

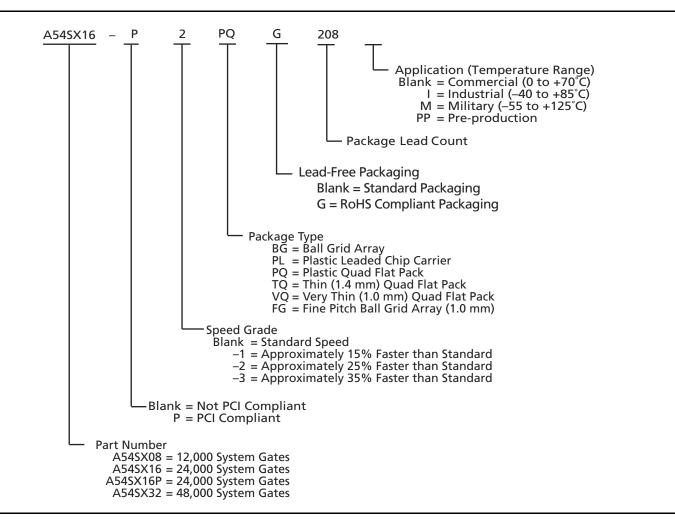
Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details

Details	
Product Status	Active
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	81
Number of Gates	24000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx16p-vqg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Plastic Device Resources

	User I/Os (including clock buffers)										
Device	PLCC 84-Pin	VQFP 100-Pin	PQFP 208-Pin	TQFP 144-Pin	TQFP 176-Pin	PBGA 313-Pin	PBGA 329-Pin	FBGA 144-Pin			
A54SX08	69	81	130	113	128	-	-	111			
A54SX16	-	81	175	-	147	-	-	-			
A54SX16P	-	81	175	113	147	-	-	-			
A54SX32	_	_	174	113	147	249	249	-			

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier

PQFP = Plastic Quad Flat Pack

TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack

PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array

General Description

The Actel SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications.

The Actel SX architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or "sea-of-modules"), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort.

Further complementing SX's flexible routing structure is a hardwired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clockto-out or fast input setup times. SX devices have easy to use I/O cells that do not require HDL instantiation, facilitating design reuse and reducing design and verification time.

SX Family Architecture

The SX family architecture was designed to satisfy nextgeneration performance and integration requirements for production-volume designs in a broad range of applications.

Programmable Interconnect Element

The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules.

Interconnection between these logic modules is achieved using The Actel patented metal-to-metal programmable antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept.

Additionally, the interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

Logic Module Design

The SX family architecture is described as a "sea-ofmodules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring Rcell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Denter		V	V		Maniana Outrat Daire
Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

Table 1-4 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to + 70	-40 to + 85	–55 to +125	°C
3.3 V Power Supply Tolerance	±10	±10	±10	%V _{CC}
5.0 V Power Supply Tolerance	wer Supply Tolerance ±5		±10	%V _{CC}

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

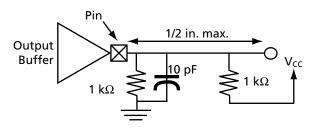
Table 1-5Electrical Specifications

		Comme	ercial	Indus	Industrial		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	
V _{OH}	$(I_{OH} = -20 \ \mu A) \ (CMOS)$ $(I_{OH} = -8 \ mA) \ (TTL)$	(V _{CCI} – 0.1) 2.4	V _{CCI} V _{CCI}	(V _{CCI} – 0.1)	V _{CCI}	V	
	$(I_{OH} = -6 \text{ mA}) \text{ (TTL)}$			2.4	V _{CCI}		
V _{OL}	(I _{OL} = 20 μA) (CMOS)		0.10			V	
	$(I_{OL} = 12 \text{ mA}) \text{ (TTL)}$		0.50				
	$(I_{OL} = 8 \text{ mA}) \text{ (TTL)}$				0.50		
V _{IL}			0.8		0.8	V	
V _{IH}		2.0		2.0		V	
t _R , t _F	Input Transition Time t _R , t _F		50		50	ns	
C _{IO}	C _{IO} I/O Capacitance		10		10	pF	
I _{CC}	Standby Current, I _{CC}		4.0		4.0	mA	
I _{CC(D)}	I _{CC(D)} I _{Dynamic} V _{CC} Supply Current	See "	'Evaluating F	ower in SX Device	es" on page 1	-16.	

