

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, I²C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f364aenfb-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Product List

Table 1.3 lists product information. Figure 1.1 shows the Part No., with Memory Size and Package, and Figure 1.2 shows the Marking Diagram (Top View).

Table	1.3	Product List

As of December 2010

	R	OM Capacity	у	RAM			
Part No.	Program ROM 1	Program ROM 2	Data flash	Capacity	Package Code	Remarks	
R5F364A6NFA	128 KB	16 KB	4 KB	12 KB	PRQP0100JD-B	Operating	
R5F364A6NFB			X Z DIUCKS		PLQP0100KB-A	-20°C to 85°C	
R5F364A6DFA					PRQP0100JD-B	Operating	
R5F364A6DFB					PLQP0100KB-A	-40°C to 85°C	
R5F364AENFA	256 KB	16 KB	4 KB	20 KB	PRQP0100JD-B	Operating	
R5F364AENFB			× 2 DIOCKS		PLQP0100KB-A	-20°C to 85°C	
R5F364AEDFA					PRQP0100JD-B	Operating	
R5F364AEDFB					PLQP0100KB-A	-40°C to 85°C	
R5F364AKNFA	384 KB	16 KB	4 KB	31 KB	PRQP0100JD-B	Operating	
R5F364AKNFB			× 2 DIUCKS		PLQP0100KB-A	-20°C to 85°C	
R5F364AKDFA				PRQP0100JE		Operating	
R5F364AKDFB					PLQP0100KB-A	-40°C to 85°C	
R5F364AMNFA	512 KB	16 KB	4 KB	31 KB	PRQP0100JD-B	Operating	
R5F364AMNFB			X Z DIUCKS		PLQP0100KB-A	-20°C to 85°C	
R5F364AMDFA					PRQP0100JD-B	Operating	
R5F364AMDFB					PLQP0100KB-A	-40°C to 85°C	

(D): Under development

(P): Planning

Previous package codes are as follows: PRQP0100JD-B: 100P6F-A PLQP0100KB-A: 100P6Q-A

1.6 Pin Functions

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	Ι	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \ge VCC2) and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET		VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when RD is driven low. WR, BHE, and RD selected Data is written to an external area when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	Ι	VCC2	$\overline{\text{HOLD}}$ input is unavailable. Connect the $\overline{\text{HOLD}}$ pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	The MCU bus is placed in a wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.6Pin Functions for the 100-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

Signal Name	Pin Name	I/O	Power Supply	Description		
Main clock input	XIN	I	VCC1	I/O for the main clock oscillator. Connect a ceramic resonator		
Main clock output	XOUT	0	VCC1	clock to XIN pin and leave XOUT pin open.		
Sub clock input	XCIN	Ι	VCC1	I/O for a sub clock oscillator. Connect a crystal between XCIN		
Sub clock output	XCOUT	0	VCC1	leave XCOUT pin open.		
BCLK output	BCLK	0	VCC2	Outputs the BCLK signal.		
Clock output	CLKOUT	0	VCC2	Outputs a clock with the same frequency as fC, f1, f8, or f32.		
INT interrupt input	INT0 to INT2	Ι	VCC1	Input for the INT interrupt		
	INT3 to INT7	Ι	VCC2	input for the intrinterrupt.		
NMI interrupt input	NMI	Ι	VCC1	Input for the NMI interrupt.		
Key input interrupt input	$\overline{KI0}$ to $\overline{KI3}$	I	VCC1	Input for the key input interrupt.		
	TA0OUT to TA4OUT	I/O	VCC1	I/O for timers A0 to A4 (TA0OUT is N-channel open drain output).		
Timer A	TA0IN to TA4IN	Ι	VCC1	Input for timers A0 to A4.		
	ZP	Ι	VCC1	Input for Z-phase.		
Timer B	TB0IN to TB5IN	Ι	VCC1	Input for timers B0 to B5.		
Three-phase motor control timer	$U,\overline{U},V,\overline{V},W,\overline{W}$	0	VCC1	Output for the three-phase motor control timer.		
	SD	I	VCC1	Forced cutoff input.		
	IDU, IDV, IDW	I	VCC2	Input for the position data.		
Real-time clock output	RTCOUT	0	VCC1	VCC2 Input for the position data. VCC1 Output for the real-time clock.		
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output.		
Remote control signal receiver input	PMC0, PMC1	I	VCC1	Input for the remote control signal receiver.		
	CTS0 to CTS2, CTS5	I	VCC1	Input pins to control data transmission.		
	CTS6, CTS7	Ι	VCC2			
	RTSO to RTS2, RTS5	0	VCC1	Output pins to control data reception.		
	RTS6, RTS7	0	VCC2			
Serial interface	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O.		
UART0 to UART2, UART5 to UART7	CLK6, CLK7	I/O	VCC2			
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input.		
	RXD6, RXD7	Ι	VCC2			
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output. ⁽²⁾		
	TXD6, TXD7	0	VCC2			
	CLKS1	0	VCC1	Output for the transmit/receive clock multiple-pin output function.		

