

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx16p-1pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Table 1-1 • Supply Voltages

Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

Boundary Scan Testing (BST)

All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 1-2. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of $10~\mathrm{k}\Omega$. TMS can be pulled LOW to initiate the test sequence.

The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode.

Table 1-2 ● **Boundary Scan Pin Functionality**

Program Fuse Blown (Dedicated Test Mode)	Program Fuse Not Blown (Flexible Mode)				
TCK, TDI, TDO are dedicated BST pins.	TCK, TDI, TDO are flexible and may be used as I/Os.				
No need for pull-up resistor for TMS	Use a pull-up resistor of 10 k Ω on TMS.				

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-7). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8 for detailed specifications.

Figure 1-7 • Device Selection Wizard

Development Tool Support

The SX family of FPGAs is fully supported by both the Actel Libero® Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow diagram (located on the Actel website) for more information.

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators, and the simulation results can be cross-probed with Silicon Explorer II, Actel integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys[®], and Cadence® Design Systems. The Designer software is available for both the Windows® and UNIX® operating systems.

Probe Circuit Control Pins

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-8 on page 1-7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry.

1-6 v3.2

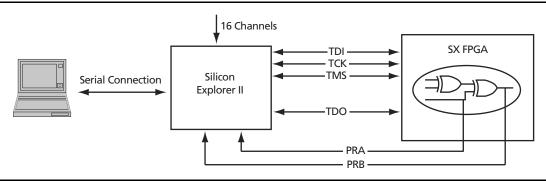


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions

Table 1-3 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V _{CCR} ²	DC Supply Voltage ³	-0.3 to + 6.0	V
V_{CCA}^2	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
V _I	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	−30 to + 5.0	mA
T _{STG}	Storage Temperature	–65 to +150	°C

Notes

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
- 2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.
- 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

PCI Compliance for the SX Family

The SX family supports 3.3 V and 5.0 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

Table 1-6 • A54SX16P DC Specifications (5.0 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V_{CCA}	Supply Voltage for Array		3.0	3.6	V
V_{CCR}	Supply Voltage required for Internal Biasing		4.75	5.25	V
V_{CCI}	Supply Voltage for I/Os		4.75	5.25	V
V _{IH}	Input High Voltage ¹		2.0	$V_{CC} + 0.5$	V
V _{IL}	Input Low Voltage ¹		-0.5	0.8	V
I _{IH}	Input High Leakage Current	V _{IN} = 2.7		70	μΑ
I _{IL}	Input Low Leakage Current	V _{IN} = 0.5		-70	μΑ
V _{OH}	Output High Voltage	$I_{OUT} = -2 \text{ mA}$	2.4		V
V _{OL}	Output Low Voltage ²	I _{OUT} = 3 mA, 6 mA		0.55	V
C _{IN}	Input Pin Capacitance ³			10	рF
C _{CLK}	CLK Pin Capacitance		5	12	рF
C _{IDSEL}	IDSEL Pin Capacitance ⁴			8	pF

Notes:

- 1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter include, FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
- 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

EQ 1-2

Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

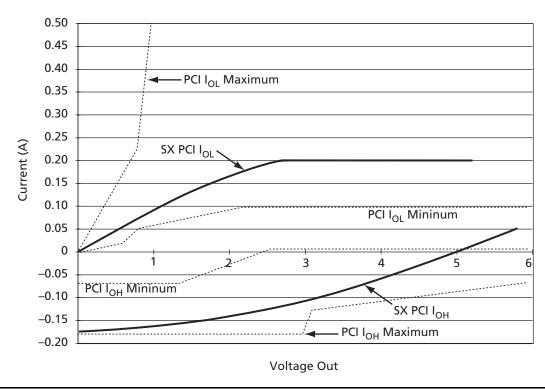


Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device

$$I_{OH} = 11.9 \times (V_{OUT} - 5.25) \times (V_{OUT} + 2.45)$$

$$I_{OL} = 78.5 \times V_{OUT} \times (4.4 - V_{OUT})$$
for $V_{CC} > V_{OUT} > 3.1 \text{ V}$

$$EQ 1-1$$

A54SX16P AC Specifications (3.3 V PCI Operation)

