

Welcome to E-XFL.COM

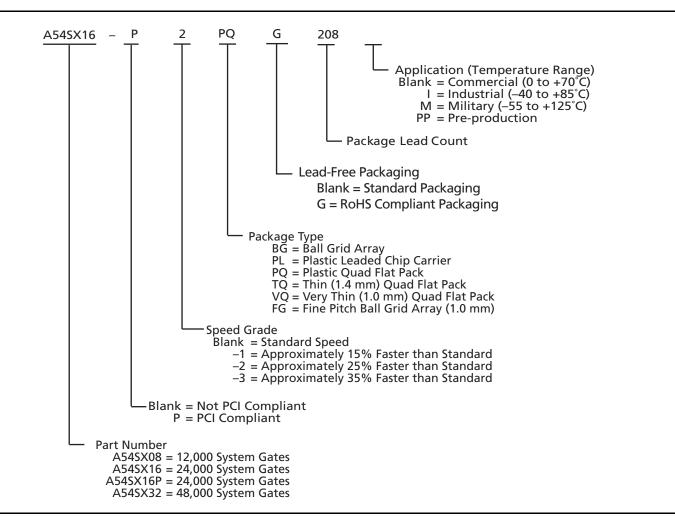
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


E·XFI

Details	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	113
Number of Gates	48000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32-1tqg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Plastic Device Resources

	User I/Os (including clock buffers)							
Device	PLCC 84-Pin	VQFP 100-Pin	PQFP 208-Pin	TQFP 144-Pin	TQFP 176-Pin	PBGA 313-Pin	PBGA 329-Pin	FBGA 144-Pin
A54SX08	69	81	130	113	128	-	-	111
A54SX16	-	81	175	-	147	-	-	-
A54SX16P	-	81	175	113	147	-	-	-
A54SX32	_	_	174	113	147	249	249	-

Note: Package Definitions (Consult your local Actel sales representative for product availability):

PLCC = Plastic Leaded Chip Carrier

PQFP = Plastic Quad Flat Pack

TQFP = Thin Quad Flat Pack

VQFP = Very Thin Quad Flat Pack

PBGA = Plastic Ball Grid Array

FBGA = Fine Pitch (1.0 mm) Ball Grid Array

Routing Resources

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called *FastConnect* and *DirectConnect*, which enable extremely fast and predictable interconnection of modules within clusters and SuperClusters (Figure 1-5 and Figure 1-6). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance.

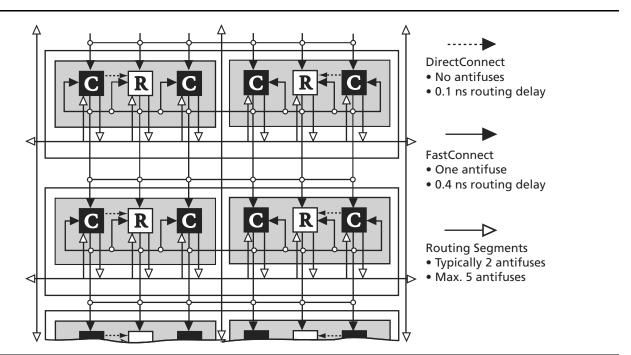
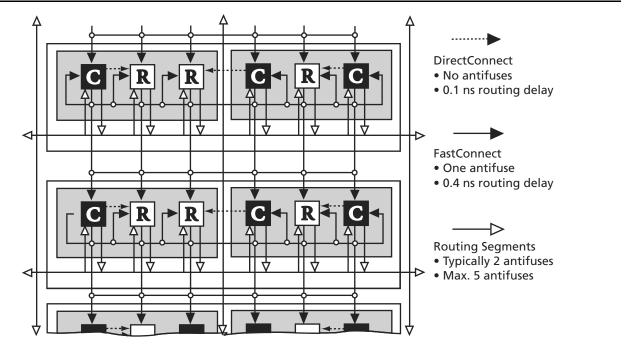



Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • **DirectConnect and FastConnect for Type 2 SuperClusters**

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring Rcell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering maximum pin-to-pin propagation of 0.4 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100 percent automatic place-and-route software to minimize signal propagation delays.

The Actel high-drive routing structure provides three clock networks. The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexer (MUX) in each R-cell. This provides a fast propagation path for the clock signal, enabling the 3.7 ns clock-to-out (pin-to-pin) performance of the SX devices. The hardwired clock is tuned to provide clock skew as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX device.

Other Architectural Features

Technology

The Actel SX family is implemented on a high-voltage twin-well CMOS process using 0.35 μ design rules. The metal-to-metal antifuse is made up of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ("on" state) resistance of 25 Ω with a capacitance of 1.0 fF for low signal impedance.

