

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2000	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16-pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called *FastConnect* and *DirectConnect*, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • **DirectConnect and FastConnect for Type 2 SuperClusters**

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring Rcell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P* 3.3 V 3.3 V 3.3 V		3.3 V	3.3 V	3.3 V	
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

Table 1-4 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to + 70	-40 to + 85	–55 to +125	°C
3.3 V Power Supply Tolerance	±10	±10	±10	%V _{CC}
5.0 V Power Supply Tolerance	±5	±10	±10	%V _{CC}

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Table 1-5Electrical Specifications

		Comm	ercial	Indus	Industrial		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	
V _{OH}	$(I_{OH} = -20 \ \mu A) \ (CMOS)$	(V _{CCI} – 0.1)	V _{CCI}	(V _{CCI} -0.1)	V _{CCI}	V	
	$(I_{OH} = -8 \text{ mA}) \text{ (TTL)}$	2.4	V _{CCI}				
	$(I_{OH} = -6 \text{ mA}) \text{ (TTL)}$			2.4	V _{CCI}		
V _{OL}	(I _{OL} = 20 μA) (CMOS)		0.10			V	
	$(I_{OL} = 12 \text{ mA}) \text{ (TTL)}$		0.50				
	$(I_{OL} = 8 \text{ mA}) \text{ (TTL)}$				0.50		
V _{IL}			0.8		0.8	V	
V_{IH}		2.0		2.0		V	
t _R , t _F	Input Transition Time t _R , t _F		50		50	ns	
C _{IO}	C _{IO} I/O Capacitance		10		10	pF	
I _{CC}	Standby Current, I _{CC}		4.0		4.0	mA	
I _{CC(D)}	I _{CC(D)} I _{Dynamic} V _{CC} Supply Current	See '	'Evaluating F	ower in SX Device	es" on page 1	-16.	

A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^1$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^{3}$		-142	mA
I _{OL(AC)}	Switching Current High	$V_{OUT} \ge 2.2^{1}$	95		mA
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^{3}$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \leq -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Table 1-7 A54SX16P AC Specifications for (PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

A54SX16P AC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CC}^{1}$			mA
1		$0.3V_{CC} \le V_{OUT} < 0.9V_{CC}^{-1}$	-12V _{CC}		mA
'OH(AC)		$0.7V_{CC} < V_{OUT} < V_{CC}^{1, 2}$	–17.1 + (V _{CC} – V _{OUT})	EQ 1-3 on page 1-14	
	(Test Point)	$V_{OUT} = 0.7 V_{CC}^2$		-32V _{CC}	mA
I _{OL(AC)}	Switching Current High	$V_{CC} > V_{OUT} \ge 0.6 V_{CC}^{1}$			mA
		$0.6V_{CC} > V_{OUT} > 0.1V_{CC}^{-1}$	16V _{CC}		mA
		$0.18V_{CC} > V_{OUT} > 0^{1, 2}$	26.7V _{OUT}	EQ 1-4 on page 1-14	mA
	(Test Point)	$V_{OUT} = 0.18 V_{CC}^2$		38V _{CC}	
I _{CL}	Low Clamp Current	$-3 < V_{IN} \leq -1$	-25 + (V _{IN} + 1)/0.015		mA
I _{CH}	High Clamp Current	$-3 < V_{IN} \leq -1$	25 + (V _{IN} – V _{OUT} – 1)/0.015		mA
slew _R	Output Rise Slew Rate ³	$0.2V_{CC}$ to $0.6V_{CC}$ load	1	4	V/ns
slew _F	Output Fall Slew Rate ³	$0.6V_{CC}$ to $0.2V_{CC}$ load	1	4	V/ns

Table 1-9 • A54SX16P AC Specifications (3.3 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. "Switching Current High" specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.

2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Table 1-15 • Package Thermal Characteristics

Package Type	Pin Count	θ _{jc}	θ _{ja} Still Air	θ _{ja} 300 ft/min.	Units
Plastic Leaded Chip Carrier (PLCC)	84	12	32	22	°C/W
Thin Quad Flat Pack (TQFP)	144	11	32	24	°C/W
Thin Quad Flat Pack (TQFP)	176	11	28	21	°C/W
Very Thin Quad Flatpack (VQFP)	100	10	38	32	°C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader	208	8	30	23	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader	208	3.8	20	17	°C/W
Plastic Ball Grid Array (PBGA)	272	3	20	14.5	°C/W
Plastic Ball Grid Array (PBGA)	313	3	23	17	°C/W
Plastic Ball Grid Array (PBGA)	329	3	18	13.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	38.8	26.7	°C/W

Note: SX08 does not have a heat spreader.

