

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	
Total RAM Bits	
Number of I/O	81
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx16p-2vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Plastic Device Resources

	User I/Os (including clock buffers)												
Device	PLCC 84-Pin	VQFP 100-Pin	PQFP 208-Pin	TQFP 144-Pin	TQFP 176-Pin	PBGA 313-Pin	PBGA 329-Pin	FBGA 144-Pin					
A54SX08	69	81	130	113	128	-	-	111					
A54SX16	-	81	175	-	147	-	-	-					
A54SX16P	-	81	175	113	147	-	-	-					
A54SX32	_	_	174	113	147	249	249	-					

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier

PQFP = Plastic Quad Flat Pack

TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack

PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array

Table of Contents

SX Family FPGAs

General Description 1-1
SX Family Architecture 1-1
Programming 1-7
3.3 V / 5 V Operating Conditions 1-7
PCI Compliance for the SX Family 1-9
A54SX16P AC Specifications for (PCI Operation) 1-10
A54SX16P DC Specifications (3.3 V PCI Operation) 1-12
A54SX16P AC Specifications (3.3 V PCI Operation) 1-13
Power-Up Sequencing 1-15
Power-Down Sequencing 1-15
Evaluating Power in SX Devices 1-16
SX Timing Model 1-21
Timing Characteristics 1-23

Package Pin Assignments

84-Pin PLCC	 	• •	• •	•	 	 •	 	•	 • •	 • •	•	 • •	••	 • •	•	 • •	 •	 • •	•	 		2-1
208-Pin PQFP																						
144-Pin TQFP	 		• •		 		 		 	 		 		 		 		 	•	 		2-7
176-Pin TQFP																						
100-Pin VQFP	 			•	 	 •	 	•	 	 	•	 • •	• •	 		 	 •	 	•	 	2	2-14
313-Pin PBGA	 				 		 	•	 	 		 		 		 		 	•	 	2	2-16
329-Pin PBGA	 			•	 	 •	 	•	 	 	•	 • •	• •	 		 	 •	 	•	 	2	2-19
144-Pin FBGA	 				 		 		 	 		 		 		 		 		 	2	2-23

Datasheet Information

List of Changes	3-1
Datasheet Categories	3-1
International Traffic in Arms Regulations (ITAR) and Export Administration	
Regulations (EAR)	3-1

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional

flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hardwired clock or the routed clock.

Figure 1-1 • SX Family Interconnect Elements

Figure 1-2 • R-Cell

The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX architecture. An example of the improved flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time.

Boundary Scan Testing (BST)

All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 1-2. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of 10 k Ω . TMS can be pulled LOW to initiate the test sequence.

The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode.

Table 1-2 •	Boundary Scan Pin Functionality
-------------	---------------------------------

Program Fuse Blown (Dedicated Test Mode)	Program Fuse Not Blown (Flexible Mode)
TCK, TDI, TDO are dedicated BST pins.	TCK, TDI, TDO are flexible and may be used as I/Os.
No need for pull-up resistor for TMS	Use a pull-up resistor of 10 $k\Omega$ on TMS.

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-7). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8 for detailed specifications.

Figure 1-7 • Device Selection Wizard

Development Tool Support

The SX family of FPGAs is fully supported by both the Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram (located on the Actel website) for more information.

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators, and the simulation results can be cross-probed with Silicon Explorer II, Actel integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys[®], and Cadence[®] Design Systems. The Designer software is available for both the Windows® and UNIX® operating systems.

Probe Circuit Control Pins

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-8 on page 1-7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry.

Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device

 $I_{OH} = 11.9 \times (V_{OUT} - 5.25) \times (V_{OUT} + 2.45)$ for V_{CC} > V_{OUT} > 3.1 V $I_{OL} = 78.5 \times V_{OUT} \times (4.4 - V_{OUT})$ for 0 V < V_{OUT} < 0.71 V

EQ 1-1

EQ 1-2

A54SX16P AC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CC}^{1}$			mA
1		$0.3V_{CC} \le V_{OUT} < 0.9V_{CC}^{-1}$	-12V _{CC}		mA
IOH(AC)		$0.7V_{CC} < V_{OUT} < V_{CC}^{1, 2}$	–17.1 + (V _{CC} – V _{OUT})	EQ 1-3 on page 1-14	
	(Test Point)	$V_{OUT} = 0.7 V_{CC}^2$		-32V _{CC}	mA
	Switching Current High	$V_{CC} > V_{OUT} \ge 0.6 V_{CC}^{1}$			mA
1		$0.6V_{CC} > V_{OUT} > 0.1V_{CC}^{1}$	16V _{CC}		mA
I _{OL(AC)}		$0.18V_{CC} > V_{OUT} > 0^{1, 2}$	26.7V _{OUT}	EQ 1-4 on page 1-14	mA
	(Test Point)	$V_{OUT} = 0.18 V_{CC}^2$		38V _{CC}	
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	–25 + (V _{IN} + 1)/0.015		mA
I _{CH}	High Clamp Current	$-3 < V_{IN} \le -1$	25 + (V _{IN} – V _{OUT} – 1)/0.015		mA
slew _R	Output Rise Slew Rate ³	$0.2V_{CC}$ to $0.6V_{CC}$ load	1	4	V/ns
slew _F	Output Fall Slew Rate ³	$0.6V_{CC}$ to $0.2V_{CC}$ load	1	4	V/ns

Table 1-9 • A54SX16P AC Specifications (3.3 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 1-10 on page 1-14. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs. "Switching Current High" specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.

2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 1-10 on page 1-14. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

Voltage Out

Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device

 $I_{OH} = (98.0/V_{CC}) \times (V_{OUT} - V_{CC}) \times (V_{OUT} + 0.4V_{CC})$ for V_{CC} > V_{OUT} > 0.7 V_{CC} $I_{OL} = (256/V_{CC}) \times V_{OUT} \times (V_{CC} - V_{OUT})$ for 0 V < V_{OUT} < 0.18 V_{CC}

EQ 1-3

EQ 1-4

Table 1-13 shows capacitance values for various devices.

	A54SX08	A54SX16	A54SX16P	A54SX32
C _{EQM} (pF)	4.0	4.0	4.0	4.0
C _{EQI} (pF)	3.4	3.4	3.4	3.4
C _{EQO} (pF)	4.7	4.7	4.7	4.7
C _{EQCR} (pF)	1.6	1.6	1.6	1.6
C _{EQHV}	0.615	0.615	0.615	0.615
C _{EQHF}	60	96	96	140
r ₁ (pF)	87	138	138	171
r ₂ (pF)	87	138	138	171

 Table 1-13
 Capacitance Values for Devices

Table 1-14 • Power Consumption Guidelines

Guidelines for Calculating Power Consumption

The power consumption guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are shown in Table 1-14.

Sample Power Calculation

One of the designs used to characterize the SX family was a 528 bit serial-in, serial-out shift register. The design utilized 100 percent of the dedicated flip-flops of an A54SX16P device. A pattern of 0101... was clocked into the device at frequencies ranging from 1 MHz to 200 MHz. Shifting in a series of 0101... caused 50 percent of the flip-flops to toggle from low to high at every clock cycle.

Description	Power Consumption Guideline
Logic Modules (m)	20% of modules
Inputs Switching (n)	# inputs/4
Outputs Switching (p)	# outputs/4
First Routed Array Clock Loads (q ₁)	20% of register cells
Second Routed Array Clock Loads (q ₂)	20% of register cells
Load Capacitance (C _L)	35 pF
Average Logic Module Switching Rate (f _m)	f/10
Average Input Switching Rate (f _n)	f/5
Average Output Switching Rate (f _p)	f/10
Average First Routed Array Clock Rate (f _{q1})	f/2
Average Second Routed Array Clock Rate (f _{q2})	f/2
Average Dedicated Array Clock Rate (f _{s1})	f
Dedicated Clock Array Clock Loads (s ₁)	20% of regular modules

Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption.

