

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f364aenfb-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.1 Part No., with Memory Size and Package

2. **Central Processing Unit (CPU)**

Figure 2.1 shows the CPU registers. Seven registers (R0, R1, R2, R3, A0, A1, and FB) out of 13 compose a register bank, and there are two register banks.

2.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic, and logic operations. R0 and R1 can be split into upper (R0H/R1H) and lower (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2, and R3 can be combined with R1 and be used as 32-bit data registers R2R0 and R3R1, respectively.

2.2 Address Registers (A0 and A1)

A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic, and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register that is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)

The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The USP and ISP stack pointers (SP) are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)

The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z Flag)

The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise, it becomes 0.

2.8.4 Sign Flag (S Flag)

The S flag becomes 1 when an arithmetic operation results in a negative value. Otherwise, it becomes 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

The O flag becomes 1 when an arithmetic operation results in an overflow. Otherwise, it becomes 0.

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts.

Maskable interrupts are disabled when the I flag is 0, and enabled when it is 1. The I flag becomes 0 when an interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag becomes 0 when a hardware interrupt request is accepted, or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt request is enabled.

2.8.10 Reserved Areas

Only set these bits to 0. The read value is undefined.

3. Address Space

3.1 Address Space

The M16C/64A Group has a 1 MB address space from 00000h to FFFFFh. Address space is expandable to 4 MB with the memory area expansion function. Addresses 40000h to BFFFFh can be used as external areas from bank 0 to bank 7. Figure 3.1 shows the Address Space. Areas that can be accessed vary depending on processor mode and the status of each control bit.

Figure 3.1 Address Space

3.3 Accessible Area in Each Mode

Areas that can be accessed vary depending on processor mode and the status of each control bit. Figure 3.3 shows the Accessible Area in Each Mode.

In single-chip mode, the SFRs, internal RAM, and internal ROM can be accessed.

In memory expansion mode, the SFRs, internal RAM, internal ROM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function.

In microprocessor mode, the SFRs, internal RAM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function. Allocate ROM to the fixed vector table from FFFDCh to FFFFFh.

Address	Register	Symbol	Reset Value
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b ⁽²⁾
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h			
0364h			
0365h			
0366h	Port Control Register	PCR	0000 0XX0b
0367h			
0368h			
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh			
0370h	PWM Control Register 0	PWMCON0	00h
0371h			
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽³⁾
037Dh	Watchdog Timer Refresh Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Fh	Watchdog Timer Control Register	WDC	00XX XXXXb
0380h to			
038Fh			
			X: Undefined

Table 4.14SFR Information (14) (1)

Notes:

2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:

- 00000000b when a low-level signal is input to the CNVSS pin

- 00000010b when a high-level signal is input to the CNVSS pin

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detect reset are as follows:

- 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).

- 00000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

3. When the CSPROINI bit in the OFS1 address is 0, the reset value is 10000000b.

^{1.} The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03C0h		100	XXXX XXXXb
03C1h	A/D Register 0	ADU	0000 00XXb
03C2h	A/D Register 1		XXXX XXXXb
03C3h		ADT	0000 00XXb
03C4h	A/D Register 2	2 م	XXXX XXXXb
03C5h	A/D Register 2	ADZ	0000 00XXb
03C6h	A/D Register 2	202	XXXX XXXXb
03C7h	A/D Register 5	AD3	0000 00XXb
03C8h	A/D Pogistor 4		XXXX XXXXb
03C9h		AD4	0000 00XXb
03CAh	A/D Pogistor 5	A D5	XXXX XXXXb
03CBh	A/D Register 5	AD5	0000 00XXb
03CCh	A/D Pogistor 6		XXXX XXXXb
03CDh		ADO	0000 00XXb
03CEh	A/D Register 7		XXXX XXXXb
03CFh		ADI	0000 00XXb
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D5h			
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 X000b
03D8h	D/A0 Register	DA0	00h
03D9h			
03DAh	D/A1 Register	DA1	00h
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h

Table 4.16SFR Information (16) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

5.1.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions (1/3)

 $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter				Unit		
Symbol				Min.	Тур.	Max.	Unit
V _{CC1} ,	Supply volta	age ($V_{CC1} \ge V_{CC2}$)	CEC function is not used	2.7	5.0	5.5	V
V _{CC2}			CEC function is used	2.7		3.63	V
AV _{CC}	Analog sup	ply voltage	<u> </u>		V _{CC1}		V
V _{SS}	Supply volta	age			0	1	V
AV _{SS}	Analog sup	ply voltage			0	1	V
V _{IH}	High input	P3_1 to P3_7, P4_0 to P4_7, P5_0) to P5_7	0.8V _{CC2}		V _{CC2}	V
	voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 (in single-chip mode)) to P2_7, P3_0	0.8V _{CC2}		V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 (data input in memory expansion at modes)) to P2_7, P3_0 nd microprocessor	0.5V _{CC2}		V _{CC2}	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE) to P8_4, P8_6, P8_7,	0.8V _{CC1}		V _{CC1}	V
		P7_0, P7_1, P8_5		0.8V _{CC1}		6.5	V
		CEC		0.7V _{CC1}			V
V _{IL}	Low input	P3_1 to P3_7, P4_0 to P4_7, P5_0) to P5_7	0		0.2V _{CC2}	V
Ň	voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 (in single-chip mode)) to P2_7, P3_0	0		0.2V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 (data input in memory expansion a) to P2_7, P3_0 nd microprocessor mode)	0		0.16V _{CC2}	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 P10_0 to P10_7 XIN, RESET, CNVSS, BYTE) to P8_7, P9_0 to P9_7,	0		0.2V _{CC1}	V
		CEC				0.26V _{CC1}	V
I _{OH(sum)}	High peak output	Sum of I _{OH(peak)} at P0_0 to P0_7, F	P1_0 to P1_7,			-40.0	mA
	current	Sum of I _{OH(peak)} at P3_0 to P3_7, F P5_0 to P5_7	P4_0 to P4_7,			-40.0	mA
		Sum of I _{OH(peak)} at P6_0 to P6_7, F P8_0 to P8_4	P7_2 to P7_7,			-40.0	mA
		Sum of I _{OH(peak)} at P8_6, P8_7, P9 P10_0 to P10_7	∂_0 to P9_7,			-40.0	mA
I _{OH(peak)}	High peak output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7				-10.0	mA
I _{OH(avg)}	High average output current ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 P3_0 to P3_7, P4_0 to P4_7, P5_0 P6_0 to P6_7, P7_2 to P7_7, P8_0 P9_0 to P9_7, P10_0 to P10_7) to P2_7,) to P5_7,) to P8_4, P8_6, P8_7,			-5.0	mA

Note:

1. The average output current is the mean value within 100 ms.

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Table 5.18 Electrical Characteristics (2) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ f}_{(BCLK)} = 25 \text{ MHz unless otherwise specified.}$

Sumbol		Parameter		Standard			Linit
Symbol		Falameter	Condition	Min.	Тур.	Max.	Unit
V _{T+} - V _{T-}	Hysteresis HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT7, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, RXD5 to RXD7, SIN3, SIN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC, ZP, IDU, IDV, IDW Hysteresis BESET			0.5		2.0	V
V _{T+} - V _{T-}	Hysteresis	RESET		0.5		2.5	V
I _{IH}	High input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V _I = 5 V			5.0	μA
I _{IL}	Low input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V _I = 0 V			-5.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7	V _I = 0 V	30	50	100	kΩ
R _{fXIN}	Feedback re	sistance XIN			1.5		MΩ
R _{fXCIN}	Feedback re	esistance XCIN			8		MΩ
V _{RAM}	RAM retenti	on voltage	In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

5.2.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.2.2.1 Reset Input (RESET Input)

Table 5.21 Reset Input (RESET Input)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Onic
t _{w(RSTL)}	RESET input low pulse width	10		μS

Figure 5.5 Reset Input (RESET Input)

5.2.2.2 External Clock Input

Table 5.22 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Llnit	
	T arameter		Max.	Offic
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 3.0$ to 5.0 V.

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C}$ unless otherwise specified)

Symbol	Parameter	Stan	Unit	
Symbol	Symbol Standard Parameter Min. Max. TAilN input cycle time 800 -TAOUT) TAiOUT input setup time 200 UT-TAIN) TAilN input setup time 200	Max.	Offic	
t _{c(TA)}	TAilN input cycle time	800		ns
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	200		ns
t _{su(TAOUT} -TAIN)	TAiIN input setup time	200		ns

Figure 5.8 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

5.2.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.2.4.1 In No Wait State Setting