Table 1-16 • Temperature and Voltage Derating Factors*

	Junction Temperature										
V _{CCA}	-55	-40	0	25	70	85	125				
3.0	0.75	0.78	0.87	0.89	1.00	1.04	1.16				
3.3	0.70	0.73	0.82	0.83	0.93	0.97	1.08				
3.6	0.66	0.69	0.77	0.78	0.87	0.92	1.02				

Note: *Normalized to worst-case commercial, $T_J = 70^{\circ}$ C, $V_{CCA} = 3.0 V$

SX Timing Model

Figure 1-12 • SX Timing Model

Hardwired Clock

External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns

Clock-to-Out (Pin-to-Pin)

$$= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$$

= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 r

EQ 1-16

Routed Clock

	External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ = 1.5 + 0.3 + 0.5 - 1.5 = 0.8 ns	
EQ 1-15		EQ 1-17
	Clock-to-Out (Pin-to-Pin)	
	$= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$	
	= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns	
FO 1-16		FO 1-18

A54SX08 Timing Characteristics

Table 1-17 • A54SX08 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	Speed	'-2' 9	Speed	'-1' 9	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Input Modu	le Predicted Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn'}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD'}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A54SX16 Timing Characteristics

Table 1-18 • A54SX16 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	Speed	'-2' 9	Speed	'-1' S	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timin	ig									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted Ir	put Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn'}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD'}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

A54SX16P Timing Characteristics

Table 1-19 • A54SX16P Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

	'–3' Speed '–2' Speed '–1' Spee		Speed	ed 'Std' Speed						
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays ¹										
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted Routing Delays ²										
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timing										
t _{RCO}	Sequential Clock-to-Q		0.9		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	put Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA} , V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' Speed '-		'-1' \$	'–1' Speed		'Std' Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays ¹										
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted Routing Delays ²										
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8	1.8	2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timing										
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	put Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Table 1-20 • A54SX32 Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'–3' Speed '–2' Speed '–1' Sp		'Speed 'Std' !		Speed				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.3		0.4		0.4		0.5	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		2.4		2.7		3.0		3.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		2.4		2.7		3.1		3.6	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		2.7		3.0		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.7		3.1		3.6		4.2	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		2.7		3.1		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.8		3.2		3.6		4.3	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.85		0.98		1.1		1.3	ns
t _{RCKSW}	Maximum Skew (50% load)		1.23		1.4		1.6		1.9	ns
t _{RCKSW}	Maximum Skew (100% load)		1.30		1.5		1.7		2.0	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Package Pin Assignments

84-Pin PLCC

Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

84-Pir	PLCC
Pin Number	A54SX08 Function
1	V _{CCR}
2	GND
3	V _{CCA}
4	PRA, I/O
5	I/O
6	I/O
7	V _{CCI}
8	I/O
9	I/O
10	I/O
11	TCK, I/O
12	TDI, I/O
13	I/O
14	I/O
15	I/O
16	TMS
17	I/O
18	I/O
19	I/O
20	I/O
21	I/O
22	I/O
23	I/O
24	I/O
25	I/O
26	I/O
27	GND
28	V _{CCI}
29	I/O
30	I/O
31	I/O
32	I/O
33	I/O
34	I/O
35	I/O

A54SX08 Pin Number Function 36 I/O 37 I/O 38 I/O 39 I/O 40 PRB, I/O 41 V _{CCA} 42 GND	
36 I/O 37 I/O 38 I/O 39 I/O 40 PRB, I/O 41 V _{CCA} 42 GND	
37 I/O 38 I/O 39 I/O 40 PRB, I/O 41 V _{CCA} 42 GND	
38 I/O 39 I/O 40 PRB, I/O 41 V _{CCA} 42 GND	
39 I/O 40 PRB, I/O 41 V _{CCA} 42 GND	
40 PRB, I/O 41 V _{CCA} 42 GND	
41 V _{CCA} 42 GND	
42 GND	
43 V _{CCR}	
44 I/O	
45 HCLK	
46 I/O	
47 I/O	
48 I/O	
49 I/O	
50 I/O	
51 I/O	
52 TDO, 1/0	
53 I/O	
54 I/O	
55 I/O	
56 I/O	
57 I/O	
58 I/O	
59 V _{CCA}	
60 V _{CCI}	
61 GND	
62 I/O	
63 I/O	
64 I/O	
65 I/O	
66 I/O	
67 I/O	
68 V _{CCA}	
69 GND	
70 I/O	

84-Pii	n PLCC
Pin Number	A54SX08 Function
71	I/O
72	I/O
73	I/O
74	I/O
75	I/O
76	I/O
77	I/O
78	I/O
79	I/O
80	I/O
81	I/O
82	I/O
83	CLKA
84	CLKB

208-Pin PQFP

Figure 2-2 • 208-Pin PQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

	208-Pi	n PQFP		208-Pin PQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
1	GND	GND	GND	37	I/O	I/O	I/O
2	TDI, I/O	TDI, I/O	TDI, I/O	38	I/O	I/O	I/O
3	I/O	I/O	I/O	39	NC	I/O	I/O
4	NC	I/O	I/O	40	V _{CCI}	V _{CCI}	V _{CCI}
5	I/O	I/O	I/O	41	V _{CCA}	V _{CCA}	V _{CCA}
6	NC	I/O	I/O	42	I/O	I/O	I/O
7	I/O	I/O	I/O	43	I/O	I/O	I/O
8	I/O	I/O	I/O	44	I/O	I/O	I/O
9	I/O	I/O	I/O	45	I/O	I/O	I/O
10	I/O	I/O	I/O	46	I/O	I/O	I/O
11	TMS	TMS	TMS	47	I/O	I/O	I/O
12	V _{CCI}	V _{CCI}	V _{CCI}	48	NC	I/O	I/O
13	I/O	I/O	I/O	49	I/O	I/O	I/O
14	NC	I/O	I/O	50	NC	I/O	I/O
15	I/O	I/O	I/O	51	I/O	I/O	I/O
16	I/O	I/O	I/O	52	GND	GND	GND
17	NC	I/O	I/O	53	I/O	I/O	I/O
18	I/O	I/O	I/O	54	I/O	I/O	I/O
19	I/O	I/O	I/O	55	I/O	I/O	I/O
20	NC	I/O	I/O	56	I/O	I/O	I/O
21	I/O	I/O	I/O	57	I/O	I/O	I/O
22	I/O	I/O	I/O	58	I/O	I/O	I/O
23	NC	I/O	I/O	59	I/O	I/O	I/O
24	I/O	I/O	I/O	60	V _{CCI}	V _{CCI}	V _{CCI}
25	V _{CCR}	V _{CCR}	V _{CCR}	61	NC	I/O	I/O
26	GND	GND	GND	62	I/O	I/O	I/O
27	V _{CCA}	V _{CCA}	V _{CCA}	63	I/O	I/O	I/O
28	GND	GND	GND	64	NC	I/O	I/O
29	I/O	I/O	I/O	65*	I/O	I/O	NC*
30	I/O	I/O	I/O	66	I/O	I/O	I/O
31	NC	I/O	I/O	67	NC	I/O	I/O
32	I/O	I/O	I/O	68	I/O	I/O	I/O
33	I/O	I/O	I/O	69	I/O	I/O	I/O
34	I/O	I/O	I/O	70	NC	I/O	I/O
35	NC	I/O	I/O	71	I/O	I/O	I/O
36	I/O	I/O	I/O	72	I/O	I/O	I/O

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).

	144-Pi	n TQFP		144-Pin TQFP				
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	
1	GND	GND	GND	37	I/O	I/O	I/O	
2	TDI, I/O	TDI, I/O	TDI, I/O	38	I/O	I/O	I/O	
3	I/O	I/O	I/O	39	I/O	I/O	I/O	
4	I/O	I/O	I/O	40	I/O	I/O	I/O	
5	I/O	I/O	I/O	41	I/O	I/O	I/O	
6	I/O	I/O	I/O	42	I/O	I/O	I/O	
7	I/O	I/O	I/O	43	I/O	I/O	I/O	
8	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}	
9	TMS	TMS	TMS	45	I/O	I/O	I/O	
10	V _{CCI}	V _{CCI}	V _{CCI}	46	I/O	I/O	I/O	
11	GND	GND	GND	47	I/O	I/O	I/O	
12	I/O	I/O	I/O	48	I/O	I/O	I/O	
13	I/O	I/O	I/O	49	I/O	I/O	I/O	
14	I/O	I/O	I/O	50	I/O	I/O	I/O	
15	I/O	I/O	I/O	51	I/O	I/O	I/O	
16	I/O	I/O	I/O	52	I/O	I/O	I/O	
17	I/O	I/O	I/O	53	I/O	I/O	I/O	
18	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O	
19	V _{CCR}	V _{CCR}	V _{CCR}	55	I/O	I/O	I/O	
20	V _{CCA}	V _{CCA}	V _{CCA}	56	V _{CCA}	V _{CCA}	V _{CCA}	
21	I/O	I/O	I/O	57	GND	GND	GND	
22	I/O	I/O	I/O	58	V _{CCR}	V _{CCR}	V _{CCR}	
23	I/O	I/O	I/O	59	I/O	I/O	I/O	
24	I/O	I/O	I/O	60	HCLK	HCLK	HCLK	
25	I/O	I/O	I/O	61	I/O	I/O	I/O	
26	I/O	I/O	I/O	62	I/O	I/O	I/O	
27	I/O	I/O	I/O	63	I/O	I/O	I/O	
28	GND	GND	GND	64	I/O	I/O	I/O	
29	V _{CCI}	V _{CCI}	V _{CCI}	65	I/O	I/O	I/O	
30	V _{CCA}	V _{CCA}	V _{CCA}	66	I/O	I/O	I/O	
31	I/O	I/O	I/O	67	I/O	I/O	I/O	
32	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}	
33	I/O	I/O	I/O	69	I/O	I/O	I/O	
34	I/O	I/O	I/O	70	I/O	I/O	I/O	
35	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O	
36	GND	GND	GND	72	I/O	I/O	I/O	

	176-Pi	n TQFP		176-Pin TQFP				
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	
69	HCLK	HCLK	HCLK	103	I/O	I/O	I/O	
70	I/O	I/O	I/O	104	I/O	I/O	I/O	
71	I/O	I/O	I/O	105	I/O	I/O	I/O	
72	I/O	I/O	I/O	106	I/O	I/O	I/O	
73	I/O	I/O	I/O	107	I/O	I/O	I/O	
74	I/O	I/O	I/O	108	GND	GND	GND	
75	I/O	I/O	I/O	109	V _{CCA}	V _{CCA}	V _{CCA}	
76	I/O	I/O	I/O	110	GND	GND	GND	
77	I/O	I/O	I/O	111	I/O	I/O	I/O	
78	I/O	I/O	I/O	112	I/O	I/O	I/O	
79	NC	I/O	I/O	113	I/O	I/O	I/O	
80	I/O	I/O	I/O	114	I/O	I/O	I/O	
81	NC	I/O	I/O	115	I/O	I/O	I/O	
82	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O	
83	I/O	I/O	I/O	117	I/O	I/O	I/O	
84	I/O	I/O	I/O	118	NC	I/O	I/O	
85	I/O	I/O	I/O	119	I/O	I/O	I/O	
86	I/O	I/O	I/O	120	NC	I/O	I/O	
87	TDO, I/O	TDO, I/O	TDO, I/O	121	NC	I/O	I/O	
88	I/O	I/O	I/O	122	V_{CCA}	V _{CCA}	V _{CCA}	
89	GND	GND	GND	123	GND	GND	GND	
90	NC	I/O	I/O	124	V _{CCI}	V _{CCI}	V _{CCI}	
91	NC	I/O	I/O	125	I/O	I/O	I/O	
92	I/O	I/O	I/O	126	I/O	I/O	I/O	
93	I/O	I/O	I/O	127	I/O	I/O	I/O	
94	I/O	I/O	I/O	128	I/O	I/O	I/O	
95	I/O	I/O	I/O	129	I/O	I/O	I/O	
96	I/O	I/O	I/O	130	I/O	I/O	I/O	
97	I/O	I/O	I/O	131	NC	I/O	I/O	
98	V _{CCA}	V _{CCA}	V _{CCA}	132	NC	I/O	I/O	
99	V _{CCI}	V _{CCI}	V _{CCI}	133	GND	GND	GND	
100	I/O	I/O	I/O	134	I/O	I/O	I/O	
101	I/O	I/O	I/O	135	1/0	I/O	I/O	
102	I/O	I/O	I/O	136	I/O	I/O	I/O	

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

Actel Europe Ltd.

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600 Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom **Phone** +44 (0) 1276 401 450 **Fax** +44 (0) 1276 401 490 Actel Japan www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668

Actel Hong Kong

www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488