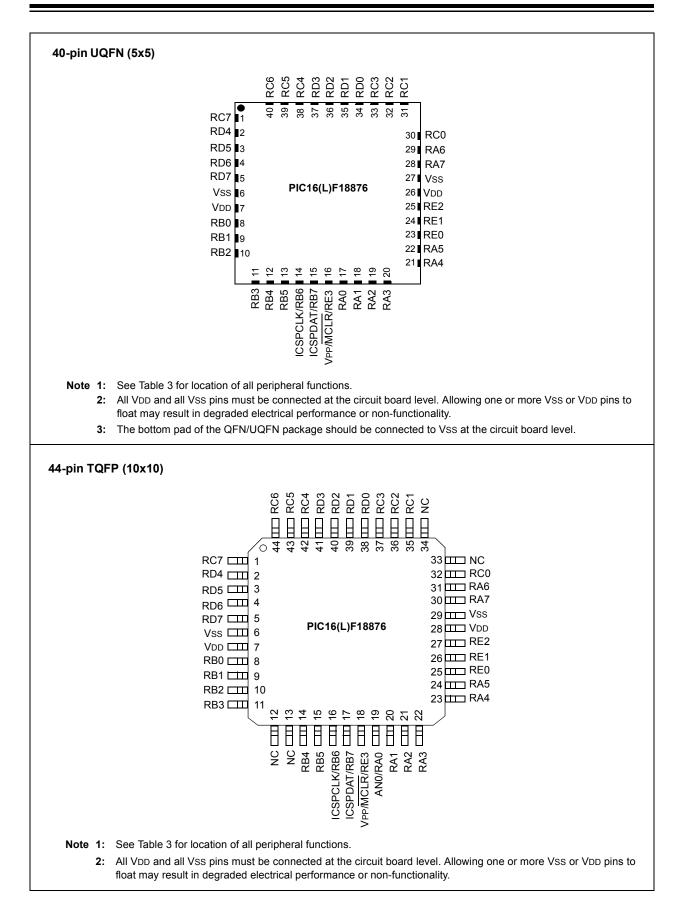


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18876-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F18856 MEMORY MAP, BANK 30 TABLE 3-10:

	Bank 30
F0Ch	_
F0Dh	
F0Eh	
F0Fh	
F10h	RA0PPS
F11h	RA1PPS
F12h	RA2PPS
F13h	RA3PPS
F14h	RA4PPS
F15h	RA5PPS
F16h	RA6PPS
F17h	RA7PPS
F18h	RB0PPS
F19h	RB1PPS
F1Ah	RB2PPS
F1Bh	RB3PPS
F1Ch	RB4PPS
F1Dh	RB5PPS
F1Eh	RB6PPS
F1Fh	RB7PPS
F20h	RC0PPS
F21h	RC1PPS
F22h	RC2PPS
F23h	RC3PPS
F24h	RC4PPS
F25h	RC5PPS
F26h	RC6PPS
F27h	RC7PPS
F28h	
F37h	
F38h	ANSELA
F39h	WPUA
F3Ah	ODCONA
F3Bh	SLRCONA
F3Ch	INLVLA
F3Dh	IOCAP
F3Eh	IOCAN
F3Fh	IOCAF

	Bank 30
F40h	CCDNA
F41h	CCDPA
F42h	—
F43h	ANSELB
F44h	WPUB
F45h	ODCONB
F46h	SLRCONB
F47h	INLVLB
F48h	IOCBP
F49h	IOCBN
F4Ah	IOCBF
F4Bh	CCDNB
F4Ch	CCDPB
F4Dh	—
F4Eh	ANSELC
F4Fh	WPUC
F50h	ODCONC
F51h	SLRCONC
F52h	INLVLC
F53h	IOCCP
F54h	IOCCN
F55h	IOCCF
F56h	CCDNC
F57h	CCDPC
F58h	-
	_
F64h	
F65h	WPUE
F66h	—
F67h	—
F68h	INLVLE
F69h	IOCEP
F6Ah	IOCEN
F6Bh	IOCEF
F6Ch	—
F6Dh	_
F6Eh	_
F6Fh	

Legend:

= Unimplemented data memory locations, read as '0'.

TABLE	3-13: SPE	ECIAL F	UNCTION	REGISTE	R SUMMA	RY BANKS ()-31 (CONTII	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1												
					CPU	CORE REGISTER	S; see Table 3-2 f	for specifics				
08Ch	ADRESL					A	DRESL<7:0>				0000 0000	0000 0000
08Dh	ADRESH			ADRESH<7:0>								0000 0000
08Eh	ADPREVL					A	OPREVL<7:0>				0000 0000	0000 0000
08Fh	ADPREVH					0000 0000	0000 0000					
090h	ADACCL			ADACCL<7:0>								uuuu uuuu
091h	ADACCH			ADACCH<7:0>								uuuu uuuu
092h	-	_				U	nimplemented				-	-
093h	ADCON0		ADON	ADCONT	—	ADCS	—	ADFRM0	_	ADGO	00-0 -0-0	00-0 -0-0
094h	ADCON1		ADPPOL	ADIPEN	ADGPOL	_	—	—	_	ADDSEN	0000	0000
095h	ADCON2		ADPSIS		ADCRS<2:0>		ADACLR		ADMD<2:0>		0000 0000	0000 0000
096h	ADCON3		-		ADCALC<2:0	>	ADSOI		ADTMD<2:0>		-000 0000	-000 0000
097h	ADSTAT		ADAOV	ADUTHR	ADLTHR	ADMATH	—		ADSTAT<2:0>		0000 -000	0000 -000
098h	ADCLK		_	—			ADO	CCS<5:0>			00 0000	00 0000
099h	ADACT		-	—	_			ADACT<4:0>			0 0000	0 0000
09Ah	ADREF		_	—	_	ADNREF	—	—	ADPRE	EF<1:0>	000	000
09Bh	ADCAP		_	—				ADCAP<4:0>			0 0000	0 0000
09Ch	ADPRE					ŀ	ADPRE<7:0>				0000 0000	0000 0000
09Dh	ADACQ					ŀ	ADACQ<7:0>				0000 0000	0000 0000
09Eh	ADPCH		_	—			ADF	PCH<5:0>			00 0000	00 0000
09Fh	—	—				U	nimplemented				_	—

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30)											
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
F0Ch — — — — F0Fh — — — —											_	
F10h	RA0PPS		—	—			RAC	PPS<5:0>			00 0000	uu uuuu
F11h	RA1PPS		_	_			00 0000	uu uuuu				
F12h	RA2PPS		—	—			00 0000	uu uuuu				
F13h	RA3PPS		—	—			00 0000	uu uuuu				
F14h	RA4PPS		—	—			00 0000	uu uuuu				
F15h	RA5PPS		—	—			RA5	PPS<5:0>			00 0000	uu uuuu
F16h	RA6PPS		—	—			RA6	PPS<5:0>			00 0000	uu uuuu
F17h	RA7PPS		—	—			RA7	PPS<5:0>			00 0000	uu uuuu
F18h	RB0PPS		—	—			RBC	PPS<5:0>			00 0000	uu uuuu
F19h	RB1PPS		—	—			RB1	PPS<5:0>			00 0000	uu uuuu
F1Ah	RB2PPS		—	—			RB2	PPS<5:0>			00 0000	uu uuuu
F1Bh	RB3PPS		—	_			RB3	PPS<5:0>			00 0000	uu uuuu
F1Ch	RB4PPS		—	_			RB4	PPS<5:0>			00 0000	uu uuuu
F1Dh	RB5PPS		—	_			RB5	PPS<5:0>			00 0000	uu uuuu
F1Eh	RB6PPS		—	—			RB6	PPS<5:0>			00 0000	uu uuuu
F1Fh	RB7PPS		—	_			RB7	PPS<5:0>			00 0000	uu uuuu
F20h	RC0PPS		—	—			RCC	PPS<5:0>			00 0000	uu uuuu
F21h	RC1PPS		—	—			RC1	PPS<5:0>			00 0000	uu uuuu
F22h	RC2PPS		—	_			RC2	PPS<5:0>			00 0000	uu uuuu
F23h	RC3PPS		—	—			RC3	PPS<5:0>			00 0000	uu uuuu

© 2016-2017 Microchip Technology Inc.

