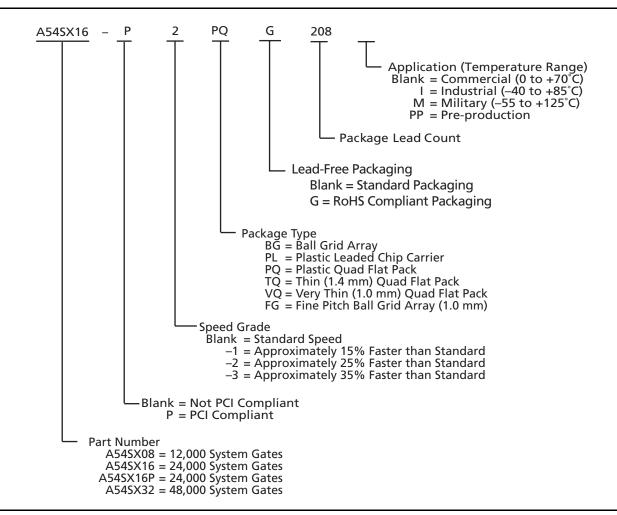


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	249
Number of Gates	48000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	329-BBGA
Supplier Device Package	329-PBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32-1bg329

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Plastic Device Resources

	User I/Os (including clock buffers)									
Device	PLCC 84-Pin	VQFP 100-Pin	PQFP 208-Pin	TQFP 144-Pin	TQFP 176-Pin	PBGA 313-Pin	PBGA 329-Pin	FBGA 144-Pin		
A54SX08	69	81	130	113	128	_	_	111		
A54SX16	_	81	175	-	147	_	_	_		
A54SX16P	_	81	175	113	147	_	_	_		
A54SX32	_	-	174	113	147	249	249	_		

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier

PQFP = Plastic Quad Flat Pack

TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack

PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array

ii v3.2

General Description

The Actel SX family of FPGAs features a sea-of-modules architecture that delivers device performance and integration levels not currently achieved by any other FPGA architecture. SX devices greatly simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time to market for performance-intensive applications.

The Actel SX architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or "sea-of-modules"), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three antifuses). The unique local and general routing structure featured in SX devices gives fast and predictable performance, allows 100 percent pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort.

Further complementing SX's flexible routing structure is a hardwired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clock-to-out or fast input setup times. SX devices have easy to use I/O cells that do not require HDL instantiation, facilitating design reuse and reducing design and verification time.

SX Family Architecture

The SX family architecture was designed to satisfy nextgeneration performance and integration requirements for production-volume designs in a broad range of applications.

Programmable Interconnect Element

The SX family provides efficient use of silicon by locating the routing interconnect resources between the Metal 2 (M2) and Metal 3 (M3) layers (Figure 1-1 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules.

Interconnection between these logic modules is achieved using The Actel patented metal-to-metal programmable antifuse interconnect elements, which are embedded between the M2 and M3 layers. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

The extremely small size of these interconnect elements gives the SX family abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and there is no configuration bitstream to intercept.

Additionally, the interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

Logic Module Design

The SX family architecture is described as a "sea-of-modules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional

flexibility while allowing mapping of synthesized functions into the SX FPGA. The clock source for the R-cell can be chosen from either the hardwired clock or the routed clock.

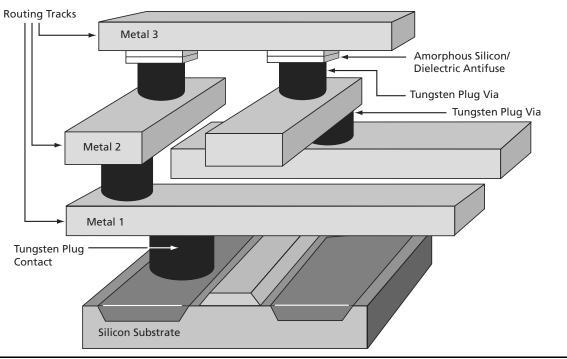


Figure 1-1 • SX Family Interconnect Elements

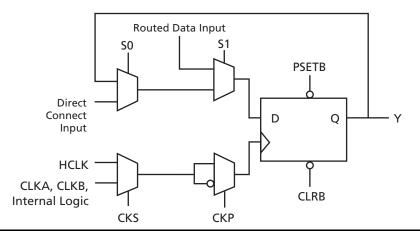


Figure 1-2 • R-Cell

The C-cell implements a range of combinatorial functions up to 5-inputs (Figure 1-3 on page 1-3). Inclusion of the DB input and its associated inverter function dramatically increases the number of combinatorial functions that can be implemented in a single module from 800 options in previous architectures to more than 4,000 in the SX architecture. An example of the improved flexibility

enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 2 ns propagation delays. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time.

1-2 v3.2

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Table 1-1 • Supply Voltages

Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

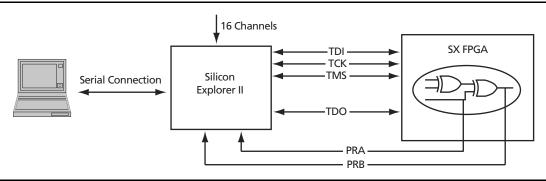


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability.

The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions

Table 1-3 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V _{CCR} ²	DC Supply Voltage ³	-0.3 to + 6.0	V
V_{CCA}^2	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
V _I	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	−30 to + 5.0	mA
T _{STG}	Storage Temperature	–65 to +150	°C

Notes

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.
- 2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.
- 3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

Table 1-4 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to + 70	-40 to + 85	-55 to +125	°C
3.3 V Power Supply Tolerance	±10	±10	±10	%V _{CC}
5.0 V Power Supply Tolerance	±5	±10	±10	%V _{CC}

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Table 1-5 ● **Electrical Specifications**

		Comm	ercial	Indus	Industrial		
Symbol	Parameter	Min.	Мах.	Min.	Max.	Units	
V _{OH}	(I _{OH} = -20 μA) (CMOS)	(V _{CCI} – 0.1)	V _{CCI}	(V _{CCI} – 0.1)	V _{CCI}	V	
	$(I_{OH} = -8 \text{ mA}) \text{ (TTL)}$	2.4	V_{CCI}				
	$(I_{OH} = -6 \text{ mA}) \text{ (TTL)}$			2.4	V_{CCI}		
V _{OL}	(I _{OL} = 20 μA) (CMOS)		0.10			V	
	(I _{OL} = 12 mA) (TTL)		0.50				
	$(I_{OL} = 8 \text{ mA}) \text{ (TTL)}$				0.50		
V_{IL}			8.0		0.8	V	
V_{IH}		2.0		2.0		V	
t _R , t _F	Input Transition Time t _R , t _F		50		50	ns	
C _{IO}	C _{IO} I/O Capacitance		10		10	pF	
I _{CC}	Standby Current, I _{CC}		4.0		4.0	mA	
$I_{CC(D)}$	I _{CC(D)} I _{Dynamic} V _{CC} Supply Current	See '	'Evaluating F	ower in SX Device	es" on page ´	1-16.	

1-8 v3.2

EQ 1-2

Figure 1-9 shows the 5.0 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

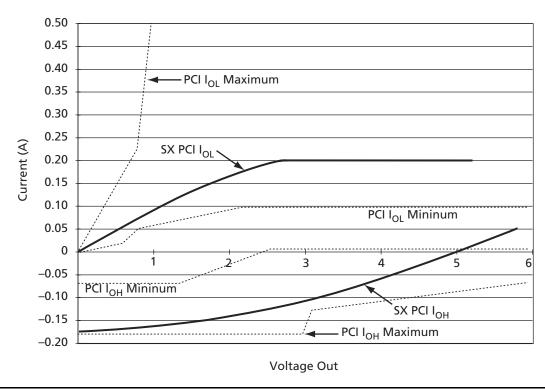


Figure 1-9 • 5.0 V PCI Curve for A54SX16P Device

$$I_{OH} = 11.9 \times (V_{OUT} - 5.25) \times (V_{OUT} + 2.45)$$

$$I_{OL} = 78.5 \times V_{OUT} \times (4.4 - V_{OUT})$$
for $V_{CC} > V_{OUT} > 3.1 \text{ V}$

$$EQ 1-1$$

Power-Up Sequencing

Table 1-10 • Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A545	SX16, A54SX32			
		5.0 V First 3.3 V Second	No possible damage to device	
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11 • Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A54S	X16, A54SX32			_
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			•	_
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Step 1: Define Terms Used in Formula

	V_{CCA}	3.3
Module		
Number of logic modules switching at f_m (Used 50%)	m	264
Average logic modules switching rate f_m (MHz) (Guidelines: f/10)	f _m	20
Module capacitance C _{EQM} (pF)	C_{EQM}	4.0
Input Buffer		
Number of input buffers switching at f_n	n	1
Average input switching rate f _n (MHz) (Guidelines: f/5)	f _n	40
Input buffer capacitance C _{EQI} (pF)	C_{EQI}	3.4
Output Buffer		
Number of output buffers switching at f_p	p	1
Average output buffers switching rate fp(MHz) (Guidelines: f/10)	f_p	20
Output buffers buffer capacitance C _{EQO} (pF)	C_{EQO}	4.7
Output Load capacitance C _L (pF)	C_L	35
RCLKA		
Number of Clock loads q ₁	q_1	528
Capacitance of routed array clock (pF)	C_{EQCR}	1.6
Average clock rate (MHz)	f_{q1}	200
Fixed capacitance (pF)	r ₁	138
RCLKB		
Number of Clock loads q ₂	q_2	0
Capacitance of routed array clock (pF)	C_{EQCR}	1.6
Average clock rate (MHz)	f_{q2}	0
Fixed capacitance (pF)	r ₂	138
HCLK		
Number of Clock loads	s ₁	0
Variable capacitance of dedicated array clock (pF)	C_{EQHV}	0.61 5
Fixed capacitance of dedicated array clock (pF)	C_{EQHF}	96
Average clock rate (MHz)	f_{s1}	0

Step 2: Calculate Dynamic Power Consumption

$V_{CCA} \times V_{CCA}$	10.89
$m \times f_m \times C_{EQM}$	0.02112
$n \times f_n \times C_{EQI}$	0.000136
$p \times f_p \times (C_{EQO} + C_L)$	0.000794
$0.5 (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1})$	0.11208
$0.5(q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2})$	0
$0.5 (s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1})$	0
$P_{AC} = 1.461 \text{ W}$	

Step 3: Calculate DC Power Dissipation DC Power Dissipation

$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + (I_{standby}) \times \\ V_{CCI} &+ X \times V_{OL} \times I_{OL} + Y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

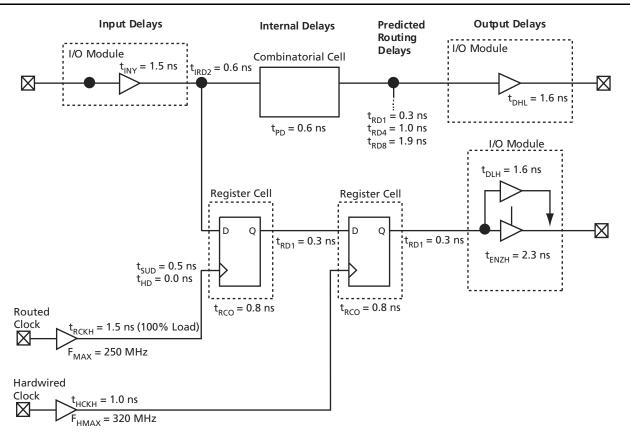
EQ 1-12

For a rough estimate of DC Power Dissipation, only use $P_{DC} = (I_{standby}) \times V_{CCA}$. The rest of the formula provides a very small number that can be considered negligible.