A54SX16P AC Specifications for (PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{1}$	-44		mA
		$1.4 \le V_{OUT} < 2.4^{1, 2}$	-44 + (V _{OUT} - 1.4)/0.024		mA
		$3.1 < V_{OUT} < V_{CC}^{1, 3}$		EQ 1-1 on page 1-11	
	(Test Point)	$V_{OUT} = 3.1^{3}$		-142	mA
I _{OL(AC)}	Switching Current High	$V_{OUT} \ge 2.2^{1}$	95		mA
		$2.2 > V_{OUT} > 0.55^{1}$	V _{OUT} /0.023		
		$0.71 > V_{OUT} > 0^{1, 3}$		EQ 1-2 on page 1-11	mA
	(Test Point)	$V_{OUT} = 0.71^{3}$		206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \leq -1$	-25 + (V _{IN} + 1)/0.015		mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Table 1-7 A54SX16P AC Specifications for (PCI Operation)


Notes:

1. Refer to the V/I curves in Figure 1-9 on page 1-11. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half-size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 1-9 on page 1-11. The equation defined maxima should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Power-Up Sequencing

Table 1-10Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A549	X16, A54SX32			
3.3 V			5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A549	5X16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			·	
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz.

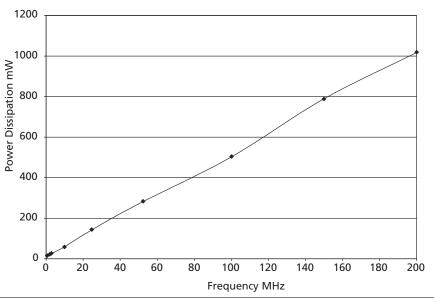


Figure 1-11 • Power Dissipation

Junction Temperature (T_J)

The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature.

Junction Temperature =
$$\Delta T + T_a$$

Where:

 $T_a = Ambient Temperature$

 ΔT = Temperature gradient between junction (silicon) and ambient

 $\Delta T = \theta_{ja} \times P$

- P = Power calculated from Estimating Power Consumption section
- θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section.

Package Thermal Characteristics

The device junction to case thermal characteristic is θ_{jc} , and the junction to ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150 °C.

A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C) - Max. ambient temp. (°C)}}{\theta_{ja}} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{28^{\circ}\text{C/W}} = 2.86 \text{ W}$$

EQ 1-13

EQ 1-14

A54SX08 Timing Characteristics

Table 1-17 • A54SX08 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' Speed		'–1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Input Modu	le Predicted Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn'}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD'}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Table 1-17 A54SX08 Timing Characteristics (Continued)

(Worst-Case Commercial Conditions,	V _{CCR} = 4.75 V, V _{CC}	_{A,} V _{CCI} = 3.0 V, T _J = 70°C)
------------------------------------	--	--

		'-3' \$	Speed	'-2' \$	5peed	'–1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Network										
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.0		1.1		1.3		1.5	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.0		1.2		1.4		1.6	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.1		0.2		0.2		0.2	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.3		1.5		1.7		2.0	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell Input)		1.4		1.6		1.8		2.1	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.4		1.7		1.9		2.2	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		1.5		1.7		2.0		2.3	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.5		1.7		1.9		2.2	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		1.5		1.8		2.0		2.3	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.1		0.2		0.2		0.2	ns
t _{RCKSW}	Maximum Skew (50% load)		0.3		0.3		0.4		0.4	ns
t _{RCKSW}	Maximum Skew (100% load)		0.3		0.3		0.4		0.4	ns
TTL Output	Module Timing1									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Table 1-18 A54SX16 Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, V	/ _{CCR} = 4.75 V, V _{CC}	_{CA} ,V _{CCI} = 3.0 V, T _J = 70°C)
--------------------------------------	--	---

