

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	203
Number of Gates	48000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	256-BFCQFP Exposed Pad and Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx32-1cq256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

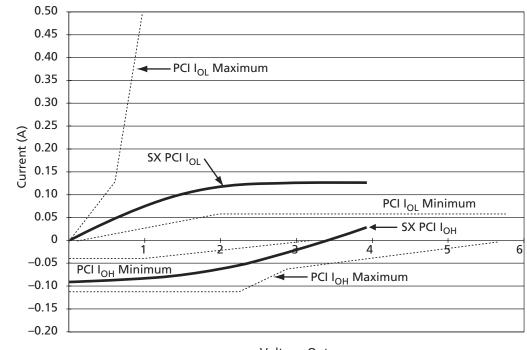


Figure 1-10 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P device.

Voltage Out

Figure 1-10 • 3.3 V PCI Curve for A54SX16P Device

 $I_{OH} = (98.0/V_{CC}) \times (V_{OUT} - V_{CC}) \times (V_{OUT} + 0.4V_{CC})$ for V_{CC} > V_{OUT} > 0.7 V_{CC} $I_{OL} = (256/V_{CC}) \times V_{OUT} \times (V_{CC} - V_{OUT})$ for 0 V < V_{OUT} < 0.18 V_{CC}

EQ 1-3

EQ 1-4

Power-Up Sequencing

Table 1-10Power-Up Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Up Sequence	Comments
A54SX08, A549	X16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
A54SX16P				
3.3 V	3.3 V	3.3 V	3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	Possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) before completion of power-up.

Power-Down Sequencing

Table 1-11Power-Down Sequencing

V _{CCA}	V _{CCR}	V _{CCI}	Power-Down Sequence	Comments
A54SX08, A549	5X16, A54SX32			
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
A54SX16P			·	
3.3 V	V 3.3 V 3.3 V		3.3 V Only	No possible damage to device
3.3 V	5.0 V	3.3 V	5.0 V First 3.3 V Second	Possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device
3.3 V	5.0 V	5.0 V	5.0 V First 3.3 V Second	No possible damage to device
			3.3 V First 5.0 V Second	No possible damage to device

Note: No inputs should be driven (high or low) after the beginning of the power-down sequence.

Table 1-13 shows capacitance values for various devices.

	A54SX08	A54SX16	A54SX16P	A54SX32
C _{EQM} (pF)	4.0	4.0	4.0	4.0
C _{EQI} (pF)	3.4	3.4	3.4	3.4
C _{EQO} (pF)	4.7	4.7	4.7	4.7
C _{EQCR} (pF)	1.6	1.6	1.6	1.6
C _{EQHV}	0.615	0.615	0.615	0.615
C _{EQHF}	60	96	96	140
r ₁ (pF)	87	138	138	171
r ₂ (pF)	87	138	138	171

 Table 1-13
 Capacitance Values for Devices

Table 1-14 • Power Consumption Guidelines

Guidelines for Calculating Power Consumption

The power consumption guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are shown in Table 1-14.

Sample Power Calculation

One of the designs used to characterize the SX family was a 528 bit serial-in, serial-out shift register. The design utilized 100 percent of the dedicated flip-flops of an A54SX16P device. A pattern of 0101... was clocked into the device at frequencies ranging from 1 MHz to 200 MHz. Shifting in a series of 0101... caused 50 percent of the flip-flops to toggle from low to high at every clock cycle.

Description	Power Consumption Guideline
Logic Modules (m)	20% of modules
Inputs Switching (n)	# inputs/4
Outputs Switching (p)	# outputs/4
First Routed Array Clock Loads (q ₁)	20% of register cells
Second Routed Array Clock Loads (q ₂)	20% of register cells
Load Capacitance (C _L)	35 pF
Average Logic Module Switching Rate (f _m)	f/10
Average Input Switching Rate (f _n)	f/5
Average Output Switching Rate (f _p)	f/10
Average First Routed Array Clock Rate (f _{q1})	f/2
Average Second Routed Array Clock Rate (f _{q2})	f/2
Average Dedicated Array Clock Rate (f _{s1})	f
Dedicated Clock Array Clock Loads (s ₁)	20% of regular modules

Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption.

The total power dissipation for the SX family is the sum of the AC power dissipation and the DC power dissipation.

$$P_{Total} = P_{AC}$$
 (dynamic power) + P_{DC} (static power)

EQ 1-9

AC Power Dissipation

 $P_{AC} = P_{Module} + P_{RCLKA Net} + P_{RCLKB Net} + P_{HCLK Net} + P_{Output Buffer} + P_{Input Buffer}$

$$\begin{split} P_{AC} &= V_{CCA}^2 \times [(m \times C_{EQM} \times f_m)_{Module} + \\ (n \times C_{EQI} \times f_n)_{Input Buffer} + (p \times (C_{EQO} + C_L) \times f_p)_{Output Buffer} + \\ (0.5 & (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1}))_{RCLKA} + \\ (0.5 & (q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2}))_{RCLKB} + \\ (0.5 & (s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1}))_{HCLK}] \end{split}$$

EQ 1-11

Figure 1-11 shows the characterized power dissipation numbers for the shift register design using frequencies ranging from 1 MHz to 200 MHz.

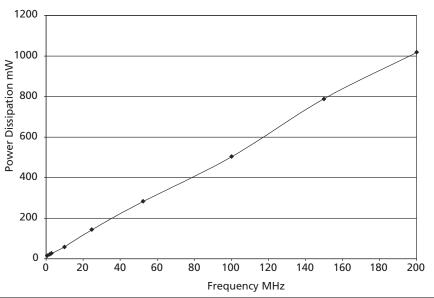


Figure 1-11 • Power Dissipation

Junction Temperature (T_J)

The temperature that you select in Designer Series software is the junction temperature, not ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Use the equation below to calculate junction temperature.

Junction Temperature =
$$\Delta T + T_a$$

Where:

 $T_a = Ambient Temperature$

 ΔT = Temperature gradient between junction (silicon) and ambient

 $\Delta T = \theta_{ja} \times P$

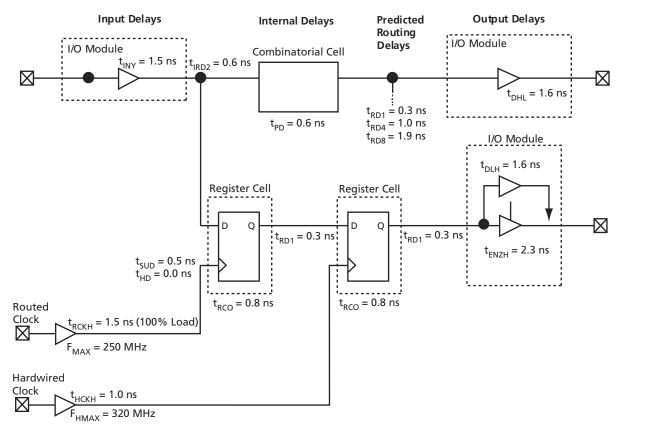
- P = Power calculated from Estimating Power Consumption section
- θ_{ja} = Junction to ambient of package. θ_{ja} numbers are located in the "Package Thermal Characteristics" section.

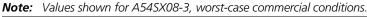
Package Thermal Characteristics

The device junction to case thermal characteristic is θ_{jc} , and the junction to ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150 °C.

A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follows:


Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C) - Max. ambient temp. (°C)}}{\theta_{ja}} = \frac{150^{\circ}\text{C} - 70^{\circ}\text{C}}{28^{\circ}\text{C/W}} = 2.86 \text{ W}$$


EQ 1-13

EQ 1-14

SX Timing Model

Figure 1-12 • SX Timing Model

Hardwired Clock

External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns

Clock-to-Out (Pin-to-Pin)

$$= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$$

= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 r

EQ 1-16

Routed Clock

	External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ = 1.5 + 0.3 + 0.5 - 1.5 = 0.8 ns	
EQ 1-15		EQ 1-17
	Clock-to-Out (Pin-to-Pin)	
	$= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$	
	= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns	
EO 1-16		EQ 1-18

Register Cell Timing Characteristics

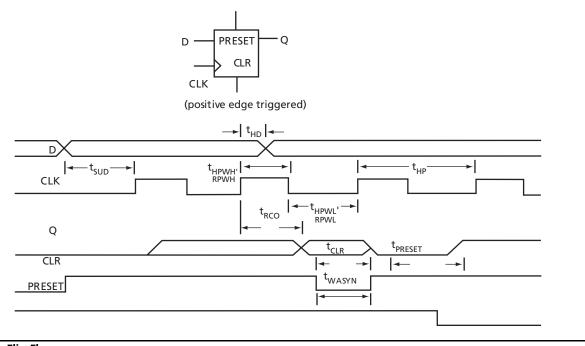


Figure 1-17 • Flip-Flops

Timing Characteristics

Timing characteristics for SX devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the DirectTime Analyzer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timecritical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout (FO = 24) routing delays in the datasheet specifications section.

Timing Derating

SX devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

A54SX16P Timing Characteristics

Table 1-19 • A54SX16P Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'–2' Speed		'–1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.9		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted Ir	put Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

(Worst-Case Commercial Conditions,	$V_{CCR} = 4.75 V, V_{CC}$	$C_A, V_{CCI} = 3.0 \text{ V}, \text{ T}_J = 70^{\circ}\text{C}$
------------------------------------	----------------------------	--

		'-3' :	Speed	'-2' !	Speed	'-1' :	Speed	'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Network									
t _{HCKH}	Input LOW to HIGH (pad to R-Cell input)		1.2		1.4		1.5		1.8	ns
t _{HCKL}	Input HIGH to LOW (pad to R-Cell input)		1.2		1.4		1.6		1.9	ns
t _{HPWH}	Minimum Pulse Width HIGH	1.4		1.6		1.8		2.1		ns
t _{HPWL}	Minimum Pulse Width LOW	1.4		1.6		1.8		2.1		ns
t _{HCKSW}	Maximum Skew		0.2		0.2		0.3		0.3	ns
t _{HP}	Minimum Period	2.7		3.1		3.6		4.2		ns
f _{HMAX}	Maximum Frequency		350		320		280		240	MHz
Routed Arra	ay Clock Networks									
t _{RCKH}	Input LOW to HIGH (light load) (pad to R-Cell input)		1.6		1.8		2.1		2.5	ns
t _{RCKL}	Input HIGH to LOW (Light Load) (pad to R-Cell input)		1.8		2.0		2.3		2.7	ns
t _{RCKH}	Input LOW to HIGH (50% load) (pad to R-Cell input)		1.8		2.1		2.5		2.8	ns
t _{RCKL}	Input HIGH to LOW (50% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RCKH}	Input LOW to HIGH (100% load) (pad to R-Cell input)		1.8		2.1		2.4		2.8	ns
t _{RCKL}	Input HIGH to LOW (100% load) (pad to R-Cell input)		2.0		2.2		2.5		3.0	ns
t _{RPWH}	Min. Pulse Width HIGH	2.1		2.4		2.7		3.2		ns
t _{RPWL}	Min. Pulse Width LOW	2.1		2.4		2.7		3.2		ns
t _{RCKSW}	Maximum Skew (light load)		0.5		0.5		0.5		0.7	ns
t _{RCKSW}	Maximum Skew (50% load)		0.5		0.6		0.7		0.8	ns
t _{RCKSW}	Maximum Skew (100% load)		0.5		0.6		0.7		0.8	ns
TTL Output	Module Timing									
t _{DLH}	Data-to-Pad LOW to HIGH		2.4		2.8		3.1		3.7	ns
t _{DHL}	Data-to-Pad HIGH to LOW		2.3		2.9		3.2		3.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		3.0		3.4		3.9		4.6	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.3		3.8		4.3		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.3		2.7		3.0		3.5	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 10 pF loading.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA} , V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	'–3' Speed		'-2' Speed		'-1' Speed		'Std' Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Prop	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timi	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted I	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Package Pin Assignments

84-Pin PLCC

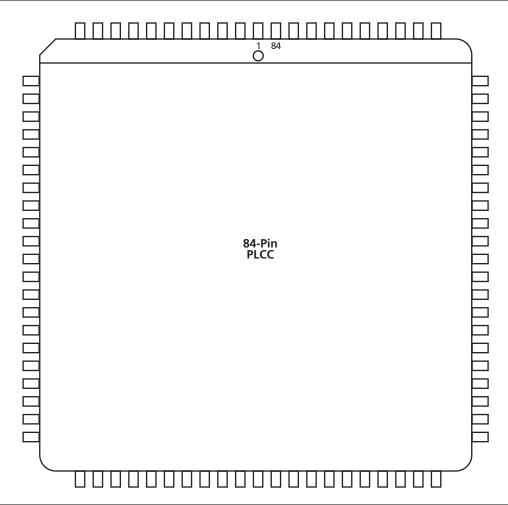


Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

84-Pin	84-Pin PLCC						
Pin Number	A54SX08 Function						
1	V _{CCR}						
2	GND						
3	V _{CCA}						
4	PRA, I/O						
5	I/O						
6	I/O						
7	V _{CCI}						
8	I/O						
9	I/O						
10	I/O						
11	TCK, I/O						
12	TDI, I/O						
13	I/O						
14	I/O						
15	I/O						
16	TMS						
17	I/O						
18	I/O						
19	I/O						
20	I/O						
21	I/O						
22	I/O						
23	I/O						
24	I/O						
25	I/O						
26	I/O						
27	GND						
28	V _{CCI}						
29	I/O						
30	I/O						
31	I/O						
32	I/O						
33	I/O						
34	I/O						
35	I/O						