Table 1-9 • A54SX16P AC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CC}^{1}$			mA
		$0.3V_{CC} \le V_{OUT} < 0.9V_{CC}^{1}$	–12V _{CC}		mA
I _{OH(AC)}		$0.7V_{CC} < V_{OUT} < V_{CC}^{1, 2}$	-17.1 + (V _{CC} - V _{OUT})	EQ 1-3 on page 1-14	
	(Test Point)	$V_{OUT} = 0.7V_{CC}^2$		-32V _{CC}	mA
	Switching Current High	$V_{CC} > V_{OUT} \ge 0.6 V_{CC}^{1}$			mA
1		$0.6V_{CC} > V_{OUT} > 0.1V_{CC}^{1}$	16V _{CC}		mA
I _{OL(AC)}		$0.18V_{CC} > V_{OUT} > 0^{1, 2}$	26.7V _{OUT}	EQ 1-4 on page 1-14	mA
	(Test Point)	$V_{OUT} = 0.18V_{CC}^2$		38V _{CC}	
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015		mA
I _{CH}	High Clamp Current	$-3 < V_{IN} \le -1$	25 + (V _{IN} – V _{OUT} – 1)/0.015		mA
slew _R	Output Rise Slew Rate ³	0.2V _{CC} to 0.6V _{CC} load	1	4	V/ns
slew _F	Output Fall Slew Rate ³	0.6V _{CC} to 0.2V _{CC} load	1	4	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. "Switching Current High" specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.
- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

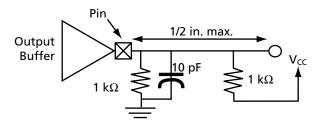


Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

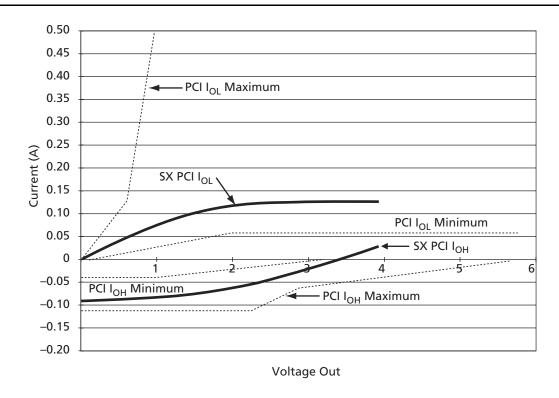


Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device

$$I_{OH} = (98.0 \text{ V_{CC}}) \times (V_{OUT} - V_{CC}) \times (V_{OUT} + 0.4 \text{ V_{CC}})$$

$$I_{OL} = (256 \text{ V_{CC}}) \times V_{OUT} \times (V_{CC} - V_{OUT})$$

$$\text{for } 0 \text{ V_{CC}} \times V_{OUT} \times (0.18 \text{ V_{CC}})$$

$$EQ 1-3$$

$$EQ 1-4$$

1-14 v3.2

Power-Up Sequencing

Table 1-10 • Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A545	SX16, A54SX32			
3.3 V	3.3 V 5.0 V 3.3 V		5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11 • Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A54S	X16, A54SX32			_
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			•	_
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Evaluating Power in SX Devices

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

You should complete a power evaluation early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- Estimate the power consumption of the application.
- Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Consumption

The total power dissipation for the SX family is the sum of the DC power dissipation and the AC power dissipation. Use EQ 1-5 to calculate the estimated power consumption of your application.

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 1-5

n

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. The Standby power is shown in Table 1-12 for commercial, worst-case conditions (70°C).

Table 1-12 • Standby Power

I _{CC}	V _{CC}	Power
4 mA	3.6 V	14.4 mW

The DC power dissipation is defined in EQ 1-6.

$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + \\ (I_{standby}) \times V_{CCI} + xV_{OL} \times I_{OL} + y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

EQ 1-6

AC Power Dissipation

The power dissipation of the SX Family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined in EQ 1-7 and EQ 1-8.

EQ 1-7

$$\begin{split} P_{AC} &= V_{CCA}^2 \times [(m \times C_{EQM} \times f_m)_{Module} + \\ (n \times C_{EQI} \times f_n)_{Input \ Buffer} + (p \times (C_{EQO} + C_L) \times f_p)_{Output \ Buffer} + \\ (0.5 \times (q_1 \times C_{EQCR} \times f_{q_1}) + (r_1 \times f_{q_1}))_{RCLKA} + \\ (0.5 \times (q_2 \times CEQCR \times f_{q_2}) + (r_2 \times f_{q_2}))_{RCLKB} + \\ (0.5 \times (s_1 \times C_{EOHV} \times f_{s_1}) + (C_{EOHF} \times f_{s_1}))_{HCLK}] \end{split}$$

EQ 1-8

Definition of Terms Used in Formula

 $m = Number of logic modules switching at <math>f_m$

Number of input buffers switching at f_n

p = Number of output buffers switching at f_p

q₁ = Number of clock loads on the first routed array clock

q₂ = Number of clock loads on the second routed array clock

x = Number of I/Os at logic low

y = Number of I/Os at logic high

r₁ = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

s₁ = Number of clock loads on the dedicated array

C_{EOM} = Equivalent capacitance of logic modules in pF

C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EOO} = Equivalent capacitance of output buffers in pF

 C_{EQCR} = Equivalent capacitance of routed array clock in pF

C_{EQHV} = Variable capacitance of dedicated array clock

C_{EOHF} = Fixed capacitance of dedicated array clock

C_I = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_p = Average output buffer switching rate in MHz

 f_{q1} = Average first routed array clock rate in MHz

f_{q2} = Average second routed array clock rate in MHz

f_{s1} = Average dedicated array clock rate in MHz

1-16 v3.2

Table 1-15 ● Package Thermal Characteristics

Package Type	Pin Count	$\theta_{ extsf{jc}}$	θ _{ja} Still Air	$_{ m j_a}^{ heta_{ m ja}}$ 300 ft/min.	Units
Plastic Leaded Chip Carrier (PLCC)	84	12	32	22	°C/W
Thin Quad Flat Pack (TQFP)	144	11	32	24	°C/W
Thin Quad Flat Pack (TQFP)	176	11	28	21	°C/W
Very Thin Quad Flatpack (VQFP)	100	10	38	32	°C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader	208	8	30	23	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader	208	3.8	20	17	°C/W
Plastic Ball Grid Array (PBGA)	272	3	20	14.5	°C/W
Plastic Ball Grid Array (PBGA)	313	3	23	17	°C/W
Plastic Ball Grid Array (PBGA)	329	3	18	13.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	38.8	26.7	°C/W

Note: SX08 does not have a heat spreader.

Table 1-16 • Temperature and Voltage Derating Factors*

	Junction Temperature									
V _{CCA}	-55	-40	0	25	70	85	125			
3.0	0.75	0.78	0.87	0.89	1.00	1.04	1.16			
3.3	0.70	0.73	0.82	0.83 0.93 0.97		0.97	1.08			
3.6	0.66	0.69	0.77	0.77 0.78 0.87 0.		0.92	1.02			

Note: *Normalized to worst-case commercial, $T_J = 70$ °C, $V_{CCA} = 3.0 \text{ V}$

1-20 v3.2

Register Cell Timing Characteristics

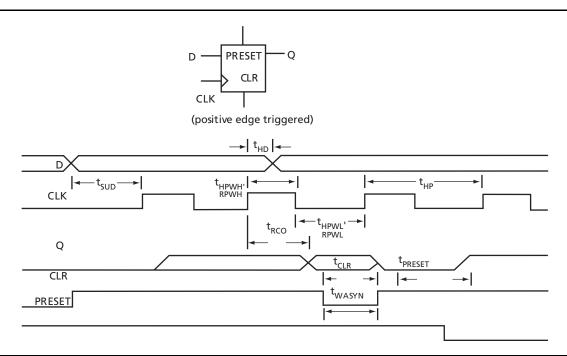


Figure 1-17 • Flip-Flops

Timing Characteristics

Timing characteristics for SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO = 24) routing delays in the datasheet specifications section.

Timing Derating

SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Table 1-19 • A54SX16P Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' S	peed	'-2' 9	peed	'-1' \$	peed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL/PCI Output Module Timing										
t _{DLH}	Data-to-Pad LOW to HIGH		1.5		1.7		2.0		2.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.9		2.2		2.4		2.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.3		2.6		3.0		3.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.5		1.7		1.9		2.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.7		3.1		3.5		4.1	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns
PCI Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.8		2.0		2.3		2.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.7		2.0		2.2		2.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		8.0		1.0		1.1		1.3	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.2		1.2		1.5		1.8	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.0		1.1		1.3		1.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.1		1.3		1.5		1.7	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.1		2.5		2.8		3.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.0		2.3		2.6		3.1	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.5		2.9		3.2		3.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.0		3.5		3.9		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.1		3.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns

Note:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

1-30 v3.2

Pin Description

CLKA/B Clock A and B

These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A54SX72A, these clocks can be configured as bidirectional.)

GND Ground

LOW supply voltage.

HCLK Dedicated (hardwired) Array Clock

This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

NC No Connection

This pin is not connected to circuitry within the device.

PRA, I/O Probe A

The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

PRB. I/O Probe B

The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-2 on page 1-6). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 1-1 on page 1-5.

V_{CCA} Supply Voltage

Supply voltage for Array. See Table 1-1 on page 1-5.

V_{CCR} Supply Voltage

Supply voltage for input tolerance (required for internal biasing). See Table 1-1 on page 1-5.

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
1	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O
3	NC	1/0	I/O
4	I/O	1/0	I/O
5	I/O	1/0	I/O
6	I/O	1/0	I/O
7	I/O	1/0	I/O
8	I/O	1/0	I/O
9	I/O	I/O	I/O
10	TMS	TMS	TMS
11	V _{CCI}	V _{CCI}	V _{CCI}
12	NC	I/O	I/O
13	I/O	I/O	I/O
14	I/O	1/0	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	I/O	I/O	I/O
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	1/0	I/O
21	GND	GND	GND
22	V _{CCA}	V _{CCA}	V _{CCA}
23	GND	GND	GND
24	I/O	I/O	I/O
25	I/O	I/O	I/O
26	I/O	I/O	I/O
27	I/O	I/O	I/O
28	I/O	I/O	I/O
29	I/O	I/O	I/O
30	I/O	I/O	I/O
31	I/O	I/O	I/O
32	V _{CCI}	V _{CCI}	V _{CCI}
33	V _{CCA}	V _{CCA}	V _{CCA}
34	I/O	1/0	1/0

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
35	I/O	1/0	I/O
36	I/O	I/O	1/0
37	I/O	1/0	I/O
38	I/O	I/O	1/0
39	I/O	I/O	1/0
40	NC	I/O	1/0
41	I/O	I/O	1/0
42	NC	I/O	I/O
43	I/O	I/O	1/0
44	GND	GND	GND
45	I/O	I/O	1/0
46	I/O	I/O	1/0
47	I/O	I/O	1/0
48	I/O	I/O	I/O
49	I/O	I/O	I/O
50	I/O	I/O	1/0
51	I/O	1/0	1/0
52	V _{CCI}	V _{CCI}	V _{CCI}
53	I/O	1/0	1/0
54	NC	1/0	1/0
55	I/O	1/0	1/0
56	I/O	1/0	1/0
57	NC	1/0	1/0
58	I/O	1/0	1/0
59	I/O	1/0	1/0
60	I/O	1/0	1/0
61	1/0	1/0	1/0
62	1/0	1/0	I/O
63	1/0	I/O	1/0
64	PRB, I/O	PRB, I/O	PRB, I/O
65	GND	GND	GND
66	V _{CCA}	V _{CCA}	V _{CCA}
67	V_{CCR}	V_{CCR}	V_{CCR}
68	I/O	1/0	I/O

v3.2 2-11

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
137	I/O	I/O	I/O
138	I/O	I/O	I/O
139	I/O	I/O	I/O
140	V _{CCI}	V _{CCI}	V _{CCI}
141	I/O	I/O	1/0
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	I/O	I/O	I/O
146	I/O	I/O	1/0
147	I/O	I/O	I/O
148	I/O	I/O	I/O
149	I/O	I/O	I/O
150	I/O	I/O	I/O
151	I/O	I/O	I/O
152	CLKA	CLKA	CLKA
153	CLKB	CLKB	CLKB
154	V_{CCR}	V_{CCR}	V_{CCR}
155	GND	GND	GND
156	V_{CCA}	V_{CCA}	V_{CCA}

