

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18856t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE	3-13: SPE		FUNCTION	REGISTE		KI BANNS (J-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	2											
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
60Ch	CWG1CLKCON		_	_	—	_	_	_	_	CS	0	0
60Dh	CWG1ISM		_	_	—	—		IS<3	3:0>		0000	0000
60Eh	CWG1DBR		_	_		l	DE	3R<5:0>			00 0000	00 0000
60Fh	CWG1DBF		—	_			DI	DBF<5:0>				00 0000
610h	CWG1CON0		EN	LD	—	_	—	MODE<2:0>			00000	00000
611h	CWG1CON1		—	_	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
612h	CWG1AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA	.C<1:0>	—	_	0001 01	0001 01
613h	CWG1AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
614h	CWG1STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
615h	—	—			•	U	nimplemented					—
616h	CWG2CLKCON		—	—		_	—	_	—	CS	0	0
617h	CWG2ISM		—	_	—	—		IS<3	3:0>		0000	0000
618h	CWG2DBR		—	_			DE	3R<5:0>			00 0000	00 0000
619h	CWG2DBF		—	_			DI	3F<5:0>			00 0000	00 0000
61Ah	CWG2CON0		EN	LD	—	—	—		MODE<2:0>		00000	00000
61Bh	CWG2CON1		—	—	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
61Ch	CWG2AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA	C<1:0>	—	—	0001 01	0001 01
61Dh	CWG2AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
61Eh	CWG2STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
61Fh	_	_		-		U	nimplemented	-	•	-	_	_

© 2016-2017 Microchip Technology Inc.

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

IARLE	3-13: SPE		FUNCTION	REGISTE	R SUMMA	RI BANKS	0-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	Banks 16											
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
80Ch	WDTCON0		_	_	– PS<4:0> SEN					dd dddo	dd dddo	
80Dh	WDTCON1		—		WDTCS<2:0	>	_		WINDOW<2:0>		-বর্বর -বর্বর	-বর্বর -বর্বর
80Eh	WDTPSL						PSCNT<7:0>				0000 0000	0000 0000
80Fh	WDTPSH			PSCNT<7:0>							0000 0000	0000 0000
810h	WDTTMR		—		WDTTMR<3:0> STATE PSCNT<17:16>				-000 0000	-000 0000		
811h	BORCON		SBOREN	—	—	-	-	—	—	BORRDY	1 q	uu
812h	VREGCON ⁽¹⁾		—	_	_	_	-	—	VREGPM	Reserved	01	01
813h	PCON0		STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 11qq	qqqq qquu
814h	CCDCON		CCDEN	—	_	-	-	—	CCDS	G<1:0>	0xx	0uu
815h	-	—				U	Inimplemented				-	—
816h	-	-				U	Inimplemented				-	—
817h	—	-				U	Inimplemented				-	—
818h	—	—				U	Inimplemented				—	—
819h	-	-				U	Inimplemented				-	—
81Ah	NVMADRL					Ν	IVMADR<7:0>				0000 0000	0000 0000
81Bh	NVMADRH		(2)				NVMADR<1	4:8>			1000 0000	1000 0000
81Ch	NVMDATL					Ν	IVMDAT<7:0>				0000 0000	0000 0000
81Dh	NVMDATH			—			NVM	DAT<13:8>			00 0000	00 0000
81Eh	NVMCON1		_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 g000
81Fh	NVMCON2					N	VMCON2<7:0>				0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

TABLE	ABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)											
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 31	Bank 31											
	CPU CORE REGISTERS; see Table 3-2 for specifics											
F8Ch — FE3h		_	Unimplemente	lemented							_	
FE4h	STATUS_SHAD		_	_	_	_	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_SHAD			WREG_SHAD XXXX XXXX							xxxx xxxx	uuuu uuuu
FE6h	BSR_SHAD		_	—	_			BSR_SHAD			x xxxx	u uuuu
FE7h	PCLATH_SHAD						PCLATH_SH	IAD			-xxx xxxx	-uuu uuuu
FE8h	FSR0L_SHAD					F	SR0L_SHAD				xxxx xxxx	uuuu uuuu
FE9h	FSR0H_SHAD					F	SR0H_SHAD				xxxx xxxx	uuuu uuuu
FEAh	FSR1L_SHAD					F	SR1L_SHAD				xxxx xxxx	uuuu uuuu
FEBh	FSR1H_SHAD			FSR1H_SHAD xxxx xxxx uuuu uuuu								
FECh	_	_	Unimplemente	d							—	
FEDh	STKPTR		_	—	_			STKPTR<4;0>			1 1111	1 1111
FEEh	TOSL						TOSL<7:0>				xxxx xxxx	xxxx xxxx
FEFh	TOSH		_				TOSH<6:0	>			-xxx xxxx	-xxx xxxx

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as shown in Table 4-1.

TABLE 4-1:CONFIGURATION WORD
LOCATIONS

Configuration Word	Location
CONFIG1	8007h
CONFIG2	8008h
CONFIG3	8009h
CONFIG4	800Ah
CONFIG5	800Bh

Note:	The DEBUG bit in Configuration Words						
	managed automatically by device						
	development tools including debugge						
	and programmers. For normal device						
	operation, this bit should be maintained as						
	a '1'.						

							1	
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
		TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	
bit 7							bit 0	
r								
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is s	et	'0' = Bit is cle	ared	HS = Hardwa	are set			
bit 7-6	Unimplemer	nted: Read as '	0'					
bit 5	TMR6IE: TM	R6 to PR6 Mate	ch Interrupt Ei	nable bit				
	1 = Enables	s the Timer6 to	PR6 match in	terrupt				
1.11.4	0 = Disables the Timer6 to PR6 match interrupt							
bit 4 IMR5IE: Timer5 Overflow Interrupt Enable bit								
	0 = Disable	s the Timer5 ov	erflow interru	pt				
bit 3	TMR4IE: TM	R4 to PR4 Mat	ch Interrupt E	nable bit				
	1 = Enables	s the Timer4 to	PR4 match in	terrupt				
	0 = Disable	s the Timer4 to	PR4 match ir	nterrupt				
bit 2	TMR3IE: TM	R3 Overflow In	terrupt Enable	e bit				
	1 = Enables	s the Timer3 ov	erflow interrup	ot				
hit 1			eniow interrupt)(aabla bit				
	1 = Enables	s the Timer? to	PR2 match in	terrunt				
	0 = Disable	s the Timer2 to	PR2 match in	iterrupt				
bit 0	TMR1IE: Tim	ner1 Overflow Ir	nterrupt Enabl	e bit				
 Enables the Timer1 overflow interrupt 								
	0 = Enables the Timer1 overflow interrupt							
Note:	Bit PEIE of the IN	ITCON register	must be					
	controlled by regis	sters PIE1-PIE8	B.					
`								

REGISTER 7-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	HADR<15:8> ^(1,2)								
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 11-14: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1,2)

Most Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRH/L form a 16-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 11-15: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	HADR<7:0> ^(1,2)								
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 HADR<7:0>: Scan End Address bits^(1,2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRH/L form a 16-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 12-25: ANSELC: PORTC ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSC7 | ANSC6 | ANSC5 | ANSC4 | ANSC3 | ANSC2 | ANSC1 | ANSC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ANSC<7:0> : Analog Select between Analog or Digital Function on Pins RC<7:0>, respectively ⁽¹⁾
	0 = Digital I/O. Pin is assigned to port or digital special function.
	1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-26: WPUC: WEAK PULL-UP PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUC7 | WPUC6 | WPUC5 | WPUC4 | WPUC3 | WPUC2 | WPUC1 | WPUC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	—		—	—	RE3	RE2	RE1	RE0	227
TRISE	—	_	—	—	_(1)	TRISE2	TRISE1	TRISE0	227
LATE	—		—	—	—	LATE2	LATE1	LATE0	228
ANSELE	—		—	—	—	ANSE2	ANSE1	ANSE0	228
WPUE	—		—	—	WPUE3	WPUE2	WPUE1	WPUE0	229
ODCONE	—	-	—	—	—	ODCE2	ODCE1	ODCE0	229
SLRCONE	—		—	—	—	SLRE2	SLRE1	SLRE0	230
INLVLE	—		—	—	INLVLE3	INLVLE2	INLVLE1	INLVLE0	230
CCDPE	—		—	—	—	CCDPE2	CCDPE1	CCDPE0	231
CCDNE	_	_	—	—	_	CCDNE2	CCDNE1	CCDNE0	231
CCDCON	CCDEN		_	_	_	_	CCDS	6<1:0>	201

TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE⁽¹⁾

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.**Note 1:**Unimplemented, read as '1'.

TABLE 12-9: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_		DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	_	02
CONFIG2	7:0	BORE	N<1:0>	LPBOREN				PWRTE	MCLRE	93

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

21.2 ZCD Logic Output

The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active. The OUT bit of the ZCDxCON register is set when the current sink is active, and cleared when the current source is active. The OUT bit is affected by the polarity bit.

21.3 ZCD Logic Polarity

The POL bit of the ZCDxCON register inverts the ZCDxOUT bit relative to the current source and sink output. When the POL bit is set, a OUT high indicates that the current source is active, and a low output indicates that the current sink is active.