The total power dissipation for the SX family is the sum of the AC power dissipation and the DC power dissipation.

$$P_{Total} = P_{AC}$$
 (dynamic power) + P_{DC} (static power)

EQ 1-9

AC Power Dissipation

 $P_{AC} = P_{Module} + P_{RCLKA Net} + P_{RCLKB Net} + P_{HCLK Net} + P_{Output Buffer} + P_{Input Buffer}$

$$\begin{split} P_{AC} &= V_{CCA}^2 \times [(m \times C_{EQM} \times f_m)_{Module} + \\ (n \times C_{EQI} \times f_n)_{Input Buffer} + (p \times (C_{EQO} + C_L) \times f_p)_{Output Buffer} + \\ (0.5 & (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1}))_{RCLKA} + \\ (0.5 & (q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2}))_{RCLKB} + \\ (0.5 & (s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1}))_{HCLK}] \end{split}$$

EQ 1-11

A54SX08 Timing Characteristics

Table 1-17 • A54SX08 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' \$	Speed	'-1' 9	Speed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Input Modu	le Predicted Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn'}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD'}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Table 1-19 • A54SX16P Timing Characteristics (Continued)

(Worst-Case Commercial Conditions	, V _{CCR} = 4.75 V, V _C	_{CCA} ,V _{CCI} = 3.0 V, T _J = 70°C)
-----------------------------------	---	--

		'-3'	Speed	'-2' 9	5peed	'-1' 9	5peed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL/PCI Out	put Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		1.5		1.7		2.0		2.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.9		2.2		2.4		2.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.3		2.6		3.0		3.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.5		1.7		1.9		2.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.7		3.1		3.5		4.1	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns
PCI Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.8		2.0		2.3		2.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.7		2.0		2.2		2.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		0.8		1.0		1.1		1.3	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.2		1.2		1.5		1.8	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.0		1.1		1.3		1.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.1		1.3		1.5		1.7	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.1		2.5		2.8		3.3	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.0		2.3		2.6		3.1	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.5		2.9		3.2		3.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.0		3.5		3.9		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.1		3.6	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.9		3.3		3.7		4.4	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA} , V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' Speed		'–1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Prop	agation Delays ¹									
t _{PD} Internal Array Module			0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timi	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted I	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Package Pin Assignments

84-Pin PLCC

Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

208-Pin PQFP

Figure 2-2 • 208-Pin PQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

	144-Pi	n TQFP		144-Pin TQFP					
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function		
1	GND	GND	GND	37	I/O	I/O	I/O		
2	TDI, I/O	TDI, I/O	TDI, I/O	38	I/O	I/O	I/O		
3	I/O	I/O	I/O	39	I/O	I/O	I/O		
4	I/O	I/O	I/O	40	I/O	I/O	I/O		
5	I/O	I/O	I/O	41	I/O	I/O	I/O		
6	I/O	I/O	I/O	42	I/O	I/O	I/O		
7	I/O	I/O	I/O	43	I/O	I/O	I/O		
8	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}		
9	TMS	TMS	TMS	45	I/O	I/O	I/O		
10	V _{CCI}	V _{CCI}	V _{CCI}	46	I/O	I/O	I/O		
11	GND	GND	GND	47	I/O	I/O	I/O		
12	I/O	I/O	I/O	48	I/O	I/O	I/O		
13	I/O	I/O	I/O	49	I/O	I/O	I/O		
14	I/O	I/O	I/O	50	I/O	I/O	I/O		
15	I/O	I/O	I/O	51	I/O	I/O	I/O		
16	I/O	I/O	I/O	52	I/O	I/O	I/O		
17	I/O	I/O	I/O	53	I/O	I/O	I/O		
18	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O		
19	V _{CCR}	V _{CCR}	V _{CCR}	55	I/O	I/O	I/O		
20	V_{CCA}	V _{CCA}	V _{CCA}	56	V_{CCA}	V _{CCA}	V _{CCA}		
21	I/O	I/O	I/O	57	GND	GND	GND		
22	I/O	I/O	I/O	58	V _{CCR}	V _{CCR}	V _{CCR}		
23	I/O	I/O	I/O	59	I/O	I/O	I/O		
24	I/O	I/O	I/O	60	HCLK	HCLK	HCLK		
25	I/O	I/O	I/O	61	I/O	I/O	I/O		
26	I/O	I/O	I/O	62	I/O	I/O	I/O		
27	I/O	I/O	I/O	63	I/O	I/O	I/O		
28	GND	GND	GND	64	I/O	I/O	I/O		
29	V _{CCI}	V _{CCI}	V _{CCI}	65	I/O	I/O	I/O		
30	V_{CCA}	V _{CCA}	V _{CCA}	66	I/O	I/O	I/O		
31	I/O	I/O	I/O	67	I/O	I/O	I/O		
32	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}		
33	I/O	I/O	I/O	69	I/O	I/O	I/O		
34	I/O	I/O	I/O	70	I/O	I/O	I/O		
35	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O		
36	GND	GND	GND	72	I/O	I/O	I/O		

	176-Pi	n TQFP	
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
1	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O
3	NC	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	I/O	I/O	I/O
10	TMS	TMS	TMS
11	V _{CCI}	V _{CCI}	V _{CCI}
12	NC	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	I/O	I/O	I/O
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	I/O	I/O
21	GND	GND	GND
22	V _{CCA}	V _{CCA}	V _{CCA}
23	GND	GND	GND
24	I/O	I/O	I/O
25	I/O	I/O	I/O
26	I/O	I/O	I/O
27	I/O	I/O	I/O
28	I/O	I/O	I/O
29	I/O	I/O	I/O
30	I/O	I/O	I/O
31	I/O	I/O	I/O
32	V _{CCI}	V _{CCI}	V _{CCI}
33	V _{CCA}	V _{CCA}	V _{CCA}
34	I/O	I/O	I/O

176-Pin TQFP								
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function					
35	I/O	I/O	I/O					
36	I/O	I/O	I/O					
37	I/O	I/O	I/O					
38	I/O	I/O	I/O					
39	I/O	I/O	I/O					
40	NC	I/O	I/O					
41	I/O	I/O	I/O					
42	NC	I/O	I/O					
43	I/O	I/O	I/O					
44	GND	GND	GND					
45	I/O	I/O	I/O					
46	I/O	I/O	I/O					
47	I/O	I/O	I/O					
48	I/O	I/O	I/O					
49	I/O	I/O	I/O					
50	I/O	I/O	I/O					
51	I/O	I/O	I/O					
52	V _{CCI}	V _{CCI}	V _{CCI}					
53	I/O	I/O	I/O					
54	NC	I/O	I/O					
55	I/O	I/O	I/O					
56	I/O	I/O	I/O					
57	NC	I/O	I/O					
58	I/O	I/O	I/O					
59	I/O	I/O	I/O					
60	I/O	I/O	I/O					
61	I/O	I/O	I/O					
62	I/O	I/O	I/O					
63	I/O	I/O	I/O					
64	PRB, I/O	PRB, I/O	PRB, I/O					
65	GND	GND	GND					
66	V _{CCA}	V _{CCA}	V _{CCA}					
67	V _{CCR}	V _{CCR}	V _{CCR}					
68	I/O	I/O	I/O					

	176-Pi	n TQFP		176-Pin TQFP						
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function			
137	I/O	I/O	I/O	157	PRA, I/O	PRA, I/O	PRA, I/O			
138	I/O	I/O	I/O	158	I/O	I/O	I/O			
139	I/O	I/O	I/O	159	I/O	I/O	I/O			
140	V _{CCI}	V _{CCI}	V _{CCI}	160	I/O	I/O	I/O			
141	I/O	I/O	I/O	161	I/O	I/O	I/O			
142	I/O	I/O	I/O	162	I/O	I/O	I/O			
143	I/O	I/O	I/O	163	I/O	I/O	I/O			
144	I/O	I/O	I/O	164	I/O	I/O	I/O			
145	I/O	I/O	I/O	165	I/O	I/O	I/O			
146	I/O	I/O	I/O	166	I/O	I/O	I/O			
147	I/O	I/O	I/O	167	I/O	I/O	I/O			
148	I/O	I/O	I/O	168	NC	I/O	I/O			
149	I/O	I/O	I/O	169	V _{CCI}	V _{CCI}	V _{CCI}			
150	I/O	I/O	I/O	170	I/O	I/O	I/O			
151	I/O	I/O	I/O	171	NC	I/O	I/O			
152	CLKA	CLKA	CLKA	172	NC	I/O	I/O			
153	CLKB	CLKB	CLKB	173	NC	I/O	I/O			
154	V _{CCR}	V _{CCR}	V _{CCR}	174	I/O	I/O	I/O			
155	GND	GND	GND	175	I/O	I/O	I/O			
156	V _{CCA}	V _{CCA}	V _{CCA}	176	TCK, I/O	TCK, I/O	TCK, I/O			

313-Pi	n PBGA						
Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	Pin Number	A54SX32 Function
H20	I/O	L25	I/O	R5	I/O	V10	I/O
H22	V _{CCI}	M2	I/O	R7	I/O	V12	I/O
H24	I/O	M4	I/O	R9	I/O	V14	I/O
J1	I/O	M6	I/O	R11	I/O	V16	NC
J3	I/O	M8	I/O	R13	GND	V18	I/O
J5	I/O	M10	I/O	R15	I/O	V20	I/O
J7	NC	M12	GND	R17	I/O	V22	V _{CCA}
J9	I/O	M14	GND	R19	I/O	V24	V _{CCI}
J11	I/O	M16	V _{CCI}	R21	I/O	W1	I/O
J13	CLKA	M18	I/O	R23	I/O	W3	I/O
J15	I/O	M20	I/O	R25	I/O	W5	I/O
J17	I/O	M22	I/O	T2	I/O	W7	NC
J19	I/O	M24	I/O	T4	I/O	W9	I/O
J21	GND	N1	I/O	Т6	I/O	W11	I/O
J23	I/O	N3	V _{CCA}	Т8	I/O	W13	V _{CCI}
J25	I/O	N5	V _{CCR}	T10	I/O	W15	I/O
К2	I/O	N7	I/O	T12	I/O	W17	I/O
K4	I/O	N9	V _{CCI}	T14	HCLK	W19	I/O
K6	I/O	N11	GND	T16	I/O	W21	I/O
K8	V _{CCI}	N13	GND	T18	I/O	W23	I/O
K10	I/O	N15	GND	T20	I/O	W25	I/O
K12	I/O	N17	I/O	T22	I/O	Y2	I/O
K14	I/O	N19	I/O	T24	I/O	Y4	I/O
K16	I/O	N21	I/O	U1	I/O	Y6	I/O
K18	I/O	N23	V _{CCR}	U3	I/O	Y8	I/O
K20	V _{CCA}	N25	V _{CCA}	U5	V _{CCI}	Y10	I/O
K22	I/O	P2	I/O	U7	I/O	Y12	I/O
K24	I/O	P4	I/O	U9	I/O	Y14	I/O
L1	I/O	P6	I/O	U11	I/O	Y16	I/O
L3	I/O	P8	I/O	U13	I/O	Y18	I/O
L5	I/O	P10	I/O	U15	I/O	Y20	NC
L7	I/O	P12	GND	U17	I/O	Y22	I/O
L9	I/O	P14	GND	U19	I/O	Y24	NC
L11	I/O	P16	I/O	U21	I/O	<u> </u>	
L13	GND	P18	I/O	U23	I/O		
L15	I/O	P20	NC	U25	I/O		
L17	I/O	P22	I/O	V2	V _{CCA}		
L19	I/O	P24	I/O	V4	I/O		
L21	I/O	R1	I/O	V6	I/O		
L23	I/O	R3	I/O	V8	I/O		

