

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18876-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB2/ANB2/SDA2 ^(3,4) /SDI2 ⁽¹⁾ /	RB2	TTL/ST	CMOS/OD	General purpose I/O.
CWG3IN ⁴⁷ /IOCB2	ANB2	AN	_	ADC Channel B2 input.
	SDA2 ^(3,4)	l ² C/ SMBus	OD	MSSP2 I ² C serial data input/output.
	SDI2 ⁽¹⁾	TTL/ST	-	MSSP2 SPI serial data input.
	CWG3IN ⁽¹⁾	TTL/ST	-	Complementary Waveform Generator 3 input.
	IOCB2	TTL/ST	—	Interrupt-on-change input.
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	_	ADC Channel B3 input.
	C1IN2-	AN	—	Comparator negative input.
	C2IN2-	AN	—	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
RB4/ANB4/ADCACT ⁽¹⁾ /T5G ⁽¹⁾ /	RB4	TTL/ST	CMOS/OD	General purpose I/O.
SMTWIN2 ^(*) /IOCB4	ANB4	AN	_	ADC Channel B4 input.
	ADCACT ⁽¹⁾	TTL/ST	-	ADC Auto-Conversion Trigger input.
	T5G ⁽¹⁾	TTL/ST	_	Timer5 gate input.
	SMTWIN2 ⁽¹⁾	TTL/ST	-	Signal Measurement Timer 2 (SMT2) window input.
	IOCB4	TTL/ST	—	Interrupt-on-change input.
RB5/ANB5/T1G ⁽¹⁾ /SMTSIG2 ⁽¹⁾ /	RB5	TTL/ST	CMOS/OD	General purpose I/O.
CCP3 MOCB5	ANB5	AN	_	ADC Channel B5 input.
	T1G ⁽¹⁾	TTL/ST	_	Timer1 gate input.
	SMTSIG2 ⁽¹⁾	TTL/ST	_	Signal Measurement Timer 2 (SMT2) signal input.
	CCP3 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM3 (default input location for capture function).
	IOCB5	TTL/ST	—	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/ICSPCLK	RB6	TTL/ST	CMOS/OD	General purpose I/O.
	ANB6	AN	—	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCB6	TTL/ST	—	Interrupt-on-change input.
	ICSPCLK	ST	-	In-Circuit Serial Programming™ and debugging clock input.
legend: AN = Analog input or outr	ut CMOS		mnatible input or	OD = Open-Drain

TABLE 1-2: PIC16F18856 PINOUT DESCRIPTION (CONTINUED)

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

 Note
 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx

pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.
All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
Bank 29	(Continued)												
EBAh	MDSRCPPS		—	—	—			MDSRCPPS<4:0>			0 0101	u uuuu	
EBBh	CLCIN0PPS		—	—	—				0 0000	u uuuu			
EBCh	CLCIN1PPS		—	—	—				0 0001	u uuuu			
EBDh	CLCIN2PPS		—	—	—			CLCIN2PPS<4:0>			0 1110	u uuuu	
EBEh	CLCIN3PPS		—	—	—			CLCIN3PPS<4:0>			0 1111	u uuuu	
EBFh	—	—				U	nimplemented				—	—	
EC0h	_	_				U	nimplemented	—	—				
EC1h	_	—				U	nimplemented				—	_	
EC2h	—	—				U	nimplemented				-	_	
EC3h	ADCACTPPS		—	—	—			ADCACTPPS<4:0>			0 1100	u uuuu	
EC4h	—	—				U	nimplemented				-	_	
EC5h	SSP1CLKPPS		—	—	—			SSP1CLKPPS<4:0>			1 0011	u uuuu	
EC6h	SSP1DATPPS		—	—	—			SSP1DATPPS<4:0>			1 0100	u uuuu	
EC7h	SSP1SSPPS		—	—	—			SSP1SSPPS<4:0>			0 0101	u uuuu	
EC8h	SSP2CLKPPS		—	—	—			SSP2CLKPPS<4:0>			0 1001	u uuuu	
EC9h	SSP2DATPPS		_	_	—			SSP2DATPPS<4:0>			0 0010	u uuuu	
ECAh	SSP2SSPPS		_	—	—			0 1000	u uuuu				
ECBh	RXPPS		_	—	—		RXPPS<4:0>						
ECCh	TXPPS		_	_	—		TXPPS<4:0>						
ECDh to EEFh	_	-				U	nimplemented				_	-	