$$P_{DC} = (I_{standby}) \times V_{CCA}$$

 $P_{DC} = .55 \text{ mA} \times 3.3 \text{ V}$
 $P_{DC} = 0.001815 \text{ W}$

Step 4: Calculate Total Power Consumption


$$P_{Total} = P_{AC} + P_{DC}$$

 $P_{Total} = 1.461 + 0.001815$
 $P_{Total} = 1.4628 W$

Step 5: Compare Estimated Power Consumption against Characterized Power Consumption

The estimated total power consumption for this design is 1.46 W. The characterized power consumption for this design at 200 MHz is 1.0164 W.

1-18 v3.2

SX Timing Model

Note: Values shown for A54SX08-3, worst-case commercial conditions.

Figure 1-12 • SX Timing Model

Hardwired Clock Routed Clock External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns= 1.5 + 0.3 + 0.5 - 1.5 = 0.8 nsEQ 1-15 EQ 1-17 Clock-to-Out (Pin-to-Pin) Clock-to-Out (Pin-to-Pin) $= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$ = 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns= 1.52 + 0.8 + 0.3 + 1.6 = 4.2 nsEQ 1-16 EQ 1-18

A54SX16 Timing Characteristics

Table 1-18 • A54SX16 Timing Characteristics (Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

	(Norse case commercial conditions, t		Speed		Speed	'-1' \$	Speed	'Std'	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		8.0		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{RD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ıg									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		8.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		8.0		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	ile Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted In	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		8.0		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		8.0		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Notes:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn},\ t_{RCO}+t_{RD1}+t_{PDn},\ or\ t_{PD1}+t_{RD1}+t_{SUD},\ whichever\ is\ appropriate.$
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
- 3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} , the loading is 5 pF.

1-26 v3.2

144-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function
1	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O
3	I/O	1/0	I/O
4	I/O	1/0	I/O
5	I/O	1/0	I/O
6	I/O	1/0	1/0
7	I/O	1/0	I/O
8	I/O	I/O	1/0
9	TMS	TMS	TMS
10	V _{CCI}	V_{CCI}	V _{CCI}
11	GND	GND	GND
12	I/O	I/O	1/0
13	I/O	1/0	I/O
14	I/O	I/O	1/0
15	I/O	I/O	1/0
16	I/O	I/O	I/O
17	I/O	1/0	1/0
18	I/O	I/O	1/0
19	V_{CCR}	V_{CCR}	V_{CCR}
20	V_{CCA}	V_{CCA}	V_{CCA}
21	I/O	1/0	I/O
22	I/O	1/0	I/O
23	I/O	1/0	I/O
24	I/O	1/0	I/O
25	I/O	1/0	I/O
26	I/O	1/0	I/O
27	I/O	1/0	I/O
28	GND	GND	GND
29	V _{CCI}	V _{CCI}	V _{CCI}
30	V_{CCA}	V _{CCA}	V _{CCA}
31	I/O	1/0	I/O
32	I/O	1/0	I/O
33	I/O	I/O	1/0
34	I/O	I/O	1/0
35	I/O	I/O	I/O
36	GND	GND	GND

144-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function
37	I/O	1/0	I/O
38	I/O	1/0	I/O
39	I/O	1/0	I/O
40	I/O	1/0	I/O
41	I/O	1/0	I/O
42	I/O	1/0	I/O
43	I/O	1/0	I/O
44	V _{CCI}	V _{CCI}	V _{CCI}
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	I/O	I/O	I/O
49	I/O	I/O	I/O
50	I/O	1/0	I/O
51	I/O	1/0	I/O
52	I/O	I/O	I/O
53	I/O	1/0	I/O
54	PRB, I/O	PRB, I/O	PRB, I/O
55	I/O	I/O	I/O
56	V_{CCA}	V_{CCA}	V_{CCA}
57	GND	GND	GND
58	V_{CCR}	V_{CCR}	V_{CCR}
59	I/O	1/0	I/O
60	HCLK	HCLK	HCLK
61	I/O	I/O	I/O
62	I/O	1/0	I/O
63	I/O	1/0	I/O
64	I/O	1/0	I/O
65	I/O	I/O	I/O
66	I/O	I/O	I/O
67	I/O	I/O	I/O
68	V _{CCI}	V _{CCI}	V _{CCI}
69	I/O	I/O	I/O
70	I/O	1/0	I/O
71	TDO, I/O	TDO, I/O	TDO, I/O
72	I/O	I/O	I/O
		-	

2-8 v3.2

176-Pin TQFP

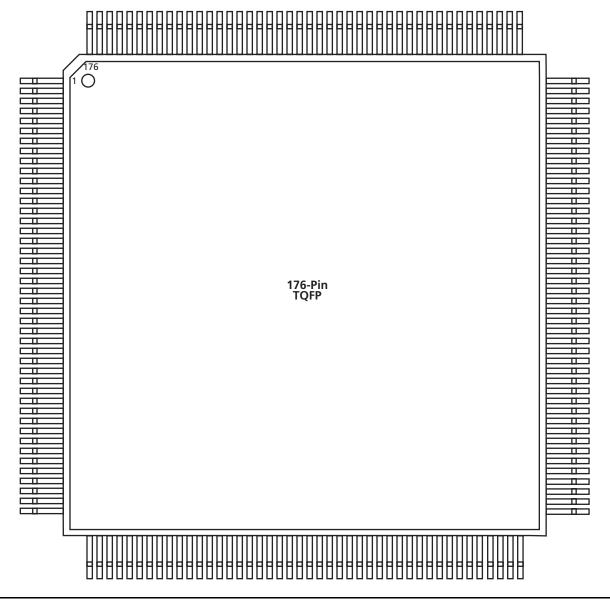


Figure 2-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-10 v3.2

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
69	HCLK	HCLK	HCLK
70	I/O	I/O	I/O
71	I/O	1/0	I/O
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	I/O	I/O	I/O
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	I/O	I/O	I/O
78	I/O	I/O	I/O
79	NC	1/0	I/O
80	I/O	1/0	I/O
81	NC	1/0	I/O
82	V _{CCI}	V _{CCI}	V _{CCI}
83	I/O	I/O	I/O
84	I/O	I/O	I/O
85	I/O	1/0	I/O
86	I/O	1/0	I/O
87	TDO, I/O	TDO, I/O	TDO, I/O
88	I/O	I/O	I/O
89	GND	GND	GND
90	NC	1/0	I/O
91	NC	I/O	I/O
92	I/O	I/O	I/O
93	I/O	1/0	I/O
94	I/O	I/O	I/O
95	I/O	I/O	I/O
96	I/O	I/O	I/O
97	I/O	I/O	I/O
98	V_{CCA}	V _{CCA}	V_{CCA}
99	V _{CCI}	V _{CCI}	V _{CCI}
100	I/O	I/O	I/O
101	I/O	I/O	I/O
102	I/O	1/0	I/O

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
103	1/0	1/0	I/O
104	I/O	1/0	1/0
105	I/O	1/0	I/O
106	I/O	1/0	I/O
107	I/O	I/O	1/0
108	GND	GND	GND
109	V_{CCA}	V_{CCA}	V_{CCA}
110	GND	GND	GND
111	I/O	I/O	1/0
112	I/O	I/O	1/0
113	I/O	I/O	1/0
114	I/O	I/O	I/O
115	I/O	I/O	1/0
116	I/O	I/O	1/0
117	I/O	I/O	I/O
118	NC	I/O	1/0
119	I/O	I/O	1/0
120	NC	1/0	I/O
121	NC	1/0	I/O
122	V_{CCA}	V _{CCA}	V_{CCA}
123	GND	GND	GND
124	V _{CCI}	V _{CCI}	V _{CCI}
125	I/O	I/O	1/0
126	I/O	I/O	1/0
127	I/O	I/O	1/0
128	I/O	I/O	1/0
129	I/O	I/O	1/0
130	I/O	I/O	1/0
131	NC	I/O	I/O
132	NC	I/O	1/0
133	GND	GND	GND
134	I/O	I/O	I/O
135	I/O	I/O	I/O
136	I/O	1/0	I/O

2-12 v3.2

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
137	I/O	I/O	I/O
138	I/O	I/O	1/0
139	I/O	I/O	I/O
140	V _{CCI}	V _{CCI}	V _{CCI}
141	I/O	I/O	1/0
142	I/O	I/O	I/O
143	I/O	I/O	1/0
144	I/O	I/O	I/O
145	I/O	I/O	1/0
146	I/O	I/O	1/0
147	I/O	I/O	I/O
148	I/O	I/O	I/O
149	I/O	I/O	1/0
150	I/O	I/O	I/O
151	I/O	I/O	I/O
152	CLKA	CLKA	CLKA
153	CLKB	CLKB	CLKB
154	V_{CCR}	V_{CCR}	V_{CCR}
155	GND	GND	GND
156	V_{CCA}	V_{CCA}	V_{CCA}

176-Pin TQFP			
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
157	PRA, I/O	PRA, I/O	PRA, I/O
158	I/O	I/O	1/0
159	I/O	I/O	1/0
160	I/O	I/O	1/0
161	I/O	I/O	1/0
162	I/O	I/O	1/0
163	I/O	I/O	1/0
164	I/O	I/O	1/0
165	I/O	I/O	1/0
166	I/O	I/O	1/0
167	I/O	I/O	1/0
168	NC	I/O	1/0
169	V _{CCI}	V _{CCI}	V _{CCI}
170	I/O	I/O	1/0
171	NC	I/O	1/0
172	NC	I/O	1/0
173	NC	I/O	I/O
174	I/O	I/O	1/0
175	I/O	I/O	1/0
176	TCK, I/O	TCK, I/O	TCK, I/O

v3.2 2-13

100-Pin VQFP

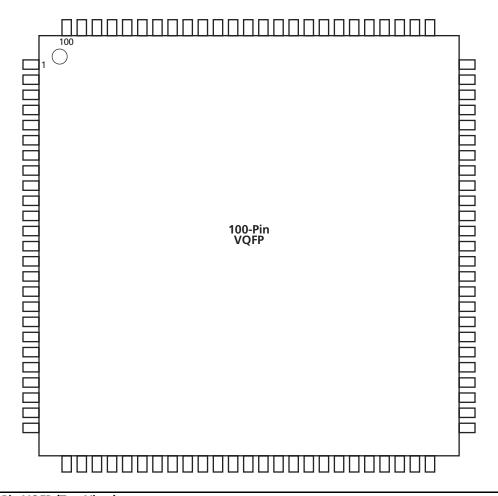


Figure 2-5 • 100-Pin VQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

2-14 v3.2

313-Pin PBGA		
Pin	A54SX32	
Number	Function	
A1	GND	
A3	NC	
A5	1/0	
A7	1/0	
A9	1/0	
A11	I/O	
A13	V_{CCR}	
A15	I/O	
A17	1/0	
A19	1/0	
A21	I/O	
A23	NC	
A25	GND	
AA1	I/O	
AA3	I/O	
AA5	NC	
AA7	I/O	
AA9	NC	
AA11	I/O	
AA13	1/0	
AA15	I/O	
AA17	1/0	
AA19	I/O	
AA21	1/0	
AA23	NC	
AA25	I/O	
AB2	NC	
AB4	NC	
AB6	1/0	
AB8	I/O	
AB10	1/0	
AB12	I/O	
AB14	1/0	
AB16	1/0	
AB18	V _{CCI}	
AB20	NC	
AB22	I/O	
AB24	I/O	
AC1	I/O	
AC3	I/O	