		'-3' :	Speed	'-2' :	Speed	'-1' :	Speed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.2		1.4		1.5		1.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.2		1.4		1.6		1.9	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.2		0.2		0.3		0.3	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{rckh}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.6		1.8		2.1		2.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		1.8		2.0		2.3		2.7	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.8		2.1		2.5		2.8	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.8		2.1		2.4		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.5		0.5		0.5		0.7	ns
t _{RCKSW}	Maximum Skew (50% load)		0.5		0.6		0.7		0.8	ns
t _{RCKSW}	Maximum Skew (100% load)		0.5		0.6		0.7		0.8	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA} , V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' \$	Speed	'-1' 9	5peed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Prop	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timi	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted I	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Table 1-20 • A54SX32 Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, V_{CCR}= 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' \$	Speed	'-2' !	5peed	'-1' \$	Speed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.9		2.1		2.4		2.8	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.3		0.4		0.4		0.5	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{rckh}	Input LOW to HIGH (light load) (pad to R-Cell input)		2.4		2.7		3.0		3.5	ns
t _{RCKL}	Input HIGH to LOW (light load) (pad to R-Cell input)		2.4		2.7		3.1		3.6	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		2.7		3.0		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.7		3.1		3.6		4.2	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		2.7		3.1		3.5		4.1	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.8		3.2		3.6		4.3	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.85		0.98		1.1		1.3	ns
t _{RCKSW}	Maximum Skew (50% load)		1.23		1.4		1.6		1.9	ns
t _{RCKSW}	Maximum Skew (100% load)		1.30		1.5		1.7		2.0	ns
TTL Output	Module Timing ³									
t _{DLH}	Data-to-Pad LOW to HIGH		1.6		1.9		2.1		2.5	ns
t _{DHL}	Data-to-Pad HIGH to LOW		1.6		1.9		2.1		2.5	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.8		3.2	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.1		3.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		1.4		1.7		1.9		2.2	ns
t _{enhz}	Enable-to-Pad, H to Z		1.3		1.5		1.7		2.0	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Package Pin Assignments

84-Pin PLCC

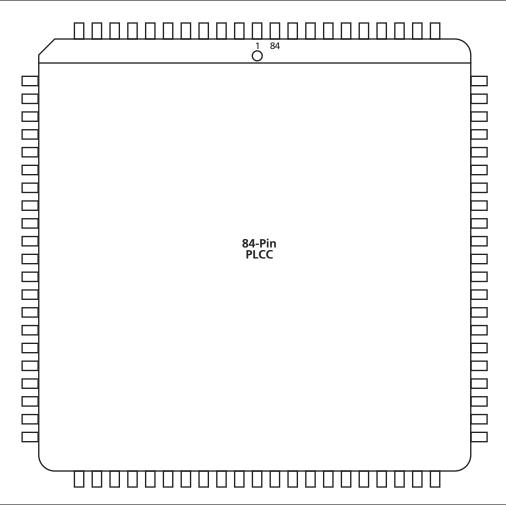


Figure 2-1 • 84-Pin PLCC (Top View)

Note

144-Pin TQFP

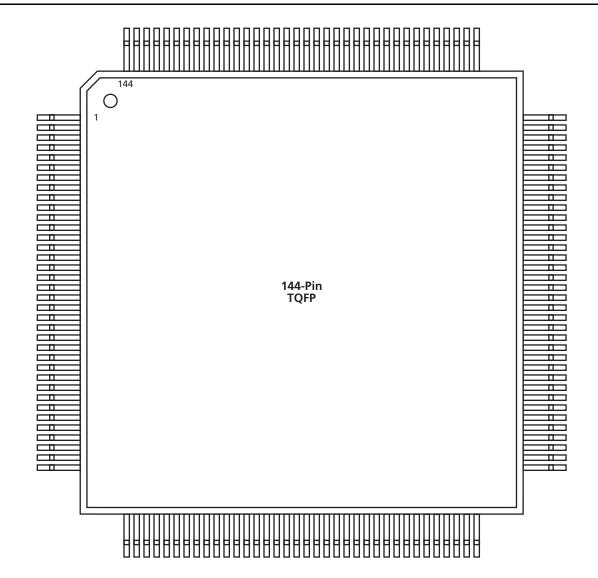


Figure 2-3 • 144-Pin TQFP (Top View)

Note

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function				
73	GND GND GND		109	GND	GND	GND					
74	I/O	I/O	I/O	110	I/O	I/O	I/O				
75	I/O	I/O	I/O	111	I/O	I/O	I/O				
76	I/O	I/O	I/O	112	I/O	I/O	I/O				
77	I/O	I/O	I/O	113	I/O	I/O	I/O				
78	I/O	I/O	I/O	114	I/O	I/O	I/O				
79	V _{CCA}	V _{CCA}	V _{CCA}	115	V _{CCI}	V _{CCI}	V _{CCI}				
80	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
81	GND	GND	GND	117	I/O	I/O	I/O				
82	I/O	I/O	I/O	118	I/O	I/O	I/O				
83	I/O	I/O	I/O	119	I/O	I/O	I/O				
84	I/O	I/O	I/O	120	I/O	I/O	I/O				
85	I/O	I/O	I/O	121	I/O	I/O	I/O				
86	I/O	I/O	I/O	122	I/O	I/O	I/O				
87	I/O	I/O	I/O	123	I/O	I/O	I/O				
88	I/O	I/O	I/O	124	I/O	I/O	I/O				
89	V _{CCA}	V _{CCA}	V _{CCA}	125	CLKA	CLKA	CLKA				
90	V _{CCR}	V _{CCR}	V _{CCR}	126	CLKB	CLKB	CLKB				
91	I/O	I/O	I/O	127	V _{CCR}	V _{CCR}	V _{CCR}				
92	I/O	I/O	I/O	128	GND	GND	GND				
93	I/O	I/O	I/O	129	V _{CCA}	V _{CCA}	V _{CCA}				
94	I/O	I/O	I/O	130	I/O	I/O	I/O				
95	I/O	I/O	I/O	131	PRA, I/O	PRA, I/O	PRA, I/O				
96	I/O	I/O	I/O	132	I/O	I/O	I/O				
97	I/O	I/O	I/O	133	I/O	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	134	I/O	I/O	I/O				
99	GND	GND	GND	135	I/O	I/O	I/O				
100	I/O	I/O	I/O	136	I/O	I/O	I/O				
101	GND	GND	GND	137	I/O	I/O	I/O				
102	V _{CCI}	V _{CCI}	V _{CCI}	138	I/O	I/O	I/O				
103	I/O	I/O	I/O	139	I/O	I/O	I/O				
104	I/O	I/O	I/O	140	V _{CCI}	V _{CCI}	V _{CCI}				
105	I/O	I/O	I/O	141	I/O	I/O	I/O				
106	I/O	I/O	I/O	142	I/O	I/O	I/O				
107	I/O	I/O	I/O	143	I/O	I/O	I/O				
108	I/O	I/O	I/O	144	TCK, I/O	TCK, I/O	TCK, I/O				