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

TABLE 3	3-13: SPE	CIA	LF	UNCTION	REGISTE		RY BANKS	0-31 (CONTII	NUED)				
Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30 ((Continued)												
550		—	Х	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	1111 1111
F5Ch	SLRCOND	х	-			•	U	Inimplemented					
		—	Х	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111
F5Dh	INLVLD	х	—			1	U	Inimplemented			•		
F5Eh F60h	_	-	-		Unimplemented								_
50.41	000010	—	Х	CCDND7	CCDND6	CCDND5	CCDND4	CCDND3	CCDND2	CCDND1	CCDND0	0000 0000	0000 0000
F61h	CCDND	—		Unimplemented									
5001	00000	—	Х	CCDPD7	CCDPD6	CCDPD5	CCDPD4	CCDPD3	CCDPD2	CCDPD1	CCDPD0	0000 0000	0000 0000
F62h	CCDPD	х	—		Unimplemented								
F63h	_	_	-				U	Inimplemented				—	—
50.41		—	Х	—	—	—	—	-	ANSE2	ANSE1	ANSE0	111	111
F64h	ANSELE	х	—				U	Inimplemented	•				
Forh		—	Х	—	—	—	—	WPUE3	WPUE2	WPUE1	WPUE0	0000	0000
F65h	WPUE	х	—	-	—	—	—	WPUE3	—	_	—	0	0
Fach	ODOONE		Х	_	_	—	—	-	ODCE2	ODCE1	ODCE0	000	000
F66h	ODCONE	х	—				U	Inimplemented					
		—	Х	-	—	—	_	-	SLRE2	SLRE1	SLRE0	111	111
F67h	SLRCONE	х	-				U	Inimplemented					
F68h	INLVLE	—	Х	_	_	—	_	INLVLE3	INLVLE2	INLVLE1	INLVLE0	1111	1111
1 0011		х	—	—	_	_	_	INLVLE3	—		_	1	1
F69h	IOCEP			—	_	_	_	IOCEP3	—		_	0	0
F6Ah	IOCEN			_		_	_	IOCEN3	_		_	0	0

DECISTED SUMMARY RANKS 0.24 (CONTINUED) TION

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Register present on PIC16F18855/75 devices only. Legend:

Note 1:

2: Unimplemented, read as '1'.

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

									- /				
Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30 (Continued)													
F6Bh	IOCEF			_	—	—	_	IOCEF3	_	_	—	0	0
F6Ch	CCDNE	—	х	-	CCDNE2 CCDNE1 CCDNE0							000	000
		х	—				Ur	nimplemented					
F6Dh	CCDPE	—	х	_	—	—	-	-	CCDPE2	CCDPE1	CCDPE0	000	000
		х	—				Ur	nimplemented					
F6Eh	_	_	-		Unimplemented — —								_
F6Fh	_		-				Ur	nimplemented					_

PIC16(L)F18856/76

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

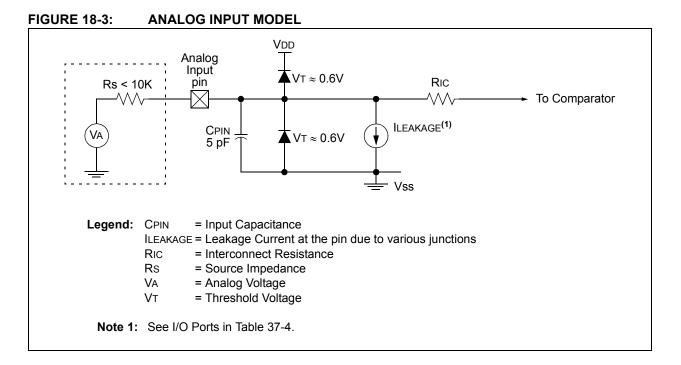
2: Unimplemented, read as '1'.