84-Pin PLCC			
Pin Number	A54SX08 Function		
36	I/O		
37	I/O		
38	I/O		
39	I/O		
40	PRB, I/O		
41	V _{CCA}		
42	GND		
43	V _{CCR}		
44	I/O		
45	HCLK		
46	I/O		
47	I/O		
48	I/O		
49	I/O		
50	I/O		
51	I/O		
52	TDO, I/O		
53	I/O		
54	I/O		
55	I/O		
56	I/O		
57	I/O		
58	I/O		
59	V _{CCA}		
60	V _{CCI}		
61	GND		
62	I/O		
63	I/O		
64	I/O		
65	I/O		
66	I/O		
67	I/O		
68	V _{CCA}		
69	GND		
70	I/O		

84-Pin PLCC				
Pin Number	A54SX08 Function			
71	I/O			
72	I/O			
73	I/O			
74	I/O			
75	I/O			
76	I/O			
77	I/O			
78	I/O			
79	I/O			
80	I/O			
81	I/O			
82	I/O			
83	CLKA			
84	CLKB			

208-Pin PQFP			208-Pin PQFP				
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
145	V _{CCA}	V _{CCA}	V _{CCA}	181	CLKB	CLKB	CLKB
146	GND	GND	GND	182	V _{CCR}	V _{CCR}	V _{CCR}
147	I/O	I/O	I/O	183	GND	GND	GND
148	V _{CCI}	V _{CCI}	V _{CCI}	184	V _{CCA}	V _{CCA}	V _{CCA}
149	I/O	I/O	I/O	185	GND	GND	GND
150	I/O	I/O	I/O	186	PRA, I/O	PRA, I/O	PRA, I/O
151	I/O	I/O	I/O	187	I/O	I/O	I/O
152	I/O	I/O	I/O	188	I/O	I/O	I/O
153	I/O	I/O	I/O	189	NC	I/O	I/O
154	I/O	I/O	I/O	190	I/O	I/O	I/O
155	NC	I/O	I/O	191	I/O	I/O	I/O
156	NC	I/O	I/O	192	NC	I/O	I/O
157	GND	GND	GND	193	I/O	I/O	I/O
158	I/O	I/O	I/O	194	I/O	I/O	I/O
159	I/O	I/O	I/O	195	NC	I/O	I/O
160	I/O	I/O	I/O	196	I/O	I/O	I/O
161	I/O	I/O	I/O	197	I/O	I/O	I/O
162	I/O	I/O	I/O	198	NC	I/O	I/O
163	I/O	I/O	I/O	199	I/O	I/O	I/O
164	V _{CCI}	V _{CCI}	V _{CCI}	200	I/O	I/O	I/O
165	I/O	I/O	I/O	201	V _{CCI}	V _{CCI}	V _{CCI}
166	I/O	I/O	I/O	202	NC	I/O	I/O
167	NC	I/O	I/O	203	NC	I/O	I/O
168	I/O	I/O	I/O	204	I/O	I/O	I/O
169	I/O	I/O	I/O	205	NC	I/O	I/O
170	NC	I/O	I/O	206	I/O	I/O	I/O
171	I/O	I/O	I/O	207	I/O	I/O	I/O
172	I/O	I/O	I/O	208	TCK, I/O	TCK, I/O	TCK, I/O
173	NC	I/O	I/O				
174	I/O	I/O	I/O				
175	I/O	I/O	I/O				
176	NC	I/O	I/O				
177	I/O	I/O	I/O				
178	I/O	I/O	I/O				
179	I/O	I/O	I/O				
180	CLKA	CLKA	CLKA				

Note: * Note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).