Performance

The combination of architectural features described above enables SX devices to operate with internal clock frequencies exceeding 300 MHz, enabling very fast execution of even complex logic functions. Thus, the SX family is an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can now be integrated into an SX device with dramatic improvements in cost and time to market. Using timingdriven place-and-route tools, designers can achieve highly deterministic device performance. With SX devices, designers do not need to use complicated performance-enhancing design techniques such as the use of redundant logic to reduce fanout on critical nets or the instantiation of macros in HDL code to achieve high performance.

I/O Modules

Each I/O on an SX device can be configured as an input, an output, a tristate output, or a bidirectional pin.

Even without the inclusion of dedicated I/O registers, these I/Os, in combination with array registers, can achieve clock-to-out (pad-to-pad) timing as fast as 3.7 ns. I/O cells that have embedded latches and flip-flops require instantiation in HDL code; this is a design complication not encountered in SX FPGAs. Fast pin-to-pin timing ensures that the device will have little trouble interfacing with any other device in the system, which in turn enables parallel design of system components and reduces overall design time.

Power Requirements

The SX family supports 3.3 V operation and is designed to tolerate 5.0 V inputs. (Table 1-1). Power consumption is extremely low due to the very short distances signals are required to travel to complete a circuit. Power requirements are further reduced because of the small number of low-resistance antifuses in the path. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM), making it the lowest power architecture on the market.

Dentes		V	V		Maniana Outrat Daire
Device	V _{CCA}	V _{CCI}	V _{CCR}	Maximum Input Tolerance	Maximum Output Drive
A54SX08 A54SX16 A54SX32	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
A54SX16-P*	3.3 V	3.3 V	3.3 V	3.3 V	3.3 V
	3.3 V	3.3 V	5.0 V	5.0 V	3.3 V
	3.3 V	5.0 V	5.0 V	5.0 V	5.0 V

Note: *A54SX16-P has three different entries because it is capable of both a 3.3 V and a 5.0 V drive.

Boundary Scan Testing (BST)

All SX devices are IEEE 1149.1 compliant. SX devices offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. These functions are controlled through the special test pins in conjunction with the program fuse. The functionality of each pin is described in Table 1-2. In the dedicated test mode, TCK, TDI, and TDO are dedicated pins and cannot be used as regular I/Os. In flexible mode, TMS should be set HIGH through a pull-up resistor of 10 k Ω . TMS can be pulled LOW to initiate the test sequence.

The program fuse determines whether the device is in dedicated or flexible mode. The default (fuse not blown) is flexible mode.

Table 1-2 •	Boundary Scan Pin Functionality
-------------	---------------------------------

Program Fuse Blown (Dedicated Test Mode)	Program Fuse Not Blown (Flexible Mode)
TCK, TDI, TDO are dedicated BST pins.	TCK, TDI, TDO are flexible and may be used as I/Os.
No need for pull-up resistor for TMS	Use a pull-up resistor of 10 $k\Omega$ on TMS.

Dedicated Test Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-7). JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the Table 1-5 on page 1-8 for detailed specifications.

Figure 1-7 • Device Selection Wizard

Development Tool Support

The SX family of FPGAs is fully supported by both the Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram (located on the Actel website) for more information.

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators, and the simulation results can be cross-probed with Silicon Explorer II, Actel integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys[®], and Cadence[®] Design Systems. The Designer software is available for both the Windows® and UNIX® operating systems.

Probe Circuit Control Pins

The Silicon Explorer II tool uses the boundary scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-8 on page 1-7 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

The TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because these pins are active during probing, critical signals input through these pins are not available while probing. In addition, the Security Fuse should not be programmed because doing so disables the Probe Circuitry.

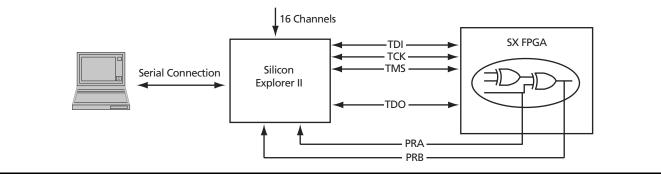


Figure 1-8 • Probe Setup

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor II are compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor II allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor II also provides extensive hardware self-testing capability. The procedure for programming an SX device using Silicon Sculptor II are as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For more details on programming SX devices, refer to the *Programming Antifuse Devices* application note and the *Silicon Sculptor II User's Guide*.

3.3 V / 5 V Operating Conditions *Table 1-3* • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
V _{CCR} ²	DC Supply Voltage ³	-0.3 to + 6.0	V
V _{CCA} ²	DC Supply Voltage	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX08, A54SX16, A54SX32)	-0.3 to + 4.0	V
V _{CCI} ²	DC Supply Voltage (A54SX16P)	-0.3 to + 6.0	V
VI	Input Voltage	-0.5 to + 5.5	V
V _O	Output Voltage	-0.5 to + 3.6	V
I _{IO}	I/O Source Sink Current ³	-30 to + 5.0	mA
T _{STG}	Storage Temperature	-65 to +150	°C

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating Conditions.

2. V_{CCR} in the A54SX16P must be greater than or equal to V_{CCI} during power-up and power-down sequences and during normal operation.

3. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than V_{CC} + 0.5 V or less than GND – 0.5 V, the internal protection diodes will forward-bias and can draw excessive current.

Table 1-13 shows capacitance values for various devices.

	A54SX08	A54SX16	A54SX16P	A54SX32
C _{EQM} (pF)	4.0	4.0	4.0	4.0
C _{EQI} (pF)	3.4	3.4	3.4	3.4
C _{EQO} (pF)	4.7	4.7	4.7	4.7
C _{EQCR} (pF)	1.6	1.6	1.6	1.6
C _{EQHV}	0.615	0.615	0.615	0.615
C _{EQHF}	60	96	96	140
r ₁ (pF)	87	138	138	171
r ₂ (pF)	87	138	138	171

 Table 1-13
 Capacitance Values for Devices

Table 1-14 • Power Consumption Guidelines

Guidelines for Calculating Power Consumption

The power consumption guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are shown in Table 1-14.

Sample Power Calculation

One of the designs used to characterize the SX family was a 528 bit serial-in, serial-out shift register. The design utilized 100 percent of the dedicated flip-flops of an A54SX16P device. A pattern of 0101... was clocked into the device at frequencies ranging from 1 MHz to 200 MHz. Shifting in a series of 0101... caused 50 percent of the flip-flops to toggle from low to high at every clock cycle.

Description	Power Consumption Guideline
Logic Modules (m)	20% of modules
Inputs Switching (n)	# inputs/4
Outputs Switching (p)	# outputs/4
First Routed Array Clock Loads (q ₁)	20% of register cells
Second Routed Array Clock Loads (q ₂)	20% of register cells
Load Capacitance (C _L)	35 pF
Average Logic Module Switching Rate (f _m)	f/10
Average Input Switching Rate (f _n)	f/5
Average Output Switching Rate (f _p)	f/10
Average First Routed Array Clock Rate (f _{q1})	f/2
Average Second Routed Array Clock Rate (f _{q2})	f/2
Average Dedicated Array Clock Rate (f _{s1})	f
Dedicated Clock Array Clock Loads (s ₁)	20% of regular modules

Follow the steps below to estimate power consumption. The values provided for the sample calculation below are for the shift register design above. This method for estimating power consumption is conservative and the actual power consumption of your design may be less than the estimated power consumption.

The total power dissipation for the SX family is the sum of the AC power dissipation and the DC power dissipation.

$$P_{Total} = P_{AC}$$
 (dynamic power) + P_{DC} (static power)

EQ 1-9

AC Power Dissipation

 $P_{AC} = P_{Module} + P_{RCLKA Net} + P_{RCLKB Net} + P_{HCLK Net} + P_{Output Buffer} + P_{Input Buffer}$

$$\begin{split} P_{AC} &= V_{CCA}^2 \times [(m \times C_{EQM} \times f_m)_{Module} + \\ (n \times C_{EQI} \times f_n)_{Input Buffer} + (p \times (C_{EQO} + C_L) \times f_p)_{Output Buffer} + \\ (0.5 & (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1}))_{RCLKA} + \\ (0.5 & (q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2}))_{RCLKB} + \\ (0.5 & (s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1}))_{HCLK}] \end{split}$$

EQ 1-11

Step 1: Define Terms Used in Formula

v

22

	V_{CCA}	3.3
Module		
Number of logic modules switching at f _m (Used 50%)	m	264
Average logic modules switching rate f _m (MHz) (Guidelines: f/10)	f _m	20
Module capacitance C _{EQM} (pF)	C _{EQM}	4.0
Input Buffer		
Number of input buffers switching at f _n	n	1
Average input switching rate f _n (MHz) (Guidelines: f/5)	f _n	40
Input buffer capacitance C _{EQI} (pF)	C _{EQI}	3.4
Output Buffer		
Number of output buffers switching at fp	р	1
Average output buffers switching rate f _p (MHz) (Guidelines: f/10)	f_p	20
Output buffers buffer capacitance C _{EQO} (pF)	C _{EQO}	4.7
Output Load capacitance C _L (pF)	CL	35
RCLKA		
Number of Clock loads q ₁	q ₁	528
Capacitance of routed array clock (pF)	C _{EQCR}	1.6
Average clock rate (MHz)	f _{q1}	200
Fixed capacitance (pF)	r ₁	138
RCLKB		
Number of Clock loads q ₂	q ₂	0
Capacitance of routed array clock (pF)	C _{EQCR}	1.6
Average clock rate (MHz)	f _{q2}	0
Fixed capacitance (pF)	r ₂	138
HCLK		
Number of Clock loads	s ₁	0
Variable capacitance of dedicated array clock (pF)	C _{EQHV}	0.61 5
Fixed capacitance of dedicated array clock (pF)	C _{EQHF}	96
Average clock rate (MHz)	f _{s1}	0