313-Pin DRGA		
313-Pin PBGA		
Pin Number	A54SX32 Function	
AC5	I/O	
AC7	1/0	
AC9	I/O	
AC11	I/O	
AC13	V_{CCR}	
AC15	I/O	
AC17	I/O	
AC19	I/O	
AC21	1/0	
AC23	1/0	
AC25	NC	
AD2	GND	
AD4	I/O	
AD6	V _{CCI}	
AD8	1/0	
AD10	I/O	
AD12	PRB, I/O	
AD14	1/0	
AD16	1/0	
AD18	1/0	
AD20	1/0	
AD22	NC	
AD24	1/0	
AE1	NC NC	
AE3	1/0	
AE5	1/0	
AE7	1/0	
AE9	1/0	
AE11	1/0	
AE13	V _{CCA}	
AE15	I/O	
AE17	1/0	
AE19	1/0	
AE21	1/0	
AE23	TDO, I/O	
AE25	GND	
B2	TCK, I/O	
B4	/O	
B6	1/0	
B8	1/0	
Dδ	1/0	

313-Pin PBGA		
Pin	A54SX32	
Number	Function	
B10	I/O	
B12	I/O	
B14	I/O	
B16	1/0	
B18	I/O	
B20	I/O	
B22	I/O	
B24	1/0	
C1	TDI, I/O	
C3	1/0	
C5	NC	
C7	1/0	
C9	I/O	
C11	I/O	
C13	V _{CCI}	
C15	I/O	
C17	I/O	
C19	V _{CCI}	
C21	I/O	
C23	I/O	
C25	NC	
D2	1/0	
D4	NC	
D6	1/0	
D8	I/O	
D10	I/O	
D12	I/O	
D14	I/O	
D16	I/O	
D18	I/O	
D20	I/O	
D22	I/O	
D24	NC	
E1	I/O	
E3	NC	
E5	I/O	
E7	I/O	
E9	I/O	
E11	I/O	
E13	V_{CCA}	

313-Pin PBGA		
Pin	A54SX32	
Number	Function	
E15	I/O	
E17	I/O	
E19	I/O	
E21	I/O	
E23	I/O	
E25	I/O	
F2	I/O	
F4	I/O	
F6	NC	
F8	I/O	
F10	NC	
F12	I/O	
F14	I/O	
F16	NC	
F18	I/O	
F20	I/O	
F22	I/O	
F24	I/O	
G1	I/O	
G3	TMS	
G5	I/O	
G7	I/O	
G9	V _{CCI}	
G11	I/O	
G13	CLKB	
G15	I/O	
G17	I/O	
G19	I/O	
G21	I/O	
G23	I/O	
G25	I/O	
H2	1/0	
H4	1/0	
H6	1/0	
H8	I/O	
H10	I/O	
H12	PRA, I/O	
H14	1/0	
H16	I/O	
H18	NC	
ПО	IVC	

v3.2 2-17

329-Pin PBGA		
Pin Number	A54SX32 Function	
T22	1/0	
T23	I/O	
U1	I/O	
U2	I/O	
U3	V_{CCA}	
U4	I/O	
U20	I/O	
U21	V_{CCA}	
U22	I/O	
U23	I/O	
V1	V _{CCI}	
V2	I/O	
V3	I/O	

329-Pin PBGA		
Pin Number	A54SX32 Function	
V4	I/O	
V20	I/O	
V21	I/O	
V22	I/O	
V23	I/O	
W1	I/O	
W2	I/O	
W3	I/O	
W4	I/O	
W20	I/O	
W21	I/O	
W22	I/O	