Table 5.35 Memory Expansion Mode and Microprocessor Mode (in No Wait State Setting)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falameter	Measuring Condition Standard Min. Max. 0 25 0 0 (Note 2) 0 (Note 2) 25 0 15 Figure 5.14 25 0 15 0 25	Max.		
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK) ALE signal output delay time		0		ns
t _{d(BCLK-ALE)}				15	ns
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns] \text{ f}_{(BCLK)} \text{ is 12.5 MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

Figure 5.17 Timing Diagram

Table 5.39Electrical Characteristics (2)

R5F364A6NFA, R5F364A6NFB, R5F364A6DFA, R5F364A6DFB,

R5F364AENFA, R5F364AENFB, R5F364AEDFA, R5F364AEDFB

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 25 \text{ MHz unless otherwise specified.}$

Symbol	Parameter		Moosuring Condition	ç	Standarc		Lloit
Symbol	Falameter		Measuring Condition	Min.	Тур.	Max.	Onit
I _{CC}	Power supply current	High-speed mode	f _(BCLK) = 25 MHz				
			XIN = 4.2 MHz (square wave), PLL multiplied by 6		20.0		mA
	In single-chip, mode,		125 kHz on-chip oscillator stopped				
	the output pin are		f _(BCLK) = 25 MHz, A/D conversion				
	open and other pins		XIN = 4.2 MHz (square wave), PLL multiplied by 6		20.7		mA
	are V _{SS}		125 kHz on-chip oscillator stopped				
			f _(BCLK) = 20 MHz				
			XIN = 20 MHz (square wave)		16.0		mA
			125 kHz on-chip oscillator stopped				
		125 kHz on-chip	Main clock stopped				
		oscillator mode	125 kHz on-chip oscillator on, no division		450.0		μΑ
			FMR22 = 1 (slow read mode)				
		Low-power mode	f _(BCLK) = 32 MHz				
			In low-power mode		160.0		^
			FMR 22 = FMR23 = 1		100.0		μA
			On flash memory ⁽¹⁾				
			f _(BCLK) = 32 MHz				
			In low-power mode		40.0		μA
			On RAM ⁽¹⁾				
		Wait mode	Main clock stopped				
			125 kHz on-chip oscillator on		20.0		^
			Peripheral clock operating		20.0		μΑ
			T _{opr} = 25°C				
			f _(BCLK) = 32 MHz (oscillation capacity High)				
			125 kHz on-chip oscillator stopped				
			Peripheral clock operating		8.0		μA
			$T_{opr} = 25^{\circ}C$				
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity Low)				
			125 kHz on-chip oscillator stopped				
			Peripheral clock operating		4.0		μA
			$T_{opr} = 25^{\circ}C$				
		Stop mode	Main clock stopped				
			125 kHz on-chip oscillator stopped				
			Peripheral clock stopped		1.6		μA
			$T_{opr} = 25^{\circ}C$				
		During flash	f(BCLK) = 10 MHz, PM17 = 1 (one wait)				
		memory program	$V_{CC1} = 3.0 \text{ V}$		20.0		mA
		During flash	$f_{\text{POLV}} = 10 \text{ MHz} \text{ PM17} = 1 \text{ (one wait)}$				
		memory erase	(BOLK) = 30.1/		30.0		mA
			v CC1 - 3.0 v				

Note: 1.

This indicates the memory in which the program to be executed exists.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C}$ unless otherwise specified)

de)
(

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	2		μS
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	500		ns
t _{su(TAOUT-TAIN)}	TAilN input setup time	500		ns

Figure 5.21 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C}$ unless otherwise specified)

5.3.2.7 Multi-master I²C-bus

Table 5.53Multi-master I²C-bus

Symbol	Parameter	Standard Clock Mode		Fast-mode		Linit
		Min.	Max.	Min.	Max.	Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μS
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μS
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μS
t _{su;STO}	Stop condition setup time	4.0		0.6		μS

Figure 5.25 Multi-master I²C-bus

5.3.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.3.4.1 In No Wait State Setting

Table 5.55 Memory Expansion and Microprocessor Modes (in No Wait State Setting)

Symbol	Parameter	Measuring	Standard		Linit
		Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.27		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f} - 40[ns]$$
 f_(BCLK) is 12.5 MHz or less.

 $f_{(BCLK)}$ 2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

Figure 5.28 Timing Diagram

RENESAS

Switching Characteristics

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.3.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.56 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

Symbol	Parameter	Measuring	Standard		Lloit
		Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.27		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 40[ns]$$
 n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.
When n = 1, f_(BCLK) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t=-CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