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
157	PRA, I/O	PRA, I/O	PRA, I/O
158	I/O	I/O	1/0
159	I/O	I/O	1/0
160	I/O	I/O	1/0
161	I/O	I/O	1/0
162	I/O	I/O	1/0
163	I/O	I/O	1/0
164	I/O	I/O	1/0
165	I/O	I/O	1/0
166	I/O	I/O	1/0
167	I/O	I/O	1/0
168	NC	I/O	1/0
169	V _{CCI}	V _{CCI}	V _{CCI}
170	I/O	I/O	1/0
171	NC	I/O	1/0
172	NC	I/O	1/0
173	NC	I/O	I/O
174	I/O	I/O	1/0
175	I/O	I/O	1/0
176	TCK, I/O	TCK, I/O	TCK, I/O

v3.2 2-13

100-Pin VQFP

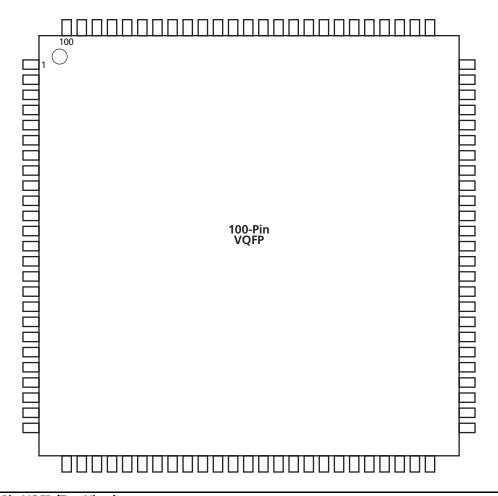


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

313-Pin PBGA		
Pin	A54SX32	
Number	Function	
H20	I/O	
H22	V_{CCI}	
H24	I/O	
J1	I/O	
J3	1/0	
J5	I/O	
J7	NC	
J9	1/0	
J11	1/0	
J13	CLKA	
J15	I/O	
J17	I/O	
J19	1/0	
J21	GND	
J23	I/O	
J25	I/O	
K2	I/O	
K4	I/O	
K6	I/O	
K8	V _{CCI}	
K10	I/O	
K12	I/O	
K14	I/O	
K16	I/O	
K18	I/O	
K20	V_{CCA}	
K22	I/O	
K24	I/O	
L1	I/O	
L3	I/O	
L5	I/O	
L7	I/O	
L9	I/O	
L11	I/O	
L13	GND	
L15	I/O	
L17	I/O	
L19	I/O	
L21	I/O	
L23	I/O	

313-Pin PBGA		
A54SX32 Function		
I/O		
1/0		
I/O		
1/0		
I/O		
I/O		
GND		
GND		
V _{CCI}		
I/O		
V_{CCA}		
V_{CCR}		
I/O		
V _{CCI}		
GND		
GND		
GND		
I/O		
I/O		
I/O		
V_{CCR}		
V _{CCA}		
I/O		
GND		
GND		
I/O		
I/O		
NC		
I/O		

313-Pin PBGA		
Pin Number	A54SX32 Function	
R5	I/O	
R7	I/O	
R9	1/0	
R11	1/0	
R13	GND	
R15	1/0	
R17	1/0	
R19	1/0	
R21	1/0	
R23	I/O	
R25	I/O	
T2	I/O	
T4	I/O	
T6	I/O	
Т8	I/O	
T10	I/O	
T12	I/O	
T14	HCLK	
T16	I/O	
T18	I/O	
T20	I/O	
T22	I/O	
T24	I/O	
U1	I/O	
U3	I/O	
U5	V _{CCI}	
U7	I/O	
U9	I/O	
U11	I/O	
U13	I/O	
U15	I/O	
U17	I/O	
U19	I/O	
U21	I/O	
U23	I/O	
U25	I/O	
V2	V _{CCA}	
V4	I/O	
V6	I/O	
V8	I/O	

313-Pin PBGA		
Pin	A54SX32	
Number	Function	
V10	I/O	
V12	I/O	
V14	I/O	
V16	NC	
V18	I/O	
V20	I/O	
V22	V_{CCA}	
V24	V _{CCI}	
W1	I/O	
W3	I/O	
W5	I/O	
W7	NC	
W9	I/O	
W11	I/O	
W13	V _{CCI}	
W15	I/O	
W17	I/O	
W19	I/O	
W21	I/O	
W23	I/O	
W25	I/O	
Y2	I/O	
Y4	I/O	
Y6	I/O	
Y8	I/O	
Y10	I/O	
Y12	I/O	
Y14	I/O	
Y16	1/0	
Y18	1/0	
Y20	NC	
Y22	I/O	
Y24	NC	

2-18 v3.2

329-Pin PBGA		
Pin Number	A54SX32 Function	
A1	GND	
A2	GND	
А3	V _{CCI}	
A4	NC	
A5	I/O	
A6	I/O	
A7	V _{CCI}	
A8	NC	
A9	I/O	
A10	I/O	
A11	I/O	
A12	I/O	
A13	CLKB	
A14	I/O	
A15	I/O	
A16	I/O	
A17	I/O	
A18	1/0	
A19	I/O	
A20	I/O	
A21	NC	
A22	V _{CCI}	
A23	GND	
AA1	V _{CCI}	
AA2	I/O	
AA3	GND	
AA4	I/O	
AA5	1/0	
AA6	I/O	
AA7	I/O	
AA8	I/O	
AA9	I/O	
AA10	I/O	
AA11	I/O	
AA12	1/0	

329-Pin PBGA		
Pin Number	A54SX32 Function	
AA13	1/0	
AA14	1/0	
AA15	I/O	
AA16	I/O	
AA17	1/0	
AA18	I/O	
AA19	I/O	
AA20	TDO, I/O	
AA21	V _{CCI}	
AA22	1/0	
AA23	V _{CCI}	
AB1	1/0	
AB2	GND	
AB3	1/0	
AB4	1/0	
AB5	1/0	
AB6	1/0	
AB7	1/0	
AB8	1/0	
AB9	1/0	
AB10	1/0	
AB11	PRB, I/O	
AB12	1/0	
AB13	HCLK	
AB14	1/0	
AB15	1/0	
AB16	1/0	
AB17	1/0	
AB18	1/0	
AB19	1/0	
AB20	I/O	
AB21	I/O	
AB22	GND	
AB23	1/0	
AC1	GND	

329-Pin PBGA		
Pin Number	A54SX32 Function	
AC2	V _{CCI}	
AC3	NC	
AC4	1/0	
AC5	I/O	
AC6	I/O	
AC7	I/O	
AC8	I/O	
AC9	V _{CCI}	
AC10	I/O	
AC11	I/O	
AC12	I/O	
AC13	I/O	
AC14	I/O	
AC15	NC	
AC16	I/O	
AC17	I/O	
AC18	I/O	
AC19	I/O	
AC20	I/O	
AC21	NC	
AC22	V _{CCI}	
AC23	GND	
B1	V _{CCI}	
B2	GND	
В3	I/O	
В4	I/O	
B5	I/O	
В6	I/O	
В7	I/O	
B8	I/O	
В9	I/O	
B10	I/O	
B11	I/O	
B12	PRA, I/O	
B13	CLKA	

329-Pin PBGA	
Pin Number	A54SX32 Function
B14	1/0
B15	1/0
B16	
	1/0
B17	1/0
B18	1/0
B19	I/O
B20	I/O
B21	I/O
B22	GND
B23	V _{CCI}
C1	NC
C2	TDI, I/O
C3	GND
C4	I/O
C5	I/O
C6	I/O
C7	I/O
C8	I/O
С9	I/O
C10	I/O
C11	I/O
C12	I/O
C13	I/O
C14	I/O
C15	I/O
C16	I/O
C17	I/O
C18	I/O
C19	I/O
C20	I/O
C21	V _{CCI}
C22	GND
C23	NC
D1	I/O
D2	I/O

2-20 v3.2

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom

Phone +44 (0) 1276 401 450 **Fax** +44 (0) 1276 401 490

Actel Japan

www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

Phone +81.03.3445.7671 **Fax** +81.03.3445.7668

Actel Hong Kong

www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 **Fax** +852 2185 6488