329-Pin PBGA	
Pin Number	A54SX32 Function
W23	NC
Y1	NC
Y2	I/O
Y3	1/0
Y4	GND
Y5	I/O
Y6	1/0
Y7	1/0
Y8	1/0
Y9	1/0
Y10	1/0
Y11	I/O

329-Pin PBGA	
Pin Number	A54SX32 Function
Y12	V_{CCA}
Y13	V_{CCR}
Y14	1/0
Y15	1/0
Y16	1/0
Y17	I/O
Y18	I/O
Y19	I/O
Y20	GND
Y21	I/O
Y22	I/O
Y23	I/O

2-22 v3.2

144-Pin FBGA	
Pin Number	A54SX08 Function
A1	I/O
A2	I/O
А3	I/O
A4	I/O
A5	V_{CCA}
A6	GND
A7	CLKA
A8	I/O
A9	I/O
A10	I/O
A11	I/O
A12	I/O
B1	I/O
B2	GND
В3	I/O
B4	I/O
B5	I/O
В6	I/O
В7	CLKB
B8	I/O
B9	I/O
B10	I/O
B11	GND
B12	1/0
C1	I/O
C2	I/O
C3	TCK, I/O
C4	I/O
C5	I/O
C6	PRA, I/O
C7	I/O
C8	I/O
C9	I/O
C10	I/O
C11	I/O
C12	I/O

144-Pin FBGA		
Pin Number	A545X08 Function	
D1	1/0	
D2	V _{CCI}	
D3	TDI, I/O	
D4	I/O	
D5	I/O	
D6	I/O	
D7	I/O	
D8	1/0	
D9	1/0	
D10	1/0	
D11	I/O	
D12	I/O	
E1	I/O	
E2	I/O	
E3	I/O	
E4	I/O	
E5	TMS	
E6	V _{CCI}	
E7	V _{CCI}	
E8	V _{CCI}	
E9	V_{CCA}	
E10	1/0	
E11	GND	
E12	1/0	
F1	1/0	
F2	1/0	
F3	V_{CCR}	
F4	1/0	
F5	GND	
F6	GND	
F7	GND	
F8	V _{CCI}	
F9	I/O	
F10	GND	
F11	1/0	
F12	1/0	

144-Pin FBGA	
Pin Number	A54SX08 Function
G1	I/O
G2	GND
G3	I/O
G4	I/O
G5	GND
G6	GND
G7	GND
G8	V _{CCI}
G9	I/O
G10	I/O
G11	I/O
G12	I/O
H1	I/O
H2	I/O
Н3	I/O
H4	I/O
H5	V _{CCA} V _{CCA} V _{CCI} V _{CCI}
H6	V_{CCA}
H7	V _{CCI}
Н8	V _{CCI}
H9	V _{CCA}
H10	1/0
H11	1/0
H12	V_{CCR}
J1	1/0
J2	I/O
J3	I/O
J4	I/O
J5	1/0
J6	PRB, I/O
J7	I/O
J8	I/O
J9	I/O
J10	I/O
J11	I/O
J12	V_{CCA}

144-Pin FBGA		
Pin Number	A54SX08 Function	
K1	I/O	
K2	I/O	
K3	I/O	
K4	I/O	
K5	I/O	
K6	I/O	
K7	GND	
K8	I/O	
К9	I/O	
K10	GND	
K11	I/O	
K12	I/O	
L1	GND	
L2	I/O	
L3	I/O	
L4	I/O	
L5	I/O	
L6	I/O	
L7	HCLK	
L8	I/O	
L9	I/O	
L10	1/0	
L11	1/0	
L12	I/O	
M1	I/O	
M2	1/0	
M3	I/O	
M4	I/O	
M5	1/0	
M6	1/0	
M7	V_{CCA}	
M8	I/O	
M9	I/O	
M10	I/O	
M11	TDO, I/O	
M12	I/O	

2-24 v3.2