Table 1.7Pin Functions for the 100-Pin Package (2/3)

Notes:

1. Contact the manufacturer of crystal/ceramic resonator regarding the oscillation characteristics.

 TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins.

2.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic, and logic operations. R0 and R1 can be split into upper (R0H/R1H) and lower (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2, and R3 can be combined with R1 and be used as 32-bit data registers R2R0 and R3R1, respectively.

2.2 Address Registers (A0 and A1)

A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic, and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register that is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)

The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The USP and ISP stack pointers (SP) are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)

The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z Flag)

The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise, it becomes 0.

2.8.4 Sign Flag (S Flag)

The S flag becomes 1 when an arithmetic operation results in a negative value. Otherwise, it becomes 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

The O flag becomes 1 when an arithmetic operation results in an overflow. Otherwise, it becomes 0.

Address	Register	Symbol	Reset Value
0300h	Timer B3/B4/B5 Count Start Flag	TBSR	000X XXXXb
0301h			
0302h		T0.44	XXh
0303h	Ilmer A1-1 Register	IA11	XXh
0304h		T104	XXh
0305h	Timer A2-1 Register	IA21 -	XXh
0306h			XXh
0307h	limer A4-1 Register	IA41 -	XXh
0308h	Three-Phase PWM Control Register 0	INVC0	00h
0309h	Three-Phase PWM Control Register 1	INVC1	00h
030Ah	Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
030Bh	Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
030Ch	Dead Time Timer	DTT	XXh
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
030Fh	Position-Data-Retain Function Control Register	PDRF	XXXX 0000b
030Fh			
0310h			XXh
0311h	Timer B3 Register	TB3	XXh
0312h			XXh
0312h	Timer B4 Register	TB4	XXh
0314h			XXh
0315h	Timer B5 Register	TB5	XXh
0316h			ЛЛП
0310h			
0318h	Port Function Control Register	PECR	0011 11116
0310h		TION	
031Ab			
031Rh	Timer B3 Mode Register	TB3MP	00XX 0000b
031Ch	Timer B4 Mode Register	TBAMP	
0310H	Timer B5 Mode Register	TB5MP	
021Eb		T DOIVIN	
021Eb			
031FII	Count Stort Flog	TARCO	006
032011	Count Start Flag	IADON	0011
032111	One Shot Stort Flag	ONEE	006
03220	Trigger Select Degister		00h
032311	Inggel Select Register		00h
032411		UDF	0011
03250			VVh
032011	Timer A0 Register	TA0	
03270			XXn
0328N	Timer A1 Register	TA1	XXN
0329h	-		
032Ah	Timer A2 Register	TA2	XXh
032Bh			XXh
032Ch	Timer A3 Register	TA3	XXh
032Dh		-	XXh
032Eh	Timer A4 Register	TA4	XXh
032Fh			XXh
			X: Undefined

Table 4.12SFR Information (12) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0390h	DMA2 Source Select Register	DM2SL	00h
0391h	Ŭ		
0392h	DMA3 Source Select Register	DM3SL	00h
0393h			••••
0394h			
0395h			
0396h			
0397h			
0308h	DMA0 Source Select Perister	DMOSI	00h
0390h		DINIOSE	0011
03991	DMA1 Source Select Register	DM1SI	00h
039An		DIWIGE	0011
039BH			
03901			
03900			
039EN			
039FN			
03A00			
03A1n			
03AZN	Open-Circuit Detection Assist Function Register	AINRST	
03A3n			
03A4n			
03A5h			
03A6h			
03A7h			
03A8h			
03A9h			
03AAh			
03ABh			
03ACh			
03ADh			
03AEh			
03AFh			
03B0h			
03B1h			
03B2h			
03B3h			
03B4h	SER Shoon Address Register	CPCSAD	XXXX XXXXb
03B5h	Si it Shoop Address Register	CICCAR	00XX XXXXb
03B6h	CRC Mode Register	CRCMR	0XXX XXX0b
03B7h			
03B8h			
03B9h			
03BAh			
03BBh			
03BCh			XXh
03BDh	CRC Data Register	CRCD	XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			
I	1		X: Undefined

Table 4.15SFR Information (15) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00h
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h			
03F6h	Port P10 Direction Register	PD10	00h
03F7h			
03F8h			
03F9h			
03FAh			
03FBh			
03FCh			
03FDh			
03FEh			
03FFh			
			X: Undefined

Table 4.17SFR Information (17) (1)

Note:

1. The blank areas are reserved. No access is allowed.

5.1.5 Flash Memory Electrical Characteristics

Table 5.8 CPU Clock When Operating Flash Memory (f_(BCLK))

 V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Paramatar	Conditions		Linit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Onit
-	CPU rewrite mode				10 (1)	MHz
f(SLOW_R)	Slow read mode				5 (3)	MHz
-	Low current consumption read mode			fC(32.768)	35	kHz
-	Data flash read	$2.7 \text{ V} \le \text{V}_{CC1} \le 3.0 \text{ V}$			16 ⁽²⁾	MHz
		3.0 V < V _{CC1} ≤ 5.5 V			20 (2)	MHz

Notes:

1. Set the PM17 bit in the PM1 register to 1 (one wait).

2. When the frequency is over this value, set the FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait)

3. Set the PM17 bit in the PM1 register to 1 (one wait). When using 125 kHz on-chip oscillator clock or sub clock as the CPU clock source, a wait is not necessary.

Table 5.9 Flash Memory (Program ROM 1, 2) Electrical Characteristics

V_{CC1} = 2.7 to 5.5 V at T_{opr} = 0°C to 60°C (option: -40°C to 85°C), unless otherwise specified.

Symbol	Parameter	Conditions		Llnit			
Gymbol	i didificter	Conditions	Min.	Тур.	Max.	01111	
-	Program and erase cycles (1), (3), (4)	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	1,000 (2)			times	
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		150	4000	μS	
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		70	3000	μS	
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	S	
-	Program, erase voltage		2.7		5.5	V	
-	Read voltage	T_{opr} = -20°C to 85°C/-40°C to 85°C	2.7		5.5	V	
-	Program, erase temperature		0		60	°C	
t _{PS}	Flash memory circuit stabilization wait time				50	μS	
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year	

Notes:

1. Definition of program and erase cycles:

The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 1,000), each block can be erased n times. For example, if a block is erased after writing 2 word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

5.2 Electrical Characteristics (V_{CC1} = V_{CC2} = 5 V)

5.2.1 Electrical Characteristics

$V_{CC1} = V_{CC2} = 5 V$

Table 5.17 Electrical Characteristics (1) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to $85^{\circ}C/-40^{\circ}C$ to $85^{\circ}C$, $f_{(BCLK)} = 25$ MHz unless otherwise specified.