The POL bit affects the ZCD interrupts. See **Section 21.4 "ZCD Interrupts"**.

21.4 ZCD Interrupts

An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the PIR2 register will be set when either edge detector is triggered and its associated enable bit is set. The INTP enables rising edge interrupts and the INTN bit enables falling edge interrupts. Both are located in the ZCDxCON register.

To fully enable the interrupt, the following bits must be set:

- ZCDIE bit of the PIE2 register
- INTP bit of the ZCDxCON register (for a rising edge detection)
- INTN bit of the ZCDxCON register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

Changing the POL bit will cause an interrupt, regardless of the level of the EN bit.

The ZCDIF bit of the PIR2 register must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

21.5 Correcting for VCPINV offset

The actual voltage at which the ZCD switches is the reference voltage at the non-inverting input of the ZCD op amp. For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross event to occur either too early or too late.

21.5.1 CORRECTION BY AC COUPLING

When the external voltage source is sinusoidal, the effects of the ZCPINV offset can be eliminated by isolating the external voltage source from the ZCD pin with a capacitor, in addition to the voltage reducing resistor. The capacitor will cause a phase shift resulting in the ZCD output switch in advance of the actual zero crossing event. The phase shift will be the same for both rising and falling zero crossings, which can be compensated for by either delaying the CPU response to the ZCD switch by a timer or other means, or selecting a capacitor value large enough that the phase shift is negligible.

To determine the series resistor and capacitor values for this configuration, start by computing the impedance, Z, to obtain a peak current of $300 \ \mu$ A. Next, arbitrarily select a suitably large non-polar capacitor and compute its reactance, Xc, at the external voltage source frequency. Finally, compute the series resistor, capacitor peak voltage, and phase shift by the formulas shown in Equation 21-2.

When this technique is used and the input signal is not present, the ZCD will tend to oscillate. To avoid this oscillation, connect the ZCD pin to VDD or GND with a high-impedance resistor such as 200K.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	134
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	TMR5GIF	TMR3GIF	TMR1GIF	149
PIE5	CLC4IE	CLC4IE	CLC2IE	CLC1IE	—	TMR5GIE	TMR3GIE	TMR1GIE	140
CLC1CON	LC1EN	_	LC1OUT	LC1INTP	LC1INTN		LC1MODE<2:0>	>	327
CLC1POL	LC1POL		—	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	328
CLC1SEL0	_				LC1D	1S<5:0>			329
CLC1SEL1	—			LC1D2S<5:0>					
CLC1SEL2	—			LC1D3S<5:0>					
CLC1SEL3	_				LC1D	4S<5:0>			329
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	330
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	331
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	332
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	333
CLC2CON	LC2EN		LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0>	>	327
CLC2POL	LC2POL	-	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	328
CLC2SEL0	—	_			LC2D	1S<5:0>			329
CLC2SEL1	_			LC2D2S<5:0>					
CLC2SEL2	_	-		LC2D3S<5:0>					
CLC2SEL3	—	_			LC2D	4S<5:0>			329
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	330
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	331
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	332
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	333
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0	>	327
CLC3POL	LC3POL	_	—	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	328
CLC3SEL0	_	_			LC3D	1S<5:0>			329
CLC3SEL1	_	_			LC3D	2S<5:0>			329
CLC3SEL2	_	_			LC3D	3S<5:0>			329
CLC3SEL3	_	_			LC3D	4S<5:0>			329
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	330
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	331
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	332
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	333
CLC4CON	LC4EN	_	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0	>	327
CLC4POL	LC4POL		—	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	328
CLC4SEL0	—	_			LC4D	1S<5:0>			329
CLC4SEL1	_	_			LC4D	2S<5:0>			329
CLC4SEL2	—	_			LC4D	3S<5:0>			329
CLC4SEL3	—	_			LC4D	4S<5:0>			329
CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	330
Legend:=	unimplemente	d read as '0' S	Shaded cells a	re unused by th	e CL Cx modu				

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

TABLE 23-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock Period (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCCS<5:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	000001	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/6	000010	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs
Fosc/8	000011	250 μs ⁽²⁾	400 ns ⁽²⁾	500 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	000111	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽²⁾
Fosc/128	111111	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾
FRC	ADCS(ADCON0 <4>)=1	1.0-6.0 μs ⁽¹⁾					

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

- **2:** These values violate the required TAD time.
- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 23-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES (ADSC = 0)

23.4.1 CVD OPERATION

A CVD operation begins with the ADC's internal (C_{HOLD}) sample and hold capacitor being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, CHOLD is precharged to VDD or Vss, while the path to the sensor node is also discharged to VDD or VSS. Typically, this node is discharged to the level opposite that of CHOLD. When the precharge phase is complete, the VDD/VSS bias paths for the two nodes are shut off and CHOLD and the path to the external sensor node are reconnected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the precharged CHOLD and sensor nodes, which results in a final voltage level setting on CHOLD which is determined by the capacitances and precharge levels of the two nodes. After acquisition, the ADC converts the voltage level on CHOLD. This process is then repeated with the selected precharge levels for both the CHOLD and the inverted sensor nodes. Figure 23-7 shows the waveform for two inverted CVD measurements, which is known as differential CVD measurement.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—		—			ADACT<4:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unkn		nown -n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 23-32: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

 bit 7-5
 Unimplemented: Read as '0'

 bit 4-0
 ADACT<4:0>: Auto-Conversion Trigger Select Bits See Table 23-2.

25.6 Register Definitions: DAC Control

REGISTER 25-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	
DAC1EN	—	DAC10E1	DAC10E2	DAC1P	SS<1:0>	—	DAC1NSS	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7 DAC1EN: DAC1 Enable bit 1 = DAC is enabled 0 = DAC is disabled								
bit 6	Unimplemen	Unimplemented: Read as '0'						
bit 5	DAC1OE1: D 1 = DAC volta 0 = DAC volta	AC1 Voltage C age level is als age level is dis	utput 1 Enabl o an output or connected fro	e bit n the DAC1OU m the DAC1OI	T1 pin JT1 pin			
bit 4	DAC10E2: DAC1 Voltage Output 1 Enable bit 1 = DAC voltage level is also an output on the DAC10UT2 pin 0 = DAC voltage level is disconnected from the DAC10UT2 pin							
bit 3-2 DAC1PSS<1:0>: DAC1 Positive Source Select bits 11 = Reserved, do not use 10 = FVR output 01 = VREF+ pin 00 = VDD								
bit 1	Unimplemen	ted: Read as '	כ'					
bit 0	DAC1NSS: D 1 = VREF- pin 0 = VSS	AC1 Negative	Source Selec	t bits				

REGISTER 25-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4-0	DAC1R<4:0>: DAC1 Voltage Output Select bits
	Vout = (Vsrc+ - Vsrc-)*(DAC1R<4:0>/32) + Vsrc

29.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 29-3.

FIGURE 29-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10000000							
CKPS	0b010							
PRx	1							
OUTPS	060001							
TMRx_clk								
TMRx								
TMRx_postscaled								
TMRxIF	(1) (2)							
Note 1: 2:	Setting the interrupt flag is synchronized with the instruction clock. Synchronization may take as many as 2 instruction cycles Cleared by software.							

REGISTER 30-6: CCPTMRS1: CCP TIMERS CONTROL 1 REGISTER									
U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1		
	—	P7TSE	:L<1:0>	P6TSE	EL<1:0>	C5TSEL<1:0>			
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Reset					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimplemented: Read as '0'								
bit 5-4	P7TSEL<1:0>: PWM7 Timer Selection 11 = PWM7 based on TMR6 10 = PWM7 based on TMR4 01 = PWM7 based on TMR2 00 = Reserved								
bit 3-2	P6TSEL<1:0>: PWM6 Timer Selection 11 = PWM6 based on TMR6 10 = PWM6 based on TMR4 01 = PWM6 based on TMR2 00 = Reserved								
bit 1-0	C5TSEL<1:0>: CCP5 Timer Selection 11 = CCP5 based on TMR5 (Capture/Compare) or TMR6 (PWM) 10 = CCP5 based on TMR3 (Capture/Compare) or TMR4 (PWM) 01 = CCP5 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved								

31.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

31.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit (I^2C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Figure 31-11 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 31-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 31-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-20: LPBOR Reset Hysteresis, PIC16LF18856/76 Only.

FIGURE 38-21: PWRT Period, PIC16F18856/76 Only.

FIGURE 38-22: PWRT Period, PIC16LF18856/76 Only.

FIGURE 38-23: POR Release Voltage.

FIGURE 38-24: POR Rearm Voltage, VREGPM1 = 0, PIC16F18856/76 Only.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	Units	Ν		s		
Dimension	MIN	NOM	MAX			
Contact Pitch	Е		0.40 BSC			
Optional Center Pad Width	W2			2.35		
Optional Center Pad Length	T2			2.35		
Contact Pad Spacing	C1		4.00			
Contact Pad Spacing	C2		4.00			
Contact Pad Width (X28)	X1			0.20		
Contact Pad Length (X28)	Y1			0.80		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A