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

IADLE	3-13: 3PE	CIA			REGISTE	R SUIVIIVIA	KI DANNO (NUED)				
Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)											-	
E21b		—	х		—			RE1	PPS<5:0>			00 0000	uu uuuu
FJIII	REIFFO	х	_				U	nimplemented					
		_	Х	-	—				00 0000	uu uuuu			
F3211	REZPPS	х	_				U						
F33h F37h	_	-	-				U	_	_				
F38h	ANSELA			ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
F39h	WPUA			WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	0000 0000	0000 0000
F3Ah	ODCONA			ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000 0000	0000 0000
F3Bh	SLRCONA			SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	1111 1111
F3Ch	INLVLA			INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	1111 1111	1111 1111
F3Dh	IOCAP			IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000 0000	0000 0000
F3Eh	IOCAN			IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000 0000	0000 0000
F3Fh	IOCAF			IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000 0000	0000 0000
F40h	CCDNA			CCDNA7	CCDNA6	CCDNA5	CCDNA4	CCDNA3	CCDNA2	CCDNA1	CCDNA0	0000 0000	0000 0000
F41h	CCDPA			CCDPA7	CCDPA6	CCDPA5	CCDPA4	CCDPA3	CCDPA2	CCDPA1	CCDPA0	0000 0000	0000 0000
F42h	—	-	-		-		U	nimplemented		·	•	—	—
F43h	ANSELB			ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
F44h	WPUB			WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	0000 0000	0000 0000
F45h	ODCONB			ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000 0000	0000 0000
F46h	SLRCONB			SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	1111 1111	1111 1111

x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	(Continued)												
F6Bh	IOCEF			-	_	—	-	IOCEF3	—	—	—	0	0
F6Ch	CCDNE	-	х	-	—	—	—	-	CCDNE2	CCDNE1	CCDNE0	000	000
		х	—				U	nimplemented					
F6Dh	CCDPE	—	х	_	—	—	—	—	CCDPE2	CCDPE1	CCDPE0	000	000
		х	—				U	nimplemented					
F6Eh	_	-	-		Unimplemented — —								—
F6Fh	—	-	-				U	nimplemented				—	-

PIC16(L)F18856/76

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx registers)

The PIR1, PIR2, PIR3 and PIR4 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0** "**Power-Saving Operation Modes**" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the PIE0 register. The INTEDG bit of the INTCON register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the PIR0 register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

12.5 Register Definitions: PORTA

REGISTER 12-2: PORTA: PORTA REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RA<7:0>**: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-36: WPUD: WEAK PULL-UP PORTD REGISTER

bit 7-0 WPUD<7:0>: WPUD I/O Value bits⁽¹⁾ $1 = Port pin is \ge VIH$ $0 = Port pin is \le VIL$

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-37: ODCOND: PORTD OPEN-DRAIN CONTROL REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODCD<7:0>**: ODCD I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

13.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 13-1..

Note: The notation "xxx" in the register name is a place holder for the peripheral identifier. For example, CLC1PPS.

13.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

- EUSART (synchronous operation)
- MSSP (I²C)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 13-2.

Note: The notation "Rxy" is a place holder for the pin port and bit identifiers. For example, x and y for PORTA bit 0 would be A and 0, respectively, resulting in the pin PPS output selection register RA0PPS.

FIGURE 13-1: SIMPLIFIED PPS BLOCK DIAGRAM

REGISTER	R 14-1: PMD	0: PMD CON	ROL REGIS	STER 0			
R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCMD	FVRMD		CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7							0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared	q = Value dep	ends on condit	tion	
bit 7	SYSCMD: Di See des 1 = System 0 = System	isable Periphera cription in Sect clock network d clock network e	al System Cloc ion 14.4 "Sys isabled (a.k.a. nabled	k Network bit tem Clock Disa Fosc)	able".		
bit 6	FVRMD: Dis 1 = FVR mo 0 = FVR mo	able Fixed Volta dule disabled dule enabled	ige Reference	(FVR) bit			
bit 5	Unimplemer	nted: Read as ')'				
bit 4	CRCMD: CRC module disable bit 1 = CRC module disabled 0 = CRC module enabled						
bit 3	SCANMD: Program Memory Scanner Module Disable bit 1 = Scanner module disabled 0 = Scanner module enabled						
bit 2	NVMMD: NV 1 = User me FSR acc 0 = NVM mc	M Module Disal mory and EEPF cess to these loo odule enabled	ble bit ⁽¹⁾ ROM reading a cations returns	nd writing is disa zero.	abled; NVMCO	N registers can	not be written;
bit 1	CLKRMD: D 1 = CLKR m 0 = CLKR m	isable Clock Re odule disabled odule enabled	ference CLKR	bit			
bit 0	IOCMD: Disa 1 = IOC mod 0 = IOC mod	able Interrupt-or dule(s) disabled dule(s) enabled	-Change bit, A	All Ports			
Note 1:	When enabling N	IVM, a delay of	up to 1 µs ma	y be required be	efore accessing	g data.	