Symbol		Parameter		Measuring	Star	Linit		
Symbol		Parameter		Condition	Min.	Тур.	Max.	Unit
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 to P8_6, P8_7, P9_0 to F	P7_7, P8_0 to P8_4, P9_7, P10_0 to P10_7	I _{OH} = -5 mA	V _{CC1} – 2.0		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P3_0 to P3_7, P4_0 to	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7		V _{CC2} – 2.0		V _{CC2}	
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 to P8_6, P8_7, P9_0 to F	P7_7, P8_0 to P8_4, P9_7, P10_0 to P10_7	I _{OH} = -200 μA	V _{CC1} - 0.3		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P3_0 to P3_7, P4_0 to	P1_7, P2_0 to P2_7, P4_7, P5_0 to P5_7	I _{OH} = -200 μA	V _{CC2} - 0.3		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGH POWER	I _{OH} = -1 mA	$V_{CC1} - 2.0$		V _{CC1}	V
			LOW POWER	I _{OH} = -0.5 mA	$V_{CC1}-2.0$		V _{CC1}	
	High output voltage XCOUT		HIGH POWER	With no load applied		2.6		V
			LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P9_0 to P9_7, P10_0	0 P7_7, P8_0 to P8_7, to P10_7	I _{OL} = 5 mA			2.0	V
	P0_0 to P0_7, P1_0 to P3_0 to P3_7, P4_0 to		P1_7, P2_0 to P2_7, P4_7, P5_0 to P5_7	I _{OL} = 5 mA			2.0	
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P9_0 to P9_7, P10_0 to	o P7_7, P8_0 to P8_7, to P10_7	I _{OL} = 200 μA			0.45	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2 P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5		I _{OL} = 200 μA			0.45	
V _{OL}	Low output	voltage XOUT	HIGH POWER	I _{OL} = 1 mA			2.0	V
			LOW POWER	I _{OL} = 0.5 mA			2.0	
	Low output	voltage XCOUT	HIGH POWER	With no load applied		0		V
			LOW POWER	With no load applied		0		

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C}$ unless otherwise specified)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	800		ns
t _{su(TAIN-TAOUT)}	TAIOUT input setup time	200		ns
t _{su(TAOUT-TAIN)}	TAilN input setup time	200		ns

Figure 5.8 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

Figure 5.13 Timing Diagram

RENESAS

Figure 5.17 Timing Diagram

 $V_{CC1} = V_{CC2} = 3 V$

5.3.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.3.2.1 Reset Input (RESET Input)

Table 5.41 Reset Input (RESET Input)

Symbol	Parameter	Stan	Lloit	
Symbol	i didineter	Min.	Max.	Offic
t _{w(RSTL)}	RESET input low pulse width	10		μS

Figure 5.18 Reset Input (RESET Input)

5.3.2.2 External Clock Input

Table 5.42 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Unit		
Symbol		Min. Max.		Onic	
t _c	External clock input cycle time	50		ns	
t _{w(H)}	External clock input high pulse width	20		ns	
t _{w(L)}	External clock input low pulse width 20				
t _r	External clock rise time		9	ns	
t _f	External clock fall time		9	ns	

Note:

1. The condition is $V_{CC1} = V_{CC2} = 2.7$ to 3.0 V.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.5 Serial Interface

Table 5.51Serial Interface

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Offic
t _{c(CK)}	CLKi input cycle time	300		ns
t _{w(CKH)}	CLKi input high pulse width	150		ns
t _{w(CKL)}	CLKi input low pulse width	150		ns
t _{d(C-Q)}	TXDi output delay time		160	ns
t _{h(C-Q)}	TXDi hold time 0			ns
t _{su(D-C)}	RXDi input setup time	100		ns
t _{h(C-D)}	RXDi input hold time	90		ns

Figure 5.23 Serial Interface

5.3.2.6 External Interrupt INTi Input

Table 5.52 External Interrupt INTi Input

Symbol	Parameter	Stan	Lloit		
Symbol		Min.	Max.	U.I.I.	
t _{w(INH)}	INTi input high pulse width	380		ns	
t _{w(INL)}	INTi input low pulse width	380		ns	

Figure 5.24 External Interrupt INTi Input

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.54	Memory Expan	sion Mode and Micro	processor Mode
------------	--------------	---------------------	----------------

Symbol	Parameter	Standard		Linit	
Symbol	Falanetei	Min.	Max.	Unit	
t _{ac1(RD-DB)}	Data input access time (for setting with no wait)		(Note 1)	ns	
t _{ac2(RD-DB)}	Data input access time (for setting with wait)	nput access time (for setting with wait) (Note 2)		ns	
t _{ac3(RD-DB)}	Data input access time (when accessing multiplex bus area)		(Note 3)	ns	
t _{su(DB-RD)}	Data input setup time	tup time 50		ns	
t _{su(RDY-BCLK)}	RDY input setup time	85	ns		
t _{h(RD-DB)}	Data input hold time	0		ns	
t _{h(BCLK-RDY)}	RDY input hold time 0		ns		

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 60[ns]$$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n+0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.

3. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 2 for 2 waits setting, 3 for 3 waits setting.

Figure 5.26 Timing Diagram

Figure 5.28 Timing Diagram

RENESAS

REVISION HISTORY

M16C/64A Group Datasheet

Pov	Data	Description		
Dale		Page	Summary	
2.00	Feb 07, 2011	Address Sp	pace	
		18	Figure 3.2 Memory Map:	
			Added the address of 384 KB version.	
			Added note 1 and 3 to the reserved areas.	
		Special Fui	nction Registers (SFRs)	
		20	Table 4.1 SFR Information (1) ⁽¹⁾ :	
			 Deleted "the VCR1 register, the VCR2 register" from note 2. Deleted notes 5 to 6 and added note 5. 	
		21	Table 4.2 SFR Information (2) ⁽¹⁾ : Deleted notes 2 to 7 and added note 2.	
		38	4.2.1 Register Settings: Added the description regarding read-modify-write instructions.	
		39	Table 4.20 Read-Modify-Write Instructions: Added.	
		Electrical C	Characteristics	
		40	Table 5.1 Absolute Maximum Ratings:	
			Added a row for the data area value to T _{opr} (Flash program erase).	
		41	Table 5.2 Recommended Operating Conditions (1/3):	
			Added rows for the CEC value to V _{CC1} , V _{CC2} , V _{IH} , and V _{IL} .	
		45	Table 5.9 Flash Memory (Program ROM 1, 2) Electrical Characteristics:	
			Added a condition to the Read voltage row.	
		48	Table 5.14 Power-On Reset Circuit:	
			Added the tw(por) row.	
		40	Added the last line in note 1.	
		48	Figure 5.3 Power-On Reset Circuit Electrical Characteristics: Deleted note 2.	
		52	Table 5.18 Electrical Characteristics (2) ⁽¹⁾ : Added " $2P$, IDU, IDV, IDW" to the V _{T+} -V _{T-} row.	
		54	Table 5.20 Electrical Characteristics (4): Added new part numbers above the table.	
		60, 78	Table 5.33 and Table 5.53 Multi-master I ² C-bus: Added.	
		61	Table 5.34 Memory Expansion Mode and Microprocessor Mode:	
			Changed RDY input setup time from 30.	
		61 to 68,	Table 5.34 to Table 5.37 and Table 5.54 to Table 5.57 Memory Expansion Mode and	
		79 to 86	Deleted the following:	
			HOLD input setup time	
			HOLD input hold time	
			HLDA output delay time	
		62, 80	Figure 5.13 and Figure 5.26 Timing Diagram: Deleted lower figure (Common to wait state and no wait state settings).	
		70	Table 5.38 Electrical Characteristics (1) ⁽¹⁾ :	
			\bullet Added rows for the CEC value to Leakage current in powered-off state, $V_{T+}\text{-}V_{T-},$ and	
			V _{OL} .	
			 Added "ZP, IDU, IDV, IDW" to the V_{T+}-V_{T-} row. 	
		71	Table 5.39 Electrical Characteristics (2): Changed "VCC1 = 5.0 V" to "VCC1 = 3.0 V" in the During flash memory program and During flash memory erase rows.	
		72	Table 5.40 Electrical Characteristics (3):	
			Added new part numbers above the table.	
			• Changed "VCC1 = 5.0 V" to "VCC1 = 3.0 V" in the During flash memory program and	
			During flash memory erase rows.	
		79	Table 5.54 Memory Expansion Mode and Microprocessor Mode: Changed RDY input setup time from 40.	

All trademarks and registered trademarks are the property of their respective owners.

IEBus is a registered trademark of NEC Electronics Corporation. HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.