176-Pin TQFP

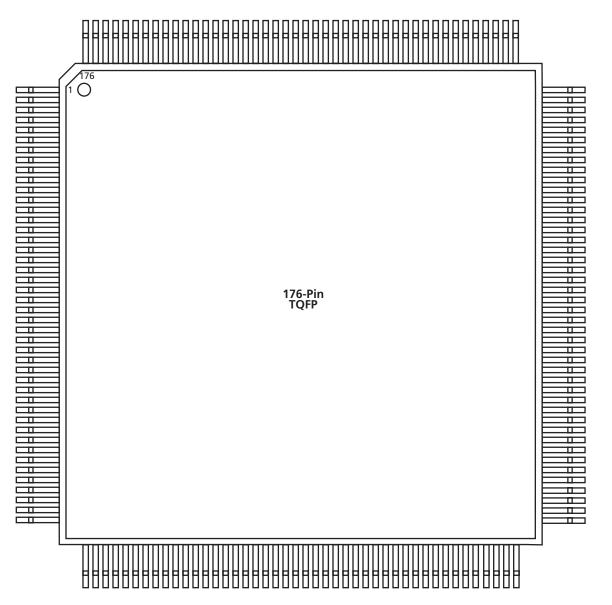


Figure 2-4 • 176-Pin TQFP (Top View)

Note

	176-Pi	n TQFP		176-Pin TQFP							
Pin Number	A54SX16, A54SX08 A54SX16P A54SX32 n Number Function Function Function		Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function					
69	HCLK	HCLK	HCLK	103	I/O	I/O	I/O				
70	I/O	I/O	I/O	104	I/O	I/O	I/O				
71	I/O	I/O	I/O	105	I/O	I/O	I/O				
72	I/O	I/O	I/O	106	I/O	I/O	I/O				
73	I/O	I/O	I/O	107	I/O	I/O	I/O				
74	I/O	I/O	I/O	108	GND	GND	GND				
75	I/O	I/O	I/O	109	V _{CCA}	V _{CCA}	V _{CCA}				
76	I/O	I/O	I/O	110	GND	GND	GND				
77	I/O	I/O	I/O	111	I/O	I/O	I/O				
78	I/O	I/O	I/O	112	I/O	I/O	I/O				
79	NC	I/O	I/O	113	I/O	I/O	I/O				
80	I/O	I/O	I/O	114	I/O	I/O	I/O				
81	NC	I/O	I/O	115	I/O	I/O	I/O				
82	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
83	I/O	I/O	I/O	117	I/O	I/O	I/O				
84	I/O	I/O	I/O	118	NC	I/O	I/O				
85	I/O	I/O	I/O	119	I/O	I/O	I/O				
86	I/O	I/O	I/O	120	NC	I/O	I/O				
87	TDO, I/O	TDO, I/O	TDO, I/O	121	NC	I/O	I/O				
88	I/O	I/O	I/O	122	V _{CCA}	V _{CCA}	V _{CCA}				
89	GND	GND	GND	123	GND	GND	GND				
90	NC	I/O	I/O	124	V _{CCI}	V _{CCI}	V _{CCI}				
91	NC	I/O	I/O	125	I/O	I/O	I/O				
92	I/O	I/O	I/O	126	I/O	I/O	I/O				
93	I/O	I/O	I/O	127	I/O	I/O	I/O				
94	I/O	I/O	I/O	128	I/O	I/O	I/O				
95	I/O	I/O	I/O	129	I/O	I/O	I/O				
96	I/O	I/O	I/O	130	I/O	I/O	I/O				
97	I/O	I/O	I/O	131	NC	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	132	NC	I/O	I/O				
99	V _{CCI}	V _{CCI}	V _{CCI}	133	GND	GND	GND				
100	I/O	I/O	I/O	134	I/O	I/O	I/O				
101	I/O	I/O	I/O	135	I/O	I/O	I/O				
102	I/O	I/O	I/O	136	I/O	I/O	I/O				

313-Pin PBGA

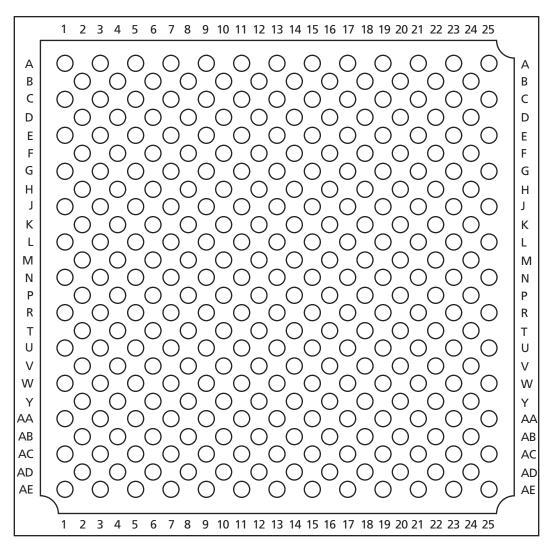


Figure 2-6 • 313-Pin PBGA (Top View)

Note

329-Pin PBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٦
В	0	0	Õ	0	~	~	0	~	~	~	~	~	~	~	0	~	~	~	~	$\overline{}$	0	~	0	
C	Ŭ	č	~	-	-	-	_	-	-	_	_	Ξ.	-	-	-	_	_	_	_	0	-	-	-	
D	•	0	·	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	~	0	~	
E F	-		-	-																-	-	0	_	
G	-	0	·	-																	0	0	0	
н	_	$\overline{0}$	_	_																		0		
J	-	Õ	Ξ.	-																-	-	õ	-	
к	Õ	Õ	Õ	Õ						0	0	0	0	0						-	-	Õ	-	
L	0	0	Ο	0						Ο	Ο	Ο	Ο	Ο						Ο	Ο	0	0	
м	0	0	Ο	Ο						Ο	Ο	Ο	0	Ο						Ο	Ο	Ο	0	
N	<u> </u>	0	<u> </u>	<u> </u>							Õ									\sim	Õ	\sim	0	
P		0								0	0	0	0	0						-	0	-	0	
R T	•	0	·	-																<u> </u>	0	<u> </u>	0	
U	-		-	0																<u> </u>	0	Ŭ	0	
v	· ·	0	<u> </u>	0																<u> </u>	0	<u> </u>	0	
w	-	õ	-	-																	õ	-	$\hat{0}$	
Y	_	-	_	õ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	<u> </u>	~	õ	
AA	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	_	Õ	_	_	_	_	_	Õ	-	Õ	Õ	_	Õ	Õ	Õ	
AB	Ō	Ō	Õ	Ô	Õ	Õ	Õ	Õ	Ô	Õ	Õ	Ô	Ô	Ô	Õ	Õ	Õ	Õ	Ō	Ō	Õ	Õ	Õ	
AC	$\overline{)}$	0	Ο	0	Ο	Ο	0	Ο	Ο	0	Ο	Ο	0	Ο	0	Ο	0	Ο	Ο	Ο	0	Ο	0	

Figure 2-7 • 329-Pin PBGA (Top View)

Note

329-Pir	329-Pin PBGA								
Pin Number	A54SX32 Function								
T22	I/O								
T23	I/O								
U1	I/O								
U2	I/O								
U3	V _{CCA}								
U4	I/O								
U20	I/O								
U21	V _{CCA}								
U22	I/O								
U23	I/O								
V1	V _{CCI}								
V2	I/O								
V3	I/O								

329-Pir	329-Pin PBGA								
Pin Number	A54SX32 Function								
V4	I/O								
V20	I/O								
V21	I/O								
V22	I/O								
V23	I/O								
W1	I/O								
W2	I/O								
W3	I/O								
W4	I/O								
W20	I/O								
W21	I/O								
W22	I/O								

329-Pin PBGA								
Pin Number	A54SX32 Function							
W23	NC							
Y1	NC							
Y2	I/O							
Y3	I/O							
Y4	GND							
Y5	I/O							
Y6	I/O							
Y7	I/O							
Y8	I/O							
Y9	I/O							
Y10	I/O							
Y11	I/O							

329-Pi	329-Pin PBGA								
Pin Number	A54SX32 Function								
Y12	V _{CCA}								
Y13	V _{CCR}								
Y14	I/O								
Y15	I/O								
Y16	I/O								
Y17	I/O								
Y18	I/O								
Y19	I/O								
Y20	GND								
Y21	I/O								
Y22	I/O								
Y23	I/O								