Step 2: Calculate Dynamic Power Consumption

$V_{CCA} \times V_{CCA}$	10.89
$m \times f_m \times C_{EQM}$	0.02112
$n \times f_n \times C_{EQI}$	0.000136
$p \times f_p \times (C_{EQO}+C_L)$	0.000794
$0.5 (q_1 \times C_{EQCR} \times f_{q1}) + (r_1 \times f_{q1})$	0.11208
$0.5(q_2 \times C_{EQCR} \times f_{q2}) + (r_2 \times f_{q2})$	0
$0.5~(s_1 \times C_{EQHV} \times f_{s1}) + (C_{EQHF} \times f_{s1})$	0
$P_{AC} = 1.461 \text{ W}$	

Step 3: Calculate DC Power Dissipation DC Power Dissipation

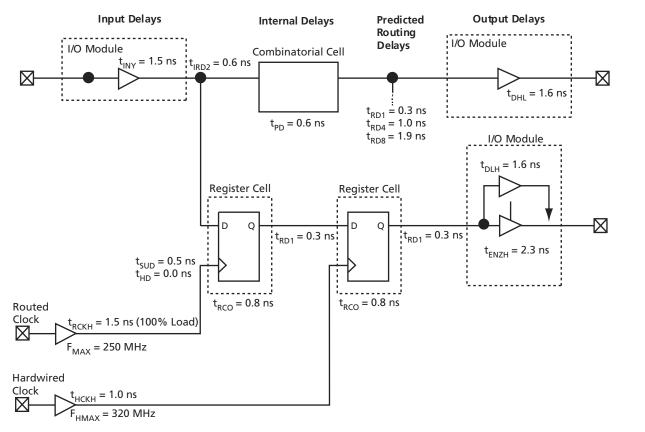
$$\begin{split} P_{DC} &= (I_{standby}) \times V_{CCA} + (I_{standby}) \times V_{CCR} + (I_{standby}) \times V_{CCI} + X \times V_{OL} \times I_{OL} + Y(V_{CCI} - V_{OH}) \times V_{OH} \end{split}$$

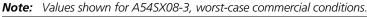
EQ 1-12

For a rough estimate of DC Power Dissipation, only use $P_{DC} = (I_{standby}) \times V_{CCA}$. The rest of the formula provides a very small number that can be considered negligible.

$$P_{DC} = (I_{standby}) \times V_{CCA}$$
$$P_{DC} = .55 \text{ mA} \times 3.3 \text{ V}$$
$$P_{DC} = 0.001815 \text{ W}$$

Step 4: Calculate Total Power Consumption


 $P_{Total} = P_{AC} + P_{DC}$ $P_{Total} = 1.461 + 0.001815$ $P_{Total} = 1.4628$ W


Step 5: Compare Estimated Power Consumption against Characterized Power Consumption

The estimated total power consumption for this design is 1.46 W. The characterized power consumption for this design at 200 MHz is 1.0164 W.

SX Timing Model

Figure 1-12 • SX Timing Model

Hardwired Clock

External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{HCKH}$ = 1.5 + 0.3 + 0.5 - 1.0 = 1.3 ns

Clock-to-Out (Pin-to-Pin)

$$= t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$$

= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 r

EQ 1-16

Routed Clock

	External Setup = $t_{INY} + t_{IRD1} + t_{SUD} - t_{RCKH}$ = 1.5 + 0.3 + 0.5 - 1.5 = 0.8 ns	
EQ 1-15		EQ 1-17
	Clock-to-Out (Pin-to-Pin)	
	$= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$	
	= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns	
EO 1-16		EQ 1-18

A54SX08 Timing Characteristics

Table 1-17 • A54SX08 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA}, V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' \$	Speed	'-1' !	Speed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{RD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{RD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{RD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns
R-Cell Timir	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.2		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.5		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Input Modu	le Predicted Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.6		0.7		0.8		0.9	ns
t _{IRD3}	FO = 3 Routing Delay		0.8		0.9		1.0		1.2	ns
t _{IRD4}	FO = 4 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD8}	FO = 8 Routing Delay		1.9		2.2		2.5		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		2.8		3.2		3.7		4.3	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn'}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD'}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A54SX32 Timing Characteristics

Table 1-20 • A54SX32 Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCR} = 4.75 V, V_{CCA} , V_{CCI} = 3.0 V, T_J = 70°C)

