I/O			
P4	I/O			
P10	GND			
P11	GND			
P12	GND			
P13	GND			
P14	GND			
P20	1/0			
P21	1/0			
P22	I/O			
P23	I/O			
R1	I/O			
R2	I/O			
R3	1/0			
R4	I/O			
R20	1/0			
R21	1/0			
R22	I/O			
R23	I/O			
T1	I/O			
T2	I/O			
T3	I/O			
T4	I/O			
T20	I/O			
T21	I/O			

v3.2 2-21

329-Pin PBGA		
Pin Number	A54SX32 Function	
T22	I/O	
T23	I/O	
U1	I/O	
U2	1/0	
U3	V_{CCA}	
U4	1/0	
U20	I/O	
U21	V_{CCA}	
U22	I/O	
U23	I/O	
V1	V _{CCI}	
V2	I/O	
V3	I/O	

329-Pin PBGA		
Pin Number	A54SX32 Function	
V4	I/O	
V20	I/O	
V21	I/O	
V22	I/O	
V23	I/O	
W1	I/O	
W2	I/O	
W3	I/O	
W4	I/O	
W20	I/O	
W21	I/O	
W22	I/O	

329-Pin PBGA	
Pin Number	A54SX32 Function
W23	NC
Y1	NC
Y2	I/O
Y3	1/0
Y4	GND
Y5	I/O
Y6	1/0
Y7	1/0
Y8	1/0
Y9	1/0
Y10	1/0
Y11	I/O

329-Pin PBGA		
Pin Number	A54SX32 Function	
Y12	V_{CCA}	
Y13	V_{CCR}	
Y14	1/0	
Y15	1/0	
Y16	1/0	
Y17	I/O	
Y18	I/O	
Y19	I/O	
Y20	GND	
Y21	I/O	
Y22	I/O	
Y23	I/O	

2-22 v3.2

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v3.2)	Page
v3.1	The "Ordering Information" was updated to include RoHS information.	1-ii
(June 2003)	The Product Plan was removed since all products have been released.	N/A
	Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.	1-6
	The "Dedicated Test Mode" section is new.	1-6
	The "Programming" section is new.	1-7
	A note was added to the "Power-Up Sequencing" table.	1-15
	A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32.	1-15
	U11 and U13 were added to the "313-Pin PBGA" table.	2-17
v3.0.1	Storage temperature in Table 1-3 was updated.	1-7
	Table 1-1 was updated.	1-5

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.