329-Pi	n PBGA	329-Pi	n PBGA	329-Pi	n PBGA	329-Pii	n PBGA	
Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	
A1	GND	AA13	I/O	AC2	V _{CCI}	B14	I/O	
A2	GND	AA14	I/O	AC3	NC	B15	I/O	
A3	V _{CCI}	AA15	I/O	AC4	I/O	B16	I/O	
A4	NC	AA16	I/O	AC5	I/O	B17	I/O	
A5	I/O	AA17	I/O	AC6	I/O	B18	I/O	
A6	I/O	AA18	I/O	AC7	I/O	B19	I/O	
A7	V _{CCI}	AA19	I/O	AC8	I/O	B20	I/O	
A8	NC	AA20	TDO, I/O	AC9	V _{CCI}	B21	I/O	
A9	I/O	AA21	V _{CCI}	AC10	I/O	B22	GND	
A10	I/O	AA22	I/O	AC11	I/O	B23	V _{CCI}	
A11	I/O	AA23	V _{CCI}	AC12	I/O	C1	NC	
A12	I/O	AB1	I/O	AC13	I/O	C2	TDI, I/O	
A13	CLKB	AB2	GND	AC14	I/O	C3	GND	
A14	I/O	AB3	I/O	AC15	NC	C4	I/O	
A15	I/O	AB4	I/O	AC16	I/O	C5	I/O	
A16	I/O	AB5	I/O	AC17	I/O	C6	I/O	
A17	I/O	AB6	I/O	AC18	I/O	C7	I/O	
A18	I/O	AB7	I/O	AC19	I/O	C8	I/O	
A19	I/O	AB8	I/O	AC20	I/O	С9	I/O	
A20	I/O	AB9	I/O	AC21	NC	C10	I/O	
A21	NC	AB10	I/O	AC22	V _{CCI}	C11	I/O	
A22	V _{CCI}	AB11	PRB, I/O	AC23	GND	C12	I/O	
A23	GND	AB12	I/O	B1	V _{CCI}	C13	I/O	
AA1	V _{CCI}	AB13	HCLK	B2	GND	C14	I/O	
AA2	I/O	AB14	I/O	В3	I/O	C15	I/O	
AA3	GND	AB15	I/O	В4	I/O	C16	I/O	
AA4	I/O	AB16	I/O	B5	I/O	C17	I/O	
AA5	I/O	AB17	I/O	B6	I/O	C18	I/O	
AA6	I/O	AB18	I/O	В7	I/O	C19	I/O	
AA7	I/O	AB19	I/O	B8	I/O	C20	I/O	
AA8	I/O	AB20	I/O	В9	I/O	C21	V _{CCI}	
AA9	I/O	AB21	I/O	B10	I/O	C22	GND	
AA10	I/O	AB22	GND	B11	I/O	C23	NC	
AA11	I/O	AB23	I/O	B12	PRA, I/O	D1	I/O	
AA12	I/O	AC1	GND	B13	CLKA	D2	I/O	

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v3.2)	Page
v3.1	The "Ordering Information" was updated to include RoHS information.	1-ii
(June 2003)	The Product Plan was removed since all products have been released.	N/A
	Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.	1-6
	The "Dedicated Test Mode" section is new.	1-6
	The "Programming" section is new.	1-7
	A note was added to the "Power-Up Sequencing" table.	1-15
	A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32.	1-15
	U11 and U13 were added to the "313-Pin PBGA" table.	2-17
v3.0.1	Storage temperature in Table 1-3 was updated.	1-7
	Table 1-1 was updated.	1-5

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.