		'-3' 9	5peed	'-2' \$	Speed	'-1' 9	5peed	'Std'		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Prop	agation Delays ¹									
t _{PD}	Internal Array Module		0.6		0.7		0.8		0.9	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.4		0.4		0.5	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{RD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{RD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{RD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{RD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns
R-Cell Timi	ng									
t _{RCO}	Sequential Clock-to-Q		0.8		1.1		1.3		1.4	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.7		0.8	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.9		1.0	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.5		0.6		0.7		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.6		1.8		2.1		ns
Input Modu	le Propagation Delays									
t _{INYH}	Input Data Pad-to-Y HIGH		1.5		1.7		1.9		2.2	ns
t _{INYL}	Input Data Pad-to-Y LOW		1.5		1.7		1.9		2.2	ns
Predicted I	nput Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.4		0.4		0.5	ns
t _{IRD2}	FO = 2 Routing Delay		0.7		0.8		0.9		1.0	ns
t _{IRD3}	FO = 3 Routing Delay		1.0		1.2		1.4		1.6	ns
t _{IRD4}	FO = 4 Routing Delay		1.4		1.6		1.8		2.1	ns
t _{IRD8}	FO = 8 Routing Delay		2.7		3.1		3.5		4.1	ns
t _{IRD12}	FO = 12 Routing Delay		4.0		4.7		5.3		6.2	ns

Note:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Delays based on 35 pF loading, except t_{ENZL} and t_{ENZH} . For t_{ENZL} and t_{ENZH} the loading is 5 pF.

Pin Description

CLKA/B Clock A and B

These pins are 3.3 V / 5.0 V PCI/TTL clock inputs for clock distribution networks. The clock input is buffered prior to clocking the R-cells. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating. (For A545X72A, these clocks can be configured as bidirectional.)

GND Ground

LOW supply voltage.

HCLK Dedicated (hardwired) Array Clock

This pin is the 3.3 V / 5.0 V PCI/TTL clock input for sequential modules. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. If not used, this pin must be set LOW or HIGH on the board. It must not be left floating.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, 3.3 V PCI or 5.0 V PCI specifications. Unused I/O pins are automatically tristated by the Designer Series software.

NC No Connection

This pin is not connected to circuitry within the device.

PRA, I/O Probe A

The Probe A pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

PRB, I/O Probe B

The Probe B pin is used to output data from any node within the device. This diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK Test Clock

Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI Test Data Input

Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-2 on page 1-6). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-2 on page 1-6). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 1-1 on page 1-5.

V_{CCA} Supply Voltage

Supply voltage for Array. See Table 1-1 on page 1-5.

V_{CCR} Supply Voltage

Supply voltage for input tolerance (required for internal biasing). See Table 1-1 on page 1-5.

Package Pin Assignments

84-Pin PLCC

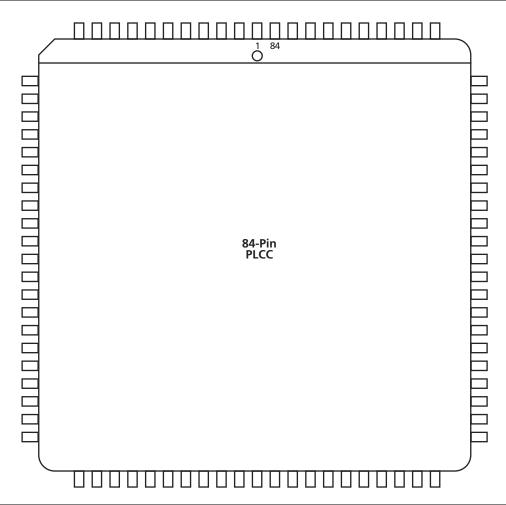


Figure 2-1 • 84-Pin PLCC (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function				
1	GND	GND	GND	37	I/O	I/O	I/O				
2	TDI, I/O	TDI, I/O	TDI, I/O	38	I/O	I/O	I/O				
3	I/O	I/O	I/O	39	I/O	I/O	I/O				
4	I/O	I/O	I/O	40	I/O	I/O	I/O				
5	I/O	I/O	I/O	41	I/O	I/O	I/O				
6	I/O	I/O	I/O	42	I/O	I/O	I/O				
7	I/O	I/O	I/O	43	I/O	I/O	I/O				
8	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}				
9	TMS	TMS	TMS	45	I/O	I/O	I/O				
10	V _{CCI}	V _{CCI}	V _{CCI}	46	I/O	I/O	I/O				
11	GND	GND	GND	47	I/O	I/O	I/O				
12	I/O	I/O	I/O	48	I/O	I/O	I/O				
13	I/O	I/O	I/O	49	I/O	I/O	I/O				
14	I/O	I/O	I/O	50	I/O	I/O	I/O				
15	I/O	I/O	I/O	51	I/O	I/O	I/O				
16	I/O	I/O	I/O	52	I/O	I/O	I/O				
17	I/O	I/O	I/O	53	I/O	I/O	I/O				
18	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O				
19	V _{CCR}	V _{CCR}	V _{CCR}	55	I/O	I/O	I/O				
20	V_{CCA}	V _{CCA}	V _{CCA}	56	V_{CCA}	V _{CCA}	V _{CCA}				
21	I/O	I/O	I/O	57	GND	GND	GND				
22	I/O	I/O	I/O	58	V _{CCR}	V _{CCR}	V _{CCR}				
23	I/O	I/O	I/O	59	I/O	I/O	I/O				
24	I/O	I/O	I/O	60	HCLK	HCLK	HCLK				
25	I/O	I/O	I/O	61	I/O	I/O	I/O				
26	I/O	I/O	I/O	62	I/O	I/O	I/O				
27	I/O	I/O	I/O	63	I/O	I/O	I/O				
28	GND	GND	GND	64	I/O	I/O	I/O				
29	V _{CCI}	V _{CCI}	V _{CCI}	65	I/O	I/O	I/O				
30	V_{CCA}	V _{CCA}	V _{CCA}	66	I/O	I/O	I/O				
31	I/O	I/O	I/O	67	I/O	I/O	I/O				
32	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}				
33	I/O	I/O	I/O	69	I/O	I/O	I/O				
34	I/O	I/O	I/O	70	I/O	I/O	I/O				
35	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O				
36	GND	GND	GND	72	I/O	I/O	I/O				

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16P Function	A54SX32 Function				
73	GND	GND	GND	109	GND	GND	GND				
74	I/O	I/O	I/O	110	I/O	I/O	I/O				
75	I/O	I/O	I/O	111	I/O	I/O	I/O				
76	I/O	I/O	I/O	112	I/O	I/O	I/O				
77	I/O	I/O	I/O	113	I/O	I/O	I/O				
78	I/O	I/O	I/O	114	I/O	I/O	I/O				
79	V _{CCA}	V _{CCA}	V _{CCA}	115	V _{CCI}	V _{CCI}	V _{CCI}				
80	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
81	GND	GND	GND	117	I/O	I/O	I/O				
82	I/O	I/O	I/O	118	I/O	I/O	I/O				
83	I/O	I/O	I/O	119	I/O	I/O	I/O				
84	I/O	I/O	I/O	120	I/O	I/O	I/O				
85	I/O	I/O	I/O	121	I/O	I/O	I/O				
86	I/O	I/O	I/O	122	I/O	I/O	I/O				
87	I/O	I/O	I/O	123	I/O	I/O	I/O				
88	I/O	I/O	I/O	124	I/O	I/O	I/O				
89	V _{CCA}	V _{CCA}	V _{CCA}	125	CLKA	CLKA	CLKA				
90	V _{CCR}	V _{CCR}	V _{CCR}	126	CLKB	CLKB	CLKB				
91	I/O	I/O	I/O	127	V _{CCR}	V _{CCR}	V _{CCR}				
92	I/O	I/O	I/O	128	GND	GND	GND				
93	I/O	I/O	I/O	129	V _{CCA}	V _{CCA}	V _{CCA}				
94	I/O	I/O	I/O	130	I/O	I/O	I/O				
95	I/O	I/O	I/O	131	PRA, I/O	PRA, I/O	PRA, I/O				
96	I/O	I/O	I/O	132	I/O	I/O	I/O				
97	I/O	I/O	I/O	133	I/O	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	134	I/O	I/O	I/O				
99	GND	GND	GND	135	I/O	I/O	I/O				
100	I/O	I/O	I/O	136	I/O	I/O	I/O				
101	GND	GND	GND	137	I/O	I/O	I/O				
102	V _{CCI}	V _{CCI}	V _{CCI}	138	I/O	I/O	I/O				
103	I/O	I/O	I/O	139	I/O	I/O	I/O				
104	I/O	I/O	I/O	140	V _{CCI}	V _{CCI}	V _{CCI}				
105	I/O	I/O	I/O	141	I/O	I/O	I/O				
106	I/O	I/O	I/O	142	I/O	I/O	I/O				
107	I/O	I/O	I/O	143	I/O	I/O	I/O				
108	I/O	I/O	I/O	144	TCK, I/O	TCK, I/O	TCK, I/O				

176-Pin TQFP

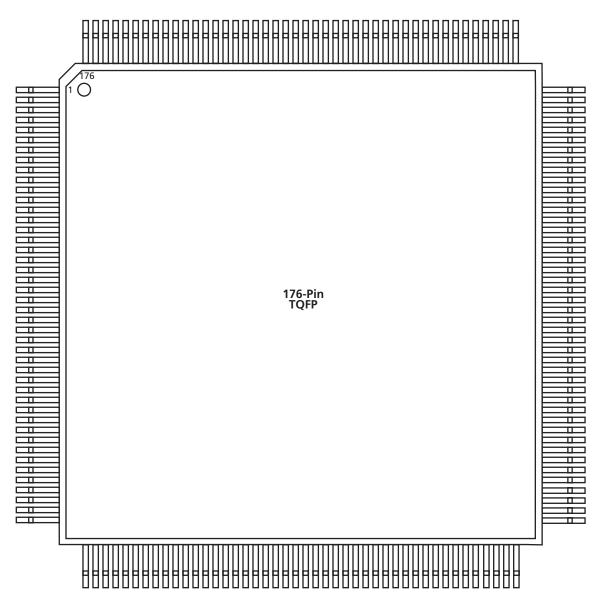


Figure 2-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

	176-Pi	n TQFP		176-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function				
69	HCLK	HCLK	HCLK	103	I/O	I/O	I/O				
70	I/O	I/O	I/O	104	I/O	I/O	I/O				
71	I/O	I/O	I/O	105	I/O	I/O	I/O				
72	I/O	I/O	I/O	106	I/O	I/O	I/O				
73	I/O	I/O	I/O	107	I/O	I/O	I/O				
74	I/O	I/O	I/O	108	GND	GND	GND				
75	I/O	I/O	I/O	109	V _{CCA}	V _{CCA}	V _{CCA}				
76	I/O	I/O	I/O	110	GND	GND	GND				
77	I/O	I/O	I/O	111	I/O	I/O	I/O				
78	I/O	I/O	I/O	112	I/O	I/O	I/O				
79	NC	I/O	I/O	113	I/O	I/O	I/O				
80	I/O	I/O	I/O	114	I/O	I/O	I/O				
81	NC	I/O	I/O	115	I/O	I/O	I/O				
82	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
83	I/O	I/O	I/O	117	I/O	I/O	I/O				
84	I/O	I/O	I/O	118	NC	I/O	I/O				
85	I/O	I/O	I/O	119	I/O	I/O	I/O				
86	I/O	I/O	I/O	120	NC	I/O	I/O				
87	TDO, I/O	TDO, I/O	TDO, I/O	121	NC	I/O	I/O				
88	I/O	I/O	I/O	122	V _{CCA}	V _{CCA}	V _{CCA}				
89	GND	GND	GND	123	GND	GND	GND				
90	NC	I/O	I/O	124	V _{CCI}	V _{CCI}	V _{CCI}				
91	NC	I/O	I/O	125	I/O	I/O	I/O				
92	I/O	I/O	I/O	126	I/O	I/O	I/O				
93	I/O	I/O	I/O	127	I/O	I/O	I/O				
94	I/O	I/O	I/O	128	I/O	I/O	I/O				
95	I/O	I/O	I/O	129	I/O	I/O	I/O				
96	I/O	I/O	I/O	130	I/O	I/O	I/O				
97	I/O	I/O	I/O	131	NC	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	132	NC	I/O	I/O				
99	V _{CCI}	V _{CCI}	V _{CCI}	133	GND	GND	GND				
100	I/O	I/O	I/O	134	I/O	I/O	I/O				
101	I/O	I/O	I/O	135	I/O	I/O	I/O				
102	I/O	I/O	I/O	136	I/O	I/O	I/O				

	176-Pi	n TQFP		176-Pin TQFP							
Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function	Pin Number	A54SX08 Function	A54SX16, A54SX16P Function	A54SX32 Function				
137	I/O	I/O	I/O	157	PRA, I/O	PRA, I/O	PRA, I/O				
138	I/O	I/O	I/O	158	I/O	I/O	I/O				
139	I/O	I/O	I/O	159	I/O	I/O	I/O				
140	V _{CCI}	V _{CCI}	V _{CCI}	160	I/O	I/O	I/O				
141	I/O	I/O	I/O	161	I/O	I/O	I/O				
142	I/O	I/O	I/O	162	I/O	I/O	I/O				
143	I/O	I/O	I/O	163	I/O	I/O	I/O				
144	I/O	I/O	I/O	164	I/O	I/O	I/O				
145	I/O	I/O	I/O	165	I/O	I/O	I/O				
146	I/O	I/O	I/O	166	I/O	I/O	I/O				
147	I/O	I/O	I/O	167	I/O	I/O	I/O				
148	I/O	I/O	I/O	168	NC	I/O	I/O				
149	I/O	I/O	I/O	169	V _{CCI}	V _{CCI}	V _{CCI}				
150	I/O	I/O	I/O	170	I/O	I/O	I/O				
151	I/O	I/O	I/O	171	NC	I/O	I/O				
152	CLKA	CLKA	CLKA	172	NC	I/O	I/O				
153	CLKB	CLKB	CLKB	173	NC	I/O	I/O				
154	V _{CCR}	V _{CCR}	V _{CCR}	174	I/O	I/O	I/O				
155	GND	GND	GND	175	I/O	I/O	I/O				
156	V _{CCA}	V _{CCA}	V _{CCA}	176	TCK, I/O	TCK, I/O	TCK, I/O				

329-Pin PBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٦
В	0	0	Õ	0	~	~	0	~	~	~	~	~	~	~	0	~	~	~	~	$\overline{}$	0	~	0	
C	Ŭ	č	~	-	-	-	_	-	-	_	_	Ξ.	-	-	-	_	_	_	_	0	-	-	-	
D	•	0	·	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	~	0	~	
E F	-		-	-																-	-	0	_	
G	•	0	·	-																	0	0	0	
н	_	$\overline{0}$	_	_																		0		
J	-	Õ	Ξ.	-																-	-	õ	-	
к	Õ	Õ	Õ	Õ						0	0	0	0	0						-	-	Õ	-	
L	0	0	Ο	Ο						Ο	Ο	Ο	Ο	Ο						Ο	Ο	0	0	
м	0	0	Ο	Ο						Ο	Ο	Ο	0	Ο						Ο	Ο	Ο	0	
N	<u> </u>	0	<u> </u>	<u> </u>							Õ									\sim	Õ	\sim	0	
P		0								0	0	0	0	0						-	0	-	0	
R T	•	0	·	-																<u> </u>	0	<u> </u>	0	
U	-		-	0																<u> </u>	0	Ŭ	0	
v	· ·	0	<u> </u>	0																<u> </u>	0	<u> </u>	0	
w	-	õ	-	-																	õ	-	$\hat{0}$	
Y	_	-	_	õ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	<u> </u>	~	õ	
AA	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	_	Õ	_	_	_	_	_	Õ	-	Õ	Õ	_	Õ	Õ	Õ	
AB	Ō	Ō	Õ	Ó	Õ	Õ	Õ	Õ	Ô	Õ	Õ	Ô	Ô	Ô	Õ	Õ	Õ	Õ	Ō	Ō	Õ	Õ	Õ	
AC	$\overline{)}$	0	Ο	0	Ο	Ο	0	Ο	Ο	0	Ο	Ο	0	Ο	0	Ο	0	Ο	Ο	Ο	0	Ο	0	

Figure 2-7 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pin PBGA		329-Pi	n PBGA	329-Pi	n PBGA	329-Pin PBGA			
Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	Pin Number	A54SX32 Function	Pin Number	A54SX32 Function		
D3	I/O	F22	I/O	K20	I/O	N11	GND		
D4	TCK, I/O	F23	I/O	K21	I/O	N12	GND		
D5	I/O	G1	I/O	K22	I/O	N13	GND		
D6	I/O	G2	I/O	K23	I/O	N14	GND		
D7	I/O	G3	I/O	L1	I/O	N20	NC		
D8	I/O	G4	I/O	L2	I/O	N21	I/O		
D9	I/O	G20	I/O	L3	I/O	N22	I/O		
D10	I/O	G21	I/O	L4	V _{CCR}	N23	I/O		
D11	V _{CCA}	G22	I/O	L10	GND	P1	I/O		
D12	V _{CCR}	G23	GND	L11	GND	P2	I/O		
D13	I/O	H1	I/O	L12	GND	P3	I/O		
D14	I/O	H2	I/O	L13	GND	P4	I/O		
D15	I/O	H3	I/O	L14	GND	P10	GND		
D16	I/O	H4	I/O	L20	V _{CCR}	P11	GND		
D17	I/O	H20	V _{CCA}	L21	I/O	P12	GND		
D18	I/O	H21	I/O	L22	I/O	P13	GND		
D19	I/O	H22	I/O	L23	NC	P14	GND		
D20	I/O	H23	I/O	M1	I/O	P20	I/O		
D21	I/O	J1	NC	M2	I/O	P21	I/O		
D22	I/O	J2	I/O	M3	I/O	P22	I/O		
D23	I/O	J3	I/O	M4	V _{CCA}	P23	I/O		
E1	V _{CCI}	J4	I/O	M10	GND	R1	I/O		
E2	I/O	J20	I/O	M11	GND	R2	I/O		
E3	I/O	J21	I/O	M12	GND	R3	I/O		
E4	I/O	J22	I/O	M13	GND	R4	I/O		
E20	I/O	J23	I/O	M14	GND	R20	I/O		
E21	I/O	K1	I/O	M20	V _{CCA}	R21	I/O		
E22	I/O	K2	I/O	M21	I/O	R22	I/O		
E23	I/O	К3	I/O	M22	I/O	R23	I/O		
F1	I/O	K4	I/O	M23	V _{CCI}	T1	I/O		
F2	TMS	K10	GND	N1	I/O	T2	I/O		
F3	I/O	K11	GND	N2	I/O	T3	I/O		
F4	I/O	K12	GND	N3	I/O	T4	I/O		
F20	I/O	K13	GND	N4	I/O	T20	I/O		
F21	I/O	K14	GND	N10	GND	T21	I/O		

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v3.2)	Page
v3.1	The "Ordering Information" was updated to include RoHS information.	1-ii
(June 2003)	The Product Plan was removed since all products have been released.	N/A
	Information concerning the TRST pin in the "Probe Circuit Control Pins" section was removed.	1-6
	The "Dedicated Test Mode" section is new.	1-6
	The "Programming" section is new.	1-7
	A note was added to the "Power-Up Sequencing" table.	1-15
	A note was added to the "Power-Down Sequencing" table. The 3.3 V comments were updated for the following devices: A54SX08, A54SX16, A54SX32.	1-15
	U11 and U13 were added to the "313-Pin PBGA" table.	2-17
v3.0.1	Storage temperature in Table 1-3 was updated.	1-7
	Table 1-1 was updated.	1-5

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.