R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0				
OSFIF	CSWIF	_	_	_	_	ADTIF	ADIF				
bit 7							bit C				
Legend:											
R = Readabl	e bit	W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/						R/Value at all c	other Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared	HS = Hardwa	ire set						
bit 7		ator Fail-Safe I			oarod in coffwa	ro)					
	 1 = Oscillator fail-safe interrupt has occurred (must be cleared in software) 0 = No oscillator fail-safe interrupt 										
bit 6	CSWIF: Clock Switch Complete Interrupt Flag bit										
		switch module switch does no			tion (must be cl tion	eared in softwa	are)				
bit 5-2	Unimplemen	ted: Read as ')'								
bit 1	1 = An A/D m		as beyond the	configured thr	mpare Interrupt eshold (must b threshold		ftware)				
bit 0	1 = An A/D co	-to-Digital Conv onversion or co onversion or co	mplex operati	on has comple	ted (must be cl	eared in softwa	ire)				
cc its El U ap	terrupt flag bits a ondition occurs, r corresponding nable bit, GIE, c ser software opropriate interru	egardless of the enable bit or th of the INTCON should ensu upt flag bits a	e state of e Global register. ire the								

REGISTER 7-12: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

prior to enabling an interrupt.

18.8 Comparator Response Time


The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-14 for more details.

18.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

REGISTER 18-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	—	—		NCH<2:0>	
bit 7							bit 0

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as 10 [°]	bit 7-2	Unimplemented: Read as '0'
---	---------	----------------------------

bit 2-0 NCH<2:0>: Comparator Negative Input Channel Select bits

- 111 = CxVN connects to AVss
 - 110 = CxVN connects to FVR Buffer 2
 - 101 = CxVN unconnected
 - 100 = CxVN unconnected
 - 011 = CxVN connects to CxIN3- pin
- 010 = CxVN connects to CxIN2- pin
- 001 = CxVN connects to CxIN1- pin
- 000 = CxVN connects to CxIN0- pin

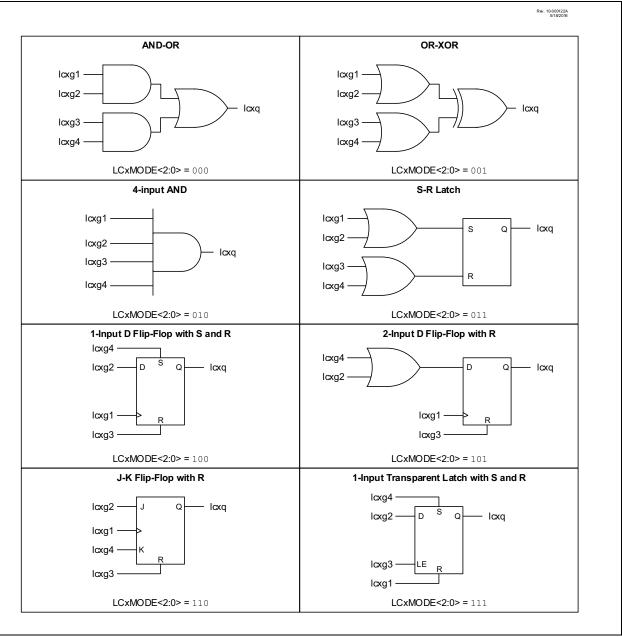
REGISTER 18-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	—	—		PCH<2:0>	
bit 7			•	•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 5-3 PCH<2:0>: Comparator Positive Input Channel Select bits


- 111 = CxVP connects to AVss
- 110 = CxVP connects to FVR Buffer 2
- 101 = CxVP connects to DAC output
- 100 = CxVP unconnected
- 011 = CxVP unconnected
- 010 = CxVP unconnected
- 001 = CxVP connects to CxIN1+ pin
- 000 = CxVP connects to CxIN0+ pin

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PWM6CON	PWM6EN		PWM6OUT	PWM6POL	—	-	—	—	287
PWM6DCH				PWM6DC<	<9:2>				288
PWM6DCL	PWM6D)C<1:0>	_	_	_	_	_	_	288
PWM7CON	PWM7EN		PWM7OUT	PWM7POL	_	_	_	_	287
PWM7DCH				PWM7DC<	<9:2>				288
PWM7DCL	PWM7D)C<1:0>	_	_	_	_	_	_	288
T2CON	ON		CKPS<2:0>			OUTPS	<3:0>		441
T4CON	ON		CKPS<2:0>			OUTPS	<3:0>		441
T6CON	ON		CKPS<2:0>		OUTPS<3:0>				
T2TMR	Holding Register for the 8-bit TMR2 Register								
T4TMR	Holding Register for the 8-bit TMR4 Register								
T6TMR	Holding Regi	ster for the 8-l	oit TMR6 Regist	er					
T2PR	TMR2 Period	Register							
T4PR	TMR4 Period	Register							
T6PR	TMR6 Period	Register							
RxyPPS	—	—			RxyPPS<	5:0>			250
CWG1ISM	_	_	_	—		IS<3	:0>		312
CWG2ISM						IS<3	:0>		312
CWG3ISM						IS<3	:0>		312
CLCxSELy	_	_			LCxDyS<	5:0>			329
MDSRC	—		_		М	DMS<4:0>			399
MDCARH	_		_	_		MDCHS	s<3:0>		400
MDCARL	—	_	_	—		MDCLS	<3:0>		401
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

Register Bit 6 Name Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 on Page 357 ADCON0 ADON ADCONT ADCS ADFRM0 ADGO ADCON1 ADPPOL ADIPEN ADGPOL ADDSEN _ 358 ADCON2 ADPSIS ADCRS<2:0> ADACLR ADMD<2:0> 359 ADCON3 ADSOI ADTMD<2:0> ADCALC<2:0> 360 ADACT ADACT<4:0> _ 359 ADACCH ADACCH 369 ADACCL ADACCL 369 ADPREVH ADPREVH 368 ADPREVL ADPREVL 369 ADRESH ADRESH 367 ADRESL ADRESL 367 ADSTAT ADAOV ADUTHR ADLTHR ADSTAT<2:0> ADMATH 361 ADCLK ADCCS<5:0> 362 ADREF ADNREF ADPREF<1:0> 362 ADCAP ____ ADCAP<4:0> 365 ADPRE ADPRE<7:0> 364 ADACQ ADACQ<7:0> 364 ADPCH ADPCH<5:0> _ _ 363 ADCNT ADCNT<7:0> 366 ADRPT ADRPT<7:0> 365 ADLTHL ADLTH<7:0> 371 ADLTHH ADLTH<15:8> 371 ADUTHL ADUTH<7:0> 372 ADUTHH ADUTH<15:8> 372 ADSTPTL ADSTPT<7:0> 370 ADSTPTH ADSTPT<15:8> 370 ADFLTRL ADFLTR<7:0> 366 ADFLTRH ADFLTR<15:8> 366 ADERRL ADERR<7:0> 371 ADERRH ADERR<15:8> 370 ANSELA ANSA7 ANSA6 ANSA5 ANSA4 ANSA3 ANSA2 ANSA1 ANSA0 205 ANSELB ANSB7 ANSB6 ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 213 ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 ANSC1 ANSC0 221 ANSELD⁽¹⁾ ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0 228 ANSELE ANSE2⁽¹⁾ ANSE1⁽¹⁾ ANSE0⁽¹⁾ ANSE3 ____ 238 DAC1CON1 DAC1R<4:0> 389 ____ FVREN **FVRCON** CDAFVR<1:0> ADFVR<1:0> **FVRRDY** TSEN TSRNG 269 INTCON GIE PEIE INTEDG ____ ____ ____ 134 PIE1 OSFIE CSWIE ADTIE ADIE 136 PIR1 **OSFIF** CSWIF ADTIF ADIF 145 HFOR MFOR OSCSTAT EXTOR LFOR SOR ADOR PLLR 124 ____

TABLE 23-6: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

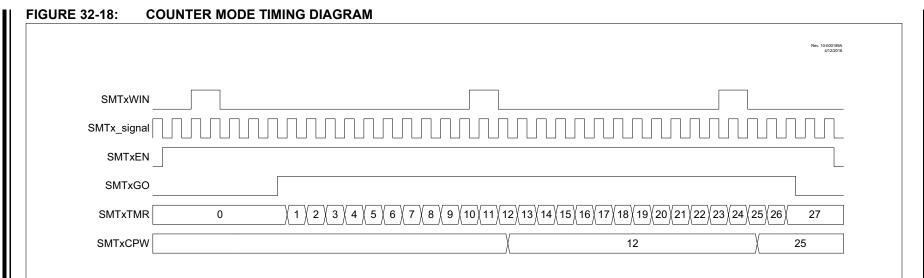
Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: PIC16(L)F18876 only.

32.5.3 GO STATUS

Timer run status is determined by the TS bit of the SMTxSTAT register, and will be delayed in time by synchronizer delays in non-Counter modes.

32.6 Modes of Operation


The modes of operation are summarized in Table 32-1. The following sections provide detailed descriptions, examples of how the modes can be used. Note that all waveforms assume WPOL/SPOL/CPOL = 0. When WPOL/SPOL/CPOL = 1, all SMTSIGx, SMTWINx and SMT clock signals will have a polarity opposite to that indicated. For all modes, the REPEAT bit controls whether the acquisition is repeated or single. When REPEAT = 0 (Single Acquisition mode), the timer will stop incrementing and the SMTxGO bit will be reset upon the completion of an acquisition. Otherwise, the timer will continue and allow for continued acquisitions to overwrite the previous ones until the timer is stopped in software.

32.6.1 TIMER MODE

Timer mode is the simplest mode of operation where the SMTxTMR is used as a 16/24-bit timer. No data acquisition takes place in this mode. The timer increments as long as the SMTxGO bit has been set by software. No SMT window or SMT signal events affect the SMTxGO bit. Everything is synchronized to the SMT clock source. When the timer experiences a period match (SMTxTMR = SMTxPR), SMTxTMR is reset and the period match interrupt trips. See Figure 32-3.

MODE	Mode of Operation	Synchronous Operation	Reference
0000	Timer	Yes	Section 32.6.1 "Timer Mode"
0001	Gated Timer	Yes	Section 32.6.2 "Gated Timer Mode"
0010	Period and Duty Cycle Acquisition	Yes	Section 32.6.3 "Period and Duty-Cycle Mode"
0011	High and Low Time Measurement	Yes	Section 32.6.4 "High and Low Measure Mode"
0100	Windowed Measurement	Yes	Section 32.6.5 "Windowed Measure Mode"
0101	Gated Windowed Measurement	Yes	Section 32.6.6 "Gated Window Measure Mode"
0110	Time of Flight	Yes	Section 32.6.7 "Time of Flight Measure Mode"
0111	Capture	Yes	Section 32.6.8 "Capture Mode"
1000	Counter	No	Section 32.6.9 "Counter Mode"
1001	Gated Counter	No	Section 32.6.10 "Gated Counter Mode"
1010	Windowed Counter	No	Section 32.6.11 "Windowed Counter Mode"
1011-1111	Reserved	—	_

TABLE 32-1: MODES OF OPERATION

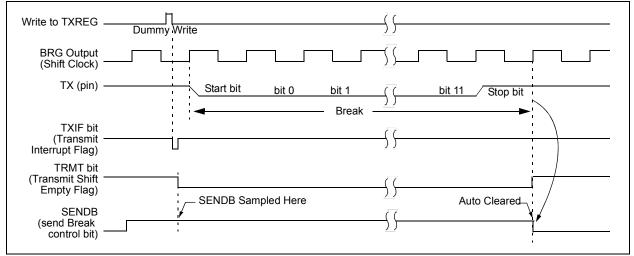
R/W/HC-0/0	R/W/HC-0/0	R/W/HC-0/0	U-0	U-0	R-0/0	R-0/0	R-0/0
CPRUP	CPWUP	RST	—	_	TS	WS	AS
bit 7							bit 0
Legend:							
HC = Bit is clea	-	are		HS = Bit is se	et by hardware		
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	tion	
bit 7 bit 6 bit 5	1 = Request to 0 = SMTxPR> CPWUP: SM 1 = Request to 0 = SMTxCPV RST: SMT Ma	Manual Perio update to SMT registers upda Manual Pulse update to SMT Wregisters upo anual Timer Re Reset to SMTx	CPRx registers ate is complete Width Buffer CPW register late is complet set bit	e Update bit s			
		R registers upd	•	e			
bit 4-3	-	ted: Read as '					
bit 2	1 = SMT time	Value Status b r is incrementir r is not increme	ng				
bit 1	WS : SMTxWI 1 = SMT wind 0 = SMT wind		bit				
bit 0	1 = SMT acqu	nal Value Statu uisition is in pro uisition is not in	gress				

REGISTER 32-3: SMTxSTAT: SMT STATUS REGISTER

33.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RC1STA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.


A Break character has been received when:

- · RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 33.3.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUD1CON register before placing the EUSART in Sleep mode.

TABLE 37-11:RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT
RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	_	_	μS			
RST02*	Tioz	I/O high-impedance from Reset detection	_	_	2	μS			
RST03	TWDT	Watchdog Timer Time-out Period	—	16		ms	16 ms Nominal Reset Time		
RST04*	TPWRT	Power-up Timer Period	_	65		ms			
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)	_	1024		Tosc			
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.60 2.10	V V V	BORV = 0 BORV = 1 (PIC16F18856/76) BORV = 1 (PIC16LF18856/76)		
RST07	VBORHYS	Brown-out Reset Hysteresis	_	40	_	mV			
RST08	TBORDC	Brown-out Reset Response Time	_	3	_	μS			
RST09	Vlpbor	Low-Power Brown-out Reset Voltage	2.3	2.45	2.7	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

•	Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Unit s	Conditions			
AD01	NR	Resolution	—	_	10	bit				
AD02	Eĩ∟	Integral Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD03	Edl	Differential Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD04	EOFF	Offset Error	_	0.5	2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD05	Egn	Gain Error	—	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V			
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V				
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V				
AD08	Zain	Recommended Impedance of Analog Voltage Source	_	10	_	kΩ				
AD09	Rvref	ADC Voltage Reference Ladder Impedance		50	_	kΩ	Note 3			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

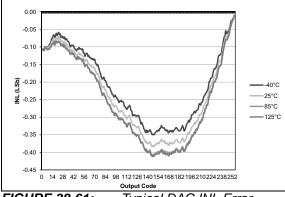
Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

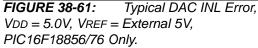
2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

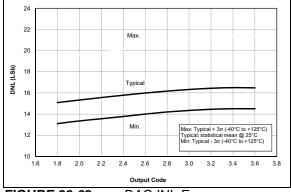
3: This is the impedance seen by the VREF pads when the external reference pads are selected.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

TABLE 37-25: I²C BUS DATA REQUIREMENTS


Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP101* TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP102* TR	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns		
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	μs		
SP107*	TSU:DAT	U:DAT Data input setup time	100 kHz mode	250		ns	(Note 2)	
			400 kHz mode	100		ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	—	—	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
SP111	Св	Bus capacitive loading		—	400	pF		


* These parameters are characterized but not tested.


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-62: DAC INL Error, VDD = 3.0V, PIC16LF18856/76 Only.

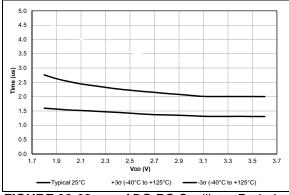


FIGURE 38-63: ADC RC Oscillator Period, PIC16LF18856/76 Only.

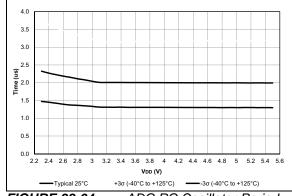


FIGURE 38-64: ADC RC Oscillator Period, PIC16F18856/76 Only.

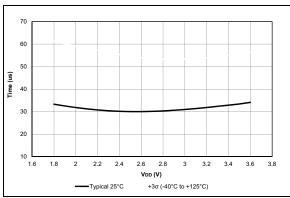


FIGURE 38-65: Bandgap Ready Time, PIC16LF18856/76 Only.

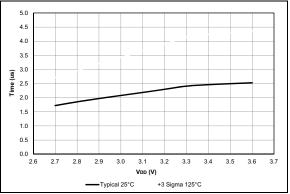
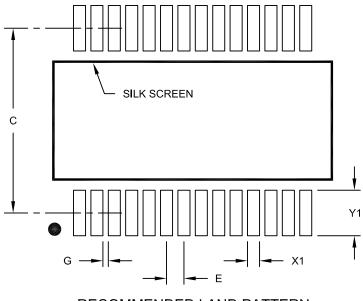



FIGURE 38-66: BOR Response Time, PIC16LF18856/76 Only.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A