144-Pin TQFP			144-Pin TQFP				
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function
73	GND	GND	GND	109	GND	GND	GND
74	I/O	I/O	I/O	110	I/O	I/O	I/O
75	I/O	I/O	I/O	111	I/O	I/O	I/O
76	I/O	I/O	I/O	112	I/O	I/O	I/O
77	I/O	I/O	I/O	113	I/O	I/O	I/O
78	I/O	I/O	I/O	114	I/O	I/O	I/O
79	V _{CCA}	V _{CCA}	V _{CCA}	115	V _{CCI}	V _{CCI}	V _{CCI}
80	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O
81	GND	GND	GND	117	I/O	I/O	I/O
82	I/O	I/O	I/O	118	I/O	I/O	I/O
83	I/O	I/O	I/O	119	I/O	I/O	I/O
84	I/O	I/O	I/O	120	I/O	I/O	I/O
85	I/O	I/O	I/O	121	I/O	I/O	I/O
86	I/O	I/O	I/O	122	I/O	I/O	I/O
87	I/O	I/O	I/O	123	I/O	I/O	I/O
88	I/O	I/O	I/O	124	I/O	I/O	I/O
89	V _{CCA}	V _{CCA}	V _{CCA}	125	CLKA	CLKA	CLKA
90	V _{CCR}	V _{CCR}	V _{CCR}	126	CLKB	CLKB	CLKB
91	I/O	I/O	I/O	127	V _{CCR}	V _{CCR}	V _{CCR}
92	I/O	I/O	I/O	128	GND	GND	GND
93	I/O	I/O	I/O	129	V _{CCA}	V _{CCA}	V _{CCA}
94	I/O	I/O	I/O	130	I/O	I/O	I/O
95	I/O	I/O	I/O	131	PRA, I/O	PRA, I/O	PRA, I/O
96	I/O	I/O	I/O	132	I/O	I/O	I/O
97	I/O	I/O	I/O	133	I/O	I/O	I/O
98	V _{CCA}	V _{CCA}	V _{CCA}	134	I/O	I/O	I/O
99	GND	GND	GND	135	I/O	I/O	I/O
100	I/O	I/O	I/O	136	I/O	I/O	I/O
101	GND	GND	GND	137	I/O	I/O	I/O
102	V _{CCI}	V _{CCI}	V _{CCI}	138	I/O	I/O	I/O
103	I/O	I/O	I/O	139	I/O	I/O	I/O
104	I/O	I/O	I/O	140	V _{CCI}	V _{CCI}	V _{CCI}
105	I/O	I/O	I/O	141	I/O	I/O	I/O
106	I/O	I/O	I/O	142	I/O	I/O	I/O
107	I/O	I/O	I/O	143	I/O	I/O	I/O
108	I/O	I/O	I/O	144	TCK, I/O	TCK, I/O	TCK, I/O

176-Pin TQFP

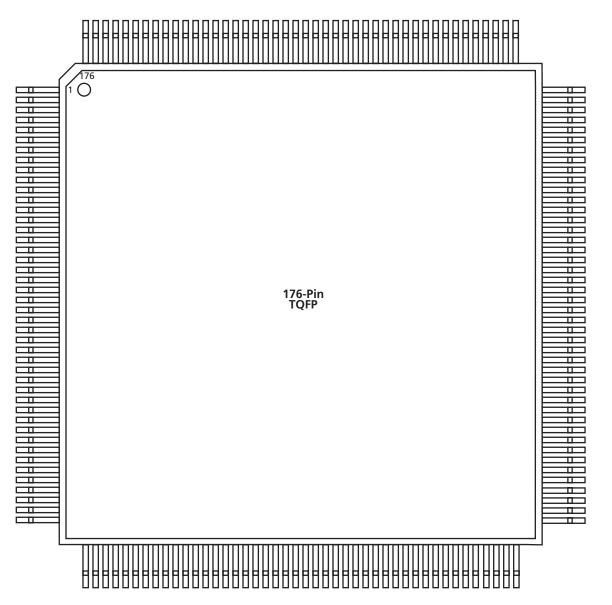


Figure 2-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

176-Pin TQFP			176-Pin TQFP				
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function
137	I/O	I/O	I/O	157	PRA, I/O	PRA, I/O	PRA, I/O
138	I/O	I/O	I/O	158	I/O	I/O	I/O
139	I/O	I/O	I/O	159	I/O	I/O	I/O
140	V _{CCI}	V _{CCI}	V _{CCI}	160	I/O	I/O	I/O
141	I/O	I/O	I/O	161	I/O	I/O	I/O
142	I/O	I/O	I/O	162	I/O	I/O	I/O
143	I/O	I/O	I/O	163	I/O	I/O	I/O
144	I/O	I/O	I/O	164	I/O	I/O	I/O
145	I/O	I/O	I/O	165	I/O	I/O	I/O
146	I/O	I/O	I/O	166	I/O	I/O	I/O
147	I/O	I/O	I/O	167	I/O	I/O	I/O
148	I/O	I/O	I/O	168	NC	I/O	I/O
149	I/O	I/O	I/O	169	V _{CCI}	V _{CCI}	V _{CCI}
150	I/O	I/O	I/O	170	I/O	I/O	I/O
151	I/O	I/O	I/O	171	NC	I/O	I/O
152	CLKA	CLKA	CLKA	172	NC	I/O	I/O
153	CLKB	CLKB	CLKB	173	NC	I/O	I/O
154	V _{CCR}	V _{CCR}	V _{CCR}	174	I/O	I/O	I/O
155	GND	GND	GND	175	I/O	I/O	I/O
156	V _{CCA}	V _{CCA}	V _{CCA}	176	TCK, I/O	TCK, I/O	TCK, I/O

313-Pin PBGA

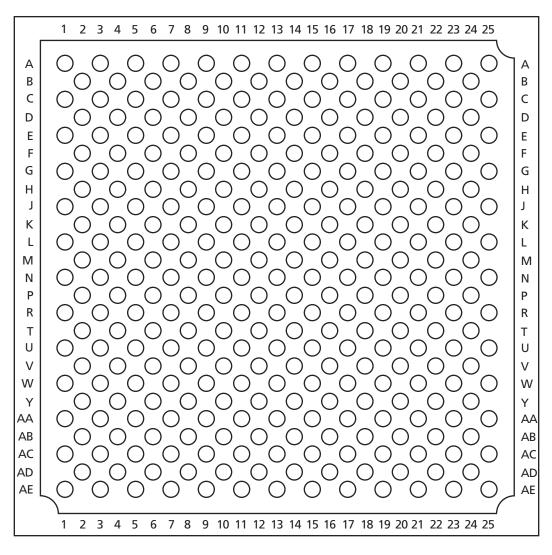


Figure 2-6 • 313-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pin PBGA				
Pin Number	A54SX32 Function			
T22	I/O			
T23	I/O			
U1	I/O			
U2	I/O			
U3	V _{CCA}			
U4	I/O			
U20	I/O			
U21	V _{CCA}			
U22	I/O			
U23	I/O			
V1	V _{CCI}			
V2	I/O			
V3	I/O			

329-Pin PBGA				
Pin Number	A54SX32 Function			
V4	I/O			
V20	I/O			
V21	I/O			
V22	I/O			
V23	I/O			
W1	I/O			
W2	I/O			
W3	I/O			
W4	I/O			
W20	I/O			
W21	I/O			
W22	I/O			

329-Pin PBGA			
Pin Number	A54SX32 Function		
W23	NC		
Y1	NC		
Y2	I/O		
Y3	I/O		
Y4	GND		
Y5	I/O		
Y6	I/O		
Y7	I/O		
Y8	I/O		
Y9	I/O		
Y10	I/O		
Y11	I/O		

329-Pi	329-Pin PBGA				
Pin Number	A54SX32 Function				
Y12	V _{CCA}				
Y13	V _{CCR}				
Y14	I/O				
Y15	I/O				
Y16	I/O				
Y17	I/O				
Y18	I/O				
Y19	I/O				
Y20	GND				
Y21	I/O				
Y22	I/O				
Y23	I/O				

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v3.2)	Page
v3.1	The "Ordering Information" was updated to include RoHS information.	1-ii
(June 2003)	The Product Plan was removed since all products have been released.	N/A
	Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.	1-6
	The "Dedicated Test Mode" section is new.	1-6
	The "Programming" section is new.	1-7
	A note was added to the "Power-Up Sequencing" table.	1-15
	A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32.	1-15
	U11 and U13 were added to the "313-Pin PBGA" table.	2-17
v3.0.1	Storage temperature in Table 1-3 was updated.	1-7
	Table 1-1 was updated.	1-5

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

Actel Europe Ltd.

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600 Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom **Phone** +44 (0) 1276 401 450 **Fax** +44 (0) 1276 401 490 Actel Japan www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668

Actel Hong Kong

www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488