

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18856-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	l ² C/ SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	—	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	—	Interrupt-on-change input.
RC6/ANC6/CK ⁽³⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	CK ⁽³⁾	TTL/ST	CMOS/OD	EUSART synchronous mode clock input/output.
	IOCC6	TTL/ST	—	Interrupt-on-change input.
RC7/ANC7/RX ⁽¹⁾ /DT ⁽³⁾ /IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	—	ADC Channel C7 input.
	RX ⁽¹⁾	TTL/ST	—	EUSART Asynchronous mode receiver data input.
	DT ⁽³⁾	TTL/ST	CMOS/OD	EUSART Synchronous mode data input/output.
	IOCC7	TTL/ST	—	Interrupt-on-change input.
RE3/IOCE3/MCLR/Vpp	RE3	TTL/ST	-	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).
	IOCE3	TTL/ST	—	Interrupt-on-change input.
	MCLR	ST	—	Master clear input with internal weak pull up resistor.
	Vpp	HV	—	ICSP™ High-Voltage Programming mode entry input.
Vdd	Vdd	Power	—	Positive supply voltage input.

TABLE 1-2: PIC16F18856 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Legend: AN = Analog input or output TTL = TTL compatible input ST

= Open-Drain = Schmitt Trigger input with I²C

1²C

Note

HV = High Voltage XTAL = Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx This is a PPS remappable input signal. The input function may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)												
F47h	INLVLB			INLVLB7	LVLB7 INLVLB6 INLVLB5 INLVLB4 INLVLB3 INLVLB2 INLVLB1 INLVLB0					1111 1111	1111 1111		
F48h	IOCBP			IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
F49h	IOCBN			IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
F4Ah	IOCBF			IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
F4Bh	CCDNB			CCDNB7	CCDNB6	CCDNB5	CCDNB4	CCDNB3	CCDNB2	CCDNB1	CCDNB0	0000 0000	0000 0000
F4Ch	CCDPB			CCDPB7	CCDPB6	CCDPB5	CCDPB4	CCDPB3	CCDPB2	CCDPB1	CCDPB0	0000 0000	0000 0000
F4Dh	_	_	-				U	nimplemented				—	—
F4Eh	ANSELC			ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
F4Fh	WPUC			WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
F50h	ODCONC			ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
F51h	SLRCONC			SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
F52h	INLVLC			INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
F53h	IOCCP			IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
F54h	IOCCN			IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
F55h	IOCCF			IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
F56h	CCDNC			CCDNC7	CCDNC6	CCDNC5	CCDNC4	CCDNC3	CCDNC2	CCDNC1	CCDNC0	0000 0000	0000 0000
F57h	CCDPC			CCDPC7	CCDPC6	CCDPC5	CCDPC4	CCDPC3	CCDPC2	CCDPC1	CCDPC0	0000 0000	0000 0000
F58h	_	_	-				U	nimplemented				—	—
FFOR		—	Х	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
F59h	ANSELD	х	—				U	nimplemented					
FEAL	MELLE	—	Х	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	0000 0000	0000 0000
r5An	WPUD	х	-	Unimplemented									
	ODOOND	—	Х	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000 0000	0000 0000
LORU	ODCOND	х	—				U	nimplemented					

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Register present on PIC16F18855/75 devices only. Legend:

Note 1:

2: Unimplemented, read as '1'.

5.3 Register Definitions: Brown-out Reset Control

REGISTER 5-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN ⁽¹⁾	—	—	—		-	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾ <u>If BOREN <1:0> in Configuration Words ≠ 01</u> : SBOREN is read/write, but has no effect on the BOR. <u>If BOREN <1:0> in Configuration Words = 01</u> : 1 = BOR Enabled 0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

5.4 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 5-2).

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.4.1 MCLR ENABLED

When $\overline{\text{MCLR}}$ is enabled and the pin is held low, the device is held in Reset. The $\overline{\text{MCLR}}$ pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

5.4.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 12.2 "I/O Priorities"** for more information.

5.5 Windowed Watchdog Timer (WWDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period and the window is open. The TO and PD bits in the STATUS register and the WDT bit in PCON are changed to indicate a WDT Reset caused by the timer overflowing, and WDTWV bit in the PCON register is changed to indicate a WDT Reset caused by a window violation. See **Section 9.0 "Windowed Watchdog Timer (WWDT)"** for more information.

- 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 6-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

6.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE			
bit 7	·						bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	Unimplemen	ted: Read as '	D'							
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it						
	1 = Enables f	the USART rec	eive interrupt							
			eive interrupt	••						
DIT 4	IXIE: USARI		rupt Enable b	DIT .						
	1 = Enables 0 = Disables	the USART tra	nsmit interrup Insmit interrur	t of						
bit 3	BCL2IE: MSS	SP2 Bus Collisi	on Interrupt E	nable bit						
	1 = MSSP bu	us Collision inte	errupt enabled	1						
	0 = MSSP bu	us Collision inte	errupt disabled	b						
bit 2	SSP2IE: Synd	chronous Serial Port (MSSP2) Interrupt Enable bit								
	1 = MSSP bu	us collision Inte	rrupt							
	0 = Disables	the MSSP Inte	errupt							
bit 1	BCL1IE: MSS	SP1 Bus Collisi	on Interrupt E	nable bit						
	1 = MSSP bu	us collision inte	rrupt enabled							
h it 0					abla bit					
	1 = Enchlord	the MSSD inter	II POIT (INISSP	i) interrupt En	adie dit					
	1 = Enables 0 = Disables	the MSSP inte	rrupt							
			in apr							
Note: Bit	PEIE of the IN	TCON register	must be							
set	to enable ar	ny peripheral	interrupt							

REGISTER 7-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

controlled by PIE1-PIE8.

12.15 Register Definitions: PORTE (PIC16(L)F18876)

REGISTER 12-45: PORTE: PORTE REGISTER

U-0	U-0	U-0	U-0	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—	—	_	RE3	RE2	RE1	RE0		
bit 7							bit 0		
Legend:									
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	lown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			ared						
bit 7-4 Unimplemented: Read as '0'									

		•
bit 3-0	RE<3:0>: PORTE Input Pin	bit

- 1 = Port pin is > VIH
- 0 = Port pin is < VIL
- **Note 1:** Writes to RE<2:0> are actually written to the corresponding LATE register. Reads from the PORTE register is the return of actual I/O pin values.

REGISTER 12-46: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1 ⁽¹⁾	R/W-x/u	R/W-x/u	R/W-x/u
—	_	—	—	_	TRISE2	TRISE1	TRISE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-4 Unimplemented: Read as '0'
- bit 3 Unimplemented: Read as '1'
- bit 2-0 TRISE<2:0>: TRISE I/O Value bits⁽²⁾ 1 = Port pin is ≥ VIH
 - 0 = Port pin is <u><</u> VIL

Note 1: Unimplemented, read as '1'.

	Default			Remappable to Pins of PORTx							
Input Signal Input Register Name Name	Location	PIC16F18856				PIC16F18876					
		at POR	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD	PORTE	
CLCIN3	CLCIN3PPS	RB7		•	•		•		•		
ADCACT	ADCACTPPS	RB4		•	•		•		•		
SCK1/SCL1	SSP1CLKPPS	RC3		•	•		•	•			
SDI1/SDA1	SSP1DATPPS	RC4		•	•		•	•			
SS1	SSPSS1PPS	RA5	•		•	•			•		
SCK2/SCL2	SSP2CLKPPS	RB1		•	•		•		•		
SDI2/SDA2	SSP2DATPPS	RB2		•	•		•		•		
SS2	SSP2SSPPS	RB0		•	•		•		•		
RX/DT	RXPPS	RC7		•	•		•	•			
СК	TXPPS	RC6		•	•		•	•			

TABLE 13-1: PPS INPUT SIGNAL ROUTING OPTIONS (CONTINUED)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CLKCON	_	_	_	-	-	—	—	CS	312
CWG1ISM	—	_	_	_		١S•	<3:0>		312
CWG1DBR	—	_			DBR	<5:0>			308
CWG1DBF	_				DBF	<5:0>			308
CWG1CON0	EN	LD		_	—		MODE<2:0>		311
CWG1CON1	_		IN	—	POLD	POLC	POLB	POLA	307
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	—	_	309
CWG1AS1	_	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	310
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	311
CWG2CLKCON	_			_	—	—	—	CS	312
CWG2ISM	_			— — IS<3:0>					312
CWG2DBR	_			DBR<5:0>					308
CWG2DBF	_				DBF	<5:0>			308
CWG2CON0	EN	LD		_	—		MODE<2:0>		311
CWG2CON1	_		IN	—	POLD	POLC	POLB	POLA	307
CWG2AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	—	_	309
CWG2AS1	_	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	310
CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	311
CWG3CLKCON	_			_	—	—	—	CS	312
CWG3ISM	_			_		١S·	<3:0>		312
CWG3DBR	—	_			DBR	<5:0>			308
CWG3DBF	—	_			DBF	<5:0>			308
CWG3CON0	EN	LD	_	_	_		MODE<2:0>		311
CWG3CON1	—	_	IN	_	POLD	POLC	POLB	POLA	307
CWG3AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	_	_	309
CWG3AS1	_	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	310
CWG3STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	311

TABLE 20-4: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: - = unimplemented locations read as '0'. Shaded cells are not used by CWG.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: O	Gate 2 Data 4 T	rue (non-inve	rted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gate	e 2 Coto 2			
bit 6		(ilue) is not yai Gate 2 Data 4 I	Vegated (inve	ted) bit			
bit 0	1 = CLCIN3	(inverted) is da	ted into CI Cx	Gate 2			
	0 = CLCIN3 ((inverted) is no	t gated into CL	Cx Gate 2			
bit 5	LCxG3D3T: @	Gate 2 Data 3 T	rue (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	nto CLCx Gat	e 2			
	0 = CLCIN2 ((true) is not gat	ed into CLCx	Gate 2			
bit 4	LCxG3D3N: (Gate 2 Data 3 I	Negated (inver	rted) bit			
	1 = CLCIN2 (0 = CLCIN2 ((inverted) is ga	ted into CLCx t gated into CL	Gate 2 Cx Gate 2			
bit 3	LCxG3D2T:	, Gate 2 Data 2 T	rue (non-inve	rted) bit			
	1 = CLCIN1 ((true) is gated i	nto CLCx Gat	e 2			
	0 = CLCIN1 ((true) is not gat	ed into CLCx	Gate 2			
bit 2	LCxG3D2N:	Gate 2 Data 2 I	Negated (inver	ted) bit			
	1 = CLCIN1((inverted) is ga	ted into CLCx	Gate 2			
bit 1	0 = CLCINT((inverted) is no	rue (nen inve	LCX Gale Z			
DILI		(true) is gated i	nto CLCx Cat				
	0 = CLCINO((true) is not gat	ed into CLCx	Gate 2			
bit 0	LCxG3D1N:	Gate 2 Data 1 I	Negated (inve	ted) bit			
	1 = CLCIN0 ((inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN0 ((inverted) is no	t gated into CL	Cx Gate 2			

REGISTER 22-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

27.0 TIMER0 MODULE

The Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- · Selectable clock sources
- Programmable prescaler (independent of Watchdog Timer)
- Programmable postscaler
- Operation during Sleep mode
- · Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

27.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or a counter and increments on every rising edge of the external source.

27.1.1 16-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

27.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is neither directly readable nor writable (see Figure 27-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

27.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

The value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh.

Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or
- Brown-out Reset (BOR)

27.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

27.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 27-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

27.1.5 ASYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is set (T0ASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

27.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system oscillator (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

27.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 27-2 displays the clock source selections.

29.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

REGISTER 30-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	_		CTS<2:0>	
bit 7							bit 0

Legend:

- J		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS	CCP1.capture	CCP2.capture	CCP3.capture	CCP4.capture	CCP5.capture			
111	LC4_out							
110		LC3_out						
101		LC2_out						
100			LC1_out					
011			IOC_interrupt					
010		C2OUT						
001	CIOUT							
000	CCP1PPS	CCP1PPS CCP2PPS CCP3PPS CCP4PPS CCP5PP						

REGISTER 30-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPR | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0
CCPxMODE = Capture mode
CCPRxL<7:0>: Capture value of TMR1L
CCPxMODE = Compare mode
CCPRxL<7:0>: LS Byte compared to TMR1L
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxL<7:0>: Pulse-width Least Significant eight bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxL<7:6>: Pulse-width Least Significant two bits
CCPRxL<5:0>: Not used.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	—	_	—	—	INTEDG	134
PIR4	—	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148
PIE4	—	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139
CCP1CON	EN	_	OUT	FMT		MODE	E<3:0>		452
CCP1CAP		—		—			CTS<2:0>		454
CCPR1L	Capture/Con	npare/PWM F	Register 1 (LS	B)					454
CCPR1H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					455
CCP2CON	EN		OUT	FMT		MODE	=<3:0>		452
CCP2CAP	—		-	—	-		CTS<2:0>		454
CCPR2L	Capture/Compare/PWM Register 1 (LSB)						454		
CCPR2H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					454
CCPTMRS0	C4TSE	L<1:0>	C3TSE	:L<1:0>	C2TSEL<1:0> C1TSEL<1:0>				455
CCPTMRS1	—	—	P7TSE	L<1:0>	P6TSE	:L<1:0>	C5TSE	L<1:0>	456
CCP1PPS	—	—	_		C	CP1PPS<4:0)>		249
CCP2PPS		—			C	CP2PPS<4:0)>		249
RxyPPS		_				RxyPPS<4:0>	>		250
ADACT		_				ADACT<4:0>			359
CLCxSELy		—				LCxDyS<4:0>	>		329
CWG1ISM	—	_	-	_	— IS<3:0>		312		
MDSRC	—	—	—			MDMS<4:0>			399
MDCARH	_	—	-	—		MDCH	S<3:0>		400
MDCARL	—	_	—	—		MDCL	S<3:0>		401

TABLE 30-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

31.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 31-25).

FIGURE 31-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

31.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,						
	writing to the lower five bits of SSPxCON2						
	is disabled until the Start condition is complete.						

31.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 31-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 31-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 31-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

FIGURE 32-13: GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

PIC16(L)F18856/76

TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
CLC01*	TCLCIN	CLC input time	_	7	OS17	ns	(Note 1)				
CLC02*	TCLC	CLC module input to output progagation time		24 12		ns ns	VDD = 1.8V VDD > 3.6V				
CLC03*	TCLCOUT	CLC output time Rise Time		OS18			(Note 1)				
		Fall Time		OS19			(Note 1)				
CLC04*	FCLCMAX	CLC maximum switching frequency		32	Fosc	MHz					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: See Table 37-10 for OS17, OS18 and OS19 rise and fall times.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N	28					
Pitch	е	0.40 BSC					
Overall Height	A	0.45	0.45 0.50				
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.127 REF					
Overall Width	E	4.00 BSC					
Exposed Pad Width	E2	2.55	2.75				
Overall Length	D	4.00 BSC					
Exposed Pad Length	D2	2.55	2.65	2.75			
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2