REGISTER 14-4: PMD3: PMD CONTROL REGISTER 3								
U-0	R/W-0/0							
—	PWM7MD	PWM6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	Unimplemented: Read as '0'
bit 6	PWM7MD: Disable Pulse-Width Modulator PWM7 bit 1 = PWM7 module disabled 0 = PWM7 module enabled
bit 5	PWM6MD: Disable Pulse-Width Modulator PWM6 bit 1 = PWM6 module disabled 0 = PWM6 module enabled
bit 4	CCP5MD: Disable Pulse-Width Modulator CCP5 bit 1 = CCP5 module disabled 0 = CCP5 module enabled
bit 3	CCP4MD: Disable Pulse-Width Modulator CCP4 bit 1 = CCP4 module disabled 0 = CCP4 module enabled
bit 2	CCP3MD: Disable Pulse-Width Modulator CCP3 bit 1 = CCP3 module disabled 0 = CCP3 module enabled
bit 1	CCP2MD: Disable Pulse-Width Modulator CCP2 bit 1 = CCP2 module disabled 0 = CCP2 module enabled
bit 0	CCP1MD: Disable Pulse-Width Modulator CCP1 bit 1 = CCP1 module disabled 0 = CCP1 module enabled

16.3 Register Definitions: FVR Control

REGISTER 16-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVI	R<1:0>
bit 7							bit 0

Legend:								
R = Reada	able bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is u	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is	set	'0' = Bit is cleared	q = Value depends on condition					
bit 7	FVREN: Fiz	ked Voltage Reference Enal	ble bit					
	1 = Fixed	1 = Fixed Voltage Reference is enabled						
	0 = Fixed	/oltage Reference is disable	ed					
bit 6	FVRRDY: F	ixed Voltage Reference Re	ady Flag bit(")					
	1 = Fixed	/oltage Reference output is	Itage Reference output is ready for use					
		/oltage Reference output is	not ready or not enabled					
bit 5	TSEN: Terr	TSEN: Temperature Indicator Enable bit ⁽³⁾						
	1 = Iempe	rature Indicator is enabled						
			(2)					
bit 4		mperature Indicator Range	Selection bit ⁽³⁾					
	$\perp = VOUT =$	VDD - 4VT (High Range)						
h :+ 0 0		· VDD - ZVT (LOW Range)	ar Cain Calastian hita					
DIT 3-2		areter EVD Buffer Coin is 4	er Gain Selection bits $(4,006)/(2)$					
	11 = Comp	arator EVR Buffer Gain is 4.	x, (4.090v)([*]) x, (2.048\/)(2)					
	01 = Comp	arator FVR Buffer Gain is 1	x, (2.040V)					
	00 = Comp	arator FVR Buffer is off	., (
bit 1-0	ADFVR<1:	0>: ADC FVR Buffer Gain S	Selection bit					
	11 = ADC I	VR Buffer Gain is 4x, (4.09	6V) ⁽²⁾					
	10 = ADC I	VR Buffer Gain is 2x, (2.04	8V) ⁽²⁾					
	01 = ADC H	FVR Buffer Gain is 1x, (1.02	4V)					
	00 = ADC I	FVR Buffer is off						
Note 1:	FVRRDY is alwa	ays '1' for PIC16F18855/75	devices only.					
2:	Fixed Voltage R	eference output cannot exce	eed VDD.					
3:	See Section 17	0 "Temperature Indicator	Module" for additional information.					

FIGURE 28-1: TIMER1 BLOCK DIAGRAM

REGISTER 29-4: TxRS	T: TIMER2/4/6 EXTERNAL	RESET SIGNAL	SELECTION REGISTER
---------------------	------------------------	--------------	--------------------

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_			RSEL<4:0>		
bit 7	·						bit 0
·							
Legend:							
R = Reada	ble bit	W = Writable	e bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	set	'0' = Bit is cle	eared				
bit 7-5	Unimplemer	nted: Read as	'0'				
bit 4-0	RSEL<4:0>:	Timer2 Extern	al Reset Signa	I Source Select	tion bits		
	11111 = Res	served					
	•						
	•						
	10010 = Res	served					
	10001 = LC4	1_out					
	10000 = LC3	3_out					
	01111 = LC2	2_out					
	01101 = 201	7_0ut D1_output					
	01100 = C20	DUT svnc					
	01011 = C1 0	OUT_sync					
	01010 = PW	M7_out					
	01001 = PW	M6_out					
	01000 = CCI	P5_out					
	00111 = CCI	P4_out					
	00110 = CCI	P3_out					
	00101 = CCI	P2_OUL P1_out					
	00100 = COI	R6 postscaler	₁ (3)				
	00010 = TMI	R4 postscaled	j(2)				
	00001 = TMI	R2 postscaled	j(1)				
	00000 = Pin	selected by T	xINPPS				
Note 1:	For Timer2, this b	it is Reserved.					

- **2:** For Timer4, this bit is Reserved.
- **3:** For Timer6, this bit is Reserved.

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility