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systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F18856/76
RA5/ANA5/SS1(1)/MDSRC(1)/IOCA5 RA5 TTL/ST CMOS/OD General purpose I/O.

ANA5 AN — ADC Channel A5 input.

SS1(1) TTL/ST — MSSP1 SPI slave select input.

MDSRC(1) TTL/ST — Modulator Source input.

IOCA5 TTL/ST — Interrupt-on-change input.

RA6/ANA6/OSC2/CLKOUT/IOCA6 RA6 TTL/ST CMOS/OD General purpose I/O.

ANA6 AN — ADC Channel A6 input.

OSC2 — XTAL External Crystal/Resonator (LP, XT, HS modes) driver out-
put.

CLKOUT — CMOS/OD FOSC/4 digital output (in non-crystal/resonator modes).

IOCA6 TTL/ST — Interrupt-on-change input.

RA7/ANA7/OSC1/CLKIN/IOCA7 RA7 TTL/ST CMOS/OD General purpose I/O.

ANA7 AN — ADC Channel A7 input.

OSC1 XTAL — External Crystal/Resonator (LP, XT, HS modes) driver input.

CLKIN TTL/ST — External digital clock input.

IOCA7 TTL/ST — Interrupt-on-change input.

RB0/ANB0/C2IN1+/ZCD/SS2(1)/
CCP4(1)/CWG1IN(1)/INT(1)/IOCB0

RB0 TTL/ST CMOS/OD General purpose I/O.

ANB0 AN — ADC Channel B0 input.

C2IN1+ AN — Comparator positive input.

ZCD AN AN Zero-cross detect input pin (with constant current sink/
source).

SS2(1) TTL/ST — MSSP2 SPI slave select input.

CCP4(1) TTL/ST CMOS/OD Capture/compare/PWM4 (default input location for capture 
function).

CWG1IN(1) TTL/ST — Complementary Waveform Generator 1 input.

INT(1) TTL/ST — External interrupt request input.

IOCB0 TTL/ST — Interrupt-on-change input.

RB1/ANB1/C1IN3-/C2IN3-/SCL2(3,4)/
SCK2(1)/CWG2IN(1)/IOCB1

RB1 TTL/ST CMOS/OD General purpose I/O.

ANB1 AN — ADC Channel B1 input.

C1IN3- AN — Comparator negative input.

C2IN3- AN — Comparator negative input.

SCL2(3,4) I2C/SMBus OD MSSP2 I2C clock input/output.

SCK2(1) TTL/ST CMOS/OD MSSP2 SPI serial clock (default input location, SCK2 is a 
PPS remappable input and output).

CWG2IN(1) TTL/ST — Complementary Waveform Generator 2 input.

IOCB1 TTL/ST — Interrupt-on-change input.

TABLE 1-3: PIC16F18876 PINOUT DESCRIPTION (CONTINUED) 

Name Function Input Type Output Type Description

Legend: AN =  Analog input or output  CMOS = CMOS compatible input or output  OD = Open-Drain
TTL =  TTL compatible input  ST = Schmitt Trigger input with CMOS levels I2C = Schmitt Trigger input with I2CHV= 
High Voltage XTAL= Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 
pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 
as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 
PPS output registers.

4: These pins are configured for I2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 
assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, 
instead of the I2C specific or SMBus input buffer thresholds.
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3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by
setting bit 7 of the FSRxH register and reading the
matching INDFx register. The MOVIW instruction will
place the lower eight bits of the addressed word in the
W register. Writes to the program memory cannot be
performed via the INDF registers. Instructions that
access the program memory via the FSR require one
extra instruction cycle to complete. Example 3-2
demonstrates accessing the program memory via an
FSR.

The HIGH directive will set bit 7 if a label points to a
location in the program memory.

EXAMPLE 3-2: ACCESSING PROGRAM 
MEMORY VIA FSR

3.2 Data Memory Organization

The data memory is partitioned into 32 memory banks
with 128 bytes in each bank. Each bank consists of
(Figure 3-2):

• 12 core registers

• 20 Special Function Registers (SFR)

• Up to 80 bytes of General Purpose RAM (GPR) 

• 16 bytes of common RAM

The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as ‘0’. All data memory can be
accessed either directly (via instructions that use the
file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.5 “Indirect
Addressing”” for more information.

Data memory uses a 12-bit address. The upper five bits
of the address define the Bank address and the lower
seven bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x08h through x0Bh/x8Bh). These
registers are listed below in Table 3-2. For detailed
information, see Table 3-12.

TABLE 3-2: CORE REGISTERS

constants
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3

my_function
;… LOTS OF CODE…
MOVLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants
MOVWF FSR1H
MOVIW 0[FSR1]

;THE PROGRAM MEMORY IS IN W

Addresses BANKx

x00h or x80h INDF0
x01h or x81h INDF1
x02h or x82h PCL
x03h or x83h STATUS
x04h or x84h FSR0L
x05h or x85h FSR0H
x06h or x86h FSR1L
x07h or x87h FSR1H
x08h or x88h BSR
x09h or x89h WREG
x0Ah or x8Ah PCLATH
x0Bh or x8Bh INTCON
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FIGURE 7-2: INTERRUPT LATENCY
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11.7 Configuring the CRC

The following steps illustrate how to properly configure
the CRC.

1. Determine if the automatic Program Memory
scan will be used with the scanner or manual
calculation through the SFR interface and per-
form the actions specified in Section 11.4 “CRC
Data Sources”, depending on which decision
was made.

2. If desired, seed a starting CRC value into the
CRCACCH/L registers.

3. Program the CRCXORH/L registers with the
desired generator polynomial.

4. Program the DLEN<3:0> bits of the CRCCON1
register with the length of the data word – 1
(refer to Example 11-1). This determines how
many times the shifter will shift into the accumu-
lator for each data word.

5. Program the PLEN<3:0> bits of the CRCCON1
register with the length of the polynomial – 2
(refer to Example 11-1).

6. Determine whether shifting in trailing zeros is
desired and set the ACCM bit of CRCCON0
register appropriately.

7. Likewise, determine whether the MSb or LSb
should be shifted first and write the SHIFTM bit
of CRCCON0 register appropriately.

8. Write the CRCGO bit of the CRCCON0 register
to begin the shifting process.

9a. If manual SFR entry is used, monitor the FULL bit
of CRCCON0 register. When FULL = 0, another
word of data can be written to the CRCDATH/L
registers, keeping in mind that CRCDATH should
be written first if the data has >8 bits, as the
shifter will begin upon the CRCDATL register
being written.

9b. If the scanner is used, the scanner will
automatically stuff words into the CRCDATH/L
registers as needed, as long as the SCANGO bit
is set.

10a.If using the Flash memory scanner, monitor the
SCANIF (or the SCANGO bit) for the scanner to
finish pushing information into the CRCDATA
registers. After the scanner is completed, moni-
tor the CRCIF (or the BUSY bit) to determine
that the CRC has been completed and the check
value can be read from the CRCACC registers.
If both the interrupt flags are set (or both BUSY
and SCANGO bits are cleared), the completed
CRC calculation can be read from the
CRCACCH/L registers.

10b.If manual entry is used, monitor the CRCIF (or
BUSY bit) to determine when the CRCACC
registers will hold the check value.

11.8 Program Memory Scan 
Configuration

If desired, the Program Memory Scan module may be
used in conjunction with the CRC module to perform a
CRC calculation over a range of program memory
addresses. In order to set up the Scanner to work with
the CRC you need to perform the following steps:

1. Set the EN bit to enable the module. This can be
performed at any point preceding the setting of
the SCANGO bit, but if it gets disabled, all
internal states of the Scanner are reset
(registers are unaffected).

2. Choose which memory access mode is to be
used (see Section 11.10 “Scanning Modes”)
and set the MODE bits of the SCANCON0
register appropriately.

3. Based on the memory access mode, set the
INTM bits of the SCANCON0 register to the
appropriate interrupt mode (see Section
11.10.5 “Interrupt Interaction”)

4. Set the SCANLADRL/H and SCANHADRL/H
registers with the beginning and ending
locations in memory that are to be scanned.

5. Begin the scan by setting the SCANGO bit in the
SCANCON0 register. The scanner will wait
(CRCGO must be set) for the signal from the
CRC that it is ready for the first Flash memory
location, then begin loading data into the CRC.
It will continue to do so until it either hits the
configured end address or an address that is
unimplemented on the device, at which point the
SCANGO bit will clear, Scanner functions will
cease, and the SCANIF interrupt will be
triggered. Alternately, the SCANGO bit can be
cleared in software if desired.

11.9 Scanner Interrupt

The scanner will trigger an interrupt when the
SCANGO bit transitions from ‘1’ to ‘0’. The SCANIF
interrupt flag of PIR7 is set when the last memory
location is reached and the data is entered into the
CRCDATA registers. The SCANIF bit can only be
cleared in software. The SCAN interrupt enable is the
SCANIE bit of the PIE7 register.

11.10 Scanning Modes

The memory scanner can scan in four modes: Burst,
Peek, Concurrent, and Triggered. These modes are
controlled by the MODE bits of the SCANCON0
register. The four modes are summarized in Table 11-1.
 2016-2017 Microchip Technology Inc. DS40001824B-page 190
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REGISTER 11-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x

DAT<15:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 DAT<15:8>: CRC Input/Output Data bits

REGISTER 11-4: CRCDATL: CRC DATA LOW BYTE REGISTER

R/W-xx R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x

DAT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 DAT<7:0>: CRC Input/Output Data bits
Writing to this register fills the shifter.

REGISTER 11-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

ACC<15:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator. 

REGISTER 11-6: CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

ACC<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 ACC<7:0>: CRC Accumulator Register bits

Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register 
reads the CRC accumulator.
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19.0 PULSE-WIDTH MODULATION 
(PWM)

The PWMx modules generate Pulse-Width Modulated
(PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the
PIC16(L)F18855/75 devices contain two PWM mod-
ules (PWM6 and PWM7). These modules are essen-
tially the same as the CCP modules without the
Capture or Compare functionality. 

Pulse-Width Modulation (PWM) is a scheme that
provides power to a load by switching quickly between
fully on and fully off states. The PWM signal resembles
a square wave where the high portion of the signal is
considered the ‘on’ state (pulse width), and the low
portion of the signal is considered the ‘off’ state. The
term duty cycle describes the proportion of the ‘on’ time
to the ‘off’ time and is expressed in percentages, where
0% is fully off and 100% is fully on. A lower duty cycle
corresponds to less power applied and a higher duty
cycle corresponds to more power applied. The PWM
period is defined as the duration of one complete cycle
or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps
that can be present in a single PWM period. A higher
resolution allows for more precise control of the pulse
width time and, in turn, the power that is applied to the
load.

Figure 19-1 shows a typical waveform of the PWM
signal.

FIGURE 19-1: PWM OUTPUT

Note: The PWM6 and PWM7 modules are two
instances of the same PWM module
design. Throughout this section, the lower
case ‘x’ in register and bit names is a
generic reference to the PWM module
number (which should be substituted with
6 or 7 during code development). For
example, the control register is generically
described in this chapter as PWMxCON,
but the actual device registers are
PWM6CON and PWM7CON. Similarly,
the PWMxEN bit represents the PWM6EN
and PWM7EN bits.

Pulse Width
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TMRx = PWMxDC

FOSC

PWM

Q1 Q2 Q3 Q4 Rev. 10-000023C
8/26/2015
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TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

PWM6CON PWM6EN — PWM6OUT PWM6POL — — — — 287

PWM6DCH PWM6DC<9:2> 288

PWM6DCL PWM6DC<1:0> — — — — — — 288

PWM7CON PWM7EN — PWM7OUT PWM7POL — — — — 287

PWM7DCH PWM7DC<9:2> 288

PWM7DCL PWM7DC<1:0> — — — — — — 288

T2CON ON CKPS<2:0> OUTPS<3:0> 441

T4CON ON CKPS<2:0> OUTPS<3:0> 441

T6CON ON CKPS<2:0> OUTPS<3:0> 441

T2TMR Holding Register for the 8-bit TMR2 Register

T4TMR Holding Register for the 8-bit TMR4 Register

T6TMR Holding Register for the 8-bit TMR6 Register

T2PR TMR2 Period Register

T4PR TMR4 Period Register

T6PR TMR6 Period Register

RxyPPS ― ― RxyPPS<5:0> 250

CWG1ISM — — — — IS<3:0> 312

CWG2ISM IS<3:0> 312

CWG3ISM IS<3:0> 312

CLCxSELy — — LCxDyS<5:0> 329

MDSRC — — — MDMS<4:0> 399

MDCARH — — — — MDCHS<3:0> 400

MDCARL — — — — MDCLS<3:0> 401

TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 204

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 220

Legend:  - = Unimplemented locations, read as ‘0’. Shaded cells are not used by the PWMx module.
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22.1.2 DATA GATING

Outputs from the input multiplexers are directed to the
desired logic function input through the data gating
stage. Each data gate can direct any combination of the
four selected inputs.

The gate stage is more than just signal direction. The
gate can be configured to direct each input signal as
inverted or non-inverted data. Directed signals are
ANDed together in each gate. The output of each gate
can be inverted before going on to the logic function
stage. 

The gating is in essence a 1-to-4 input
AND/NAND/OR/NOR gate. When every input is
inverted and the output is inverted, the gate is an OR of
all enabled data inputs. When the inputs and output are
not inverted, the gate is an AND or all enabled inputs.

Table 22-3 summarizes the basic logic that can be 
obtained in gate 1 by using the gate logic select bits. 
The table shows the logic of four input variables, but 
each gate can be configured to use less than four. If 
no inputs are selected, the output will be zero or one, 
depending on the gate output polarity bit.

It is possible (but not recommended) to select both the
true and negated values of an input. When this is done,
the gate output is zero, regardless of the other inputs,
but may emit logic glitches (transient-induced pulses).
If the output of the channel must be zero or one, the
recommended method is to set all gate bits to zero and
use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select
registers as follows:

• Gate 1: CLCxGLS0 (Register 22-7)

• Gate 2: CLCxGLS1 (Register 22-8)

• Gate 3: CLCxGLS2 (Register 22-9)

• Gate 4: CLCxGLS3 (Register 22-10)

Register number suffixes are different than the gate
numbers because other variations of this module have
multiple gate selections in the same register.

Data gating is indicated in the right side of Figure 22-2.
Only one gate is shown in detail. The remaining three
gates are configured identically with the exception that
the data enables correspond to the enables for that
gate.

22.1.3 LOGIC FUNCTION

There are eight available logic functions including:

• AND-OR

• OR-XOR

• AND

• S-R Latch

• D Flip-Flop with Set and Reset

• D Flip-Flop with Reset

• J-K Flip-Flop with Reset

• Transparent Latch with Set and Reset

Logic functions are shown in Figure 22-2. Each logic
function has four inputs and one output. The four inputs
are the four data gate outputs of the previous stage.
The output is fed to the inversion stage and from there
to other peripherals, an output pin, and back to the
CLCx itself.

22.1.4 OUTPUT POLARITY

The last stage in the Configurable Logic Cell is the
output polarity. Setting the LCxPOL bit of the CLCxPOL
register inverts the output signal from the logic stage.
Changing the polarity while the interrupts are enabled
will cause an interrupt for the resulting output transition.

Note: Data gating is undefined at power-up.

TABLE 22-3: DATA GATING LOGIC

CLCxGLSy LCxGyPOL Gate Logic

0x55 1 AND

0x55 0 NAND

0xAA 1 NOR

0xAA 0 OR

0x00 0 Logic 0

0x00 1 Logic 1
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REGISTER 22-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

LCxG1D4T LCxG1D4N LCxG1D3T LCxG1D3N LCxG1D2T LCxG1D2N LCxG1D1T LCxG1D1N

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets 

‘1’ = Bit is set ‘0’ = Bit is cleared      

bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit

1 = CLCIN3 (true) is gated into CLCx Gate 0
0 = CLCIN3 (true) is not gated into CLCx Gate 0

bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit

1 = CLCIN3 (inverted) is gated into CLCx Gate 0
0 = CLCIN3 (inverted) is not gated into CLCx Gate 0

bit 5 LCxG1D3T: Gate 0 Data 3 True (non-inverted) bit

1 = CLCIN2 (true) is gated into CLCx Gate 0
0 = CLCIN2 (true) is not gated into CLCx Gate 0

bit 4 LCxG1D3N: Gate 0 Data 3 Negated (inverted) bit

1 = CLCIN2 (inverted) is gated into CLCx Gate 0
0 = CLCIN2 (inverted) is not gated into CLCx Gate 0

bit 3 LCxG1D2T: Gate 0 Data 2 True (non-inverted) bit

1 = CLCIN1 (true) is gated into CLCx Gate 0
0 = CLCIN1 (true) is not gated into l CLCx Gate 0

bit 2 LCxG1D2N: Gate 0 Data 2 Negated (inverted) bit

1 = CLCIN1 (inverted) is gated into CLCx Gate 0
0 = CLCIN1 (inverted) is not gated into CLCx Gate 0

bit 1 LCxG1D1T: Gate 0 Data 1 True (non-inverted) bit

1 = CLCIN0 (true) is gated into CLCx Gate 0
0 = CLCIN0 (true) is not gated into CLCx Gate 0

bit 0 LCxG1D1N: Gate 0 Data 1 Negated (inverted) bit

1 = CLCIN0 (inverted) is gated into CLCx Gate 0
0 = CLCIN0 (inverted) is not gated into CLCx Gate 0
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REGISTER 22-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

LCxG2D4T LCxG2D4N LCxG2D3T LCxG2D3N LCxG2D2T LCxG2D2N LCxG2D1T LCxG2D1N

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets 

‘1’ = Bit is set ‘0’ = Bit is cleared      

bit 7 LCxG2D4T: Gate 1 Data 4 True (non-inverted) bit

1 = CLCIN3 (true) is gated into CLCx Gate 1
0 = CLCIN3 (true) is not gated into CLCx Gate 1

bit 6 LCxG2D4N: Gate 1 Data 4 Negated (inverted) bit

1 = CLCIN3 (inverted) is gated into CLCx Gate 1
0 = CLCIN3 (inverted) is not gated into CLCx Gate 1

bit 5 LCxG2D3T: Gate 1 Data 3 True (non-inverted) bit

1 = CLCIN2 (true) is gated into CLCx Gate 1
0 = CLCIN2 (true) is not gated into CLCx Gate 1

bit 4 LCxG2D3N: Gate 1 Data 3 Negated (inverted) bit

1 = CLCIN2 (inverted) is gated into CLCx Gate 1
0 = CLCIN2 (inverted) is not gated into CLCx Gate 1

bit 3 LCxG2D2T: Gate 1 Data 2 True (non-inverted) bit

1 = CLCIN1 (true) is gated into CLCx Gate 1
0 = CLCIN1 (true) is not gated into CLCx Gate 1

bit 2 LCxG2D2N: Gate 1 Data 2 Negated (inverted) bit

1 = CLCIN1 (inverted) is gated into CLCx Gate 1
0 = CLCIN1 (inverted) is not gated into CLCx Gate 1

bit 1 LCxG2D1T: Gate 1 Data 1 True (non-inverted) bit

1 = CLCIN0 (true) is gated into CLCx Gate 1
0 = CLCIN0 (true) is not gated into CLCx Gate1

bit 0 LCxG2D1N: Gate 1 Data 1 Negated (inverted) bit

1 = CLCIN0 (inverted) is gated into CLCx Gate 1
0 = CLCIN0 (inverted) is not gated into CLCx Gate 1
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23.4.2 PRECHARGE CONTROL

The precharge stage is an optional period of time that
brings the external channel and internal sample and
hold capacitor to known voltage levels. Precharge is
enabled by writing a non-zero value to the ADPRE reg-
ister. This stage is initiated when an ADC conversion
begins, either from setting the ADGO bit, a special
event trigger, or a conversion restart from the computa-
tion functionality. If the ADPRE register is cleared when
an ADC conversion begins, this stage is skipped.

During the precharge time, CHOLD is disconnected from
the outer portion of the sample path that leads to the
external capacitive sensor and is connected to either
VDD or VSS, depending on the value of the ADPPOL bit
of ADCON1. At the same time, the port pin logic of the
selected analog channel is overridden to drive a digital
high or low out, in order to precharge the outer portion
of the ADC’s sample path, which includes the external
sensor. The output polarity of this override is also deter-
mined by the ADPPOL bit of ADCON1. The amount of
time that this charging needs is controlled by the
ADPRE register. 

23.4.3 ACQUISITION CONTROL

The Acquisition stage is an optional time for the voltage
on the internal sample and hold capacitor to charge or
discharge from the selected analog channel.This
acquisition time is controlled by the ADACQ register.
When ADPRE=0, acquisition starts at the beginning of
conversion.   When ADPRE=1, the acquisition stage
begins when precharge ends. 

At the start of the acquisition stage, the port pin logic of
the selected analog channel is overridden to turn off the
digital high/low output drivers so they do not affect the
final result of the charge averaging. Also, the selected
ADC channel is connected to CHOLD. This allows
charge averaging to proceed between the precharged
channel and the CHOLD capacitor.

23.4.4 GUARD RING OUTPUTS

The purpose of the guard ring is to generate a signal in
phase with the CVD sensing signal to minimize the
effects of the parasitic capacitance on sensing elec-
trodes. It also can be used as a mutual drive for mutual
capacitive sensing. For more information about active
guard and mutual drive, see Application Note AN1478,
“mTouchTM Sensing Solution Acquisition Methods
Capacitive Voltage Divider” (DS01478). 

Figure 23-8 shows a typical guard ring circuit. CGUARD

represents the capacitance of the guard ring trace
placed on the PCB board. The user selects values for
RA and RB that will create a voltage profile on CGUARD,
which will match the selected acquisition channel.

The ADC has two guard ring drive outputs, ADGRDA
and ADGRDB. These outputs can be routed through
PPS controls to I/O pins (see Section 13.0 “Periph-
eral Pin Select (PPS) Module” for details). The polar-
ity of these outputs are controlled by the ADGPOL and
ADIPEN bits of ADCON1.

At the start of the first precharge stage, both outputs
are set to match the ADGPOL bit of ADCON1. Once
the acquisition stage begins, ADGRDA changes
polarity, while ADGRDB remains unchanged. When
performing a double sample conversion, setting the
ADIPEN bit of ADCON1 causes both guard ring
outputs to transition to the opposite polarity of
ADGPOL at the start of the second precharge stage,
and ADGRDA toggles again for the second acquisition.
For more information on the timing of the guard ring
output, refer to Figure 23-8 and Figure 23-9.

FIGURE 23-8: GUARD RING CIRCUIT

Note: The external charging overrides the TRIS
setting of the respective I/O pin. If there is
a device attached to this pin, precharge
should not be used.

Note: When ADPRE!=0, acquisition time cannot
be ‘0’. In this case, setting ADACQ to ‘0’
will set a maximum acquisition time (256
ADC clock cycles). When precharge is
disabled, setting ADACQ to ‘0’ will disable
hardware acquisition time control.

CGUARD

RA

RB

ADGRDA

ADGRDB
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REGISTER 24-6:  NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE(1,2)

REGISTER 24-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE(1)

REGISTER 24-8: NCO1INCU: NCO1 INCREMENT REGISTER – UPPER BYTE(1)

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-1/1

NCO1INC<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 NCO1INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.
2: DDSINC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after 

writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

NCO1INC<15:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 NCO1INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — NCO1INC<19:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 NCO1INC<19:16>: NCO1 Increment, Upper Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.
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FIGURE 27-1: BLOCK DIAGRAM OF TIMER0   
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31.6.13.2 Bus Collision During a Repeated 
Start Condition

During a Repeated Start condition, a bus collision
occurs if: 

a) A low level is sampled on SDA when SCL goes
from low level to high level (Case 1).

b) SCL goes low before SDA is asserted low,
indicating that another master is attempting to
transmit a data ‘1’ (Case 2).

When the user releases SDA and the pin is allowed to
float high, the BRG is loaded with SSPxADD and
counts down to zero. The SCL pin is then deasserted
and when sampled high, the SDA pin is sampled. 

If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’, Figure 31-36).
If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG
times out, no bus collision occurs because no two
masters can assert SDA at exactly the same time. 

If SCL goes from high-to-low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated Start condition,
see Figure 31-37.

If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is
complete. 

FIGURE 31-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)        

FIGURE 31-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)      
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32.6.9 COUNTER MODE

This mode increments the timer on each pulse of the
SMTx_signal input. This mode is asynchronous to the
SMT clock and uses the SMTx_signal as a time source.
The SMTxCPW register will be updated with the
current SMTxTMR value on the falling edge of the
SMTxWIN input. See Figure 32-18.
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33.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR3 register is set
whenever the EUSART receiver is enabled and there is
an unread character in the receive FIFO. The RCIF
interrupt flag bit is read-only, it cannot be set or cleared
by software.

RCIF interrupts are enabled by setting all of the
following bits:

• RCIE, Interrupt Enable bit of the PIE3 register

• PEIE, Peripheral Interrupt Enable bit of the 
INTCON register

• GIE, Global Interrupt Enable bit of the INTCON 
register

The RCIF interrupt flag bit will be set when there is an
unread character in the FIFO, regardless of the state of
interrupt enable bits.

33.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a
corresponding framing error Status bit. A framing error
indicates that a Stop bit was not seen at the expected
time. The framing error status is accessed via the
FERR bit of the RC1STA register. The FERR bit
represents the status of the top unread character in the
receive FIFO. Therefore, the FERR bit must be read
before reading the RCREG.

The FERR bit is read-only and only applies to the top
unread character in the receive FIFO. A framing error
(FERR = 1) does not preclude reception of additional
characters. It is not necessary to clear the FERR bit.
Reading the next character from the FIFO buffer will
advance the FIFO to the next character and the next
corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN
bit of the RC1STA register which resets the EUSART.
Clearing the CREN bit of the RC1STA register does not
affect the FERR bit. A framing error by itself does not
generate an interrupt.

33.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before the FIFO is accessed. When
this happens the OERR bit of the RC1STA register is
set. The characters already in the FIFO buffer can be
read but no additional characters will be received until
the error is cleared. The error must be cleared by either
clearing the CREN bit of the RC1STA register or by
resetting the EUSART by clearing the SPEN bit of the
RC1STA register.

33.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When
the RX9 bit of the RC1STA register is set the EUSART
will shift nine bits into the RSR for each character
received. The RX9D bit of the RC1STA register is the
ninth and Most Significant data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREG.

33.1.2.7 Address Detection

A special Address Detection mode is available for use
when multiple receivers share the same transmission
line, such as in RS-485 systems. Address detection is
enabled by setting the ADDEN bit of the RC1STA
register.

Address detection requires 9-bit character reception.
When address detection is enabled, only characters
with the ninth data bit set will be transferred to the
receive FIFO buffer, thereby setting the RCIF interrupt
bit. All other characters will be ignored.

Upon receiving an address character, user software
determines if the address matches its own. Upon
address match, user software must disable address
detection by clearing the ADDEN bit before the next
Stop bit occurs. When user software detects the end of
the message, determined by the message protocol
used, software places the receiver back into the
Address Detection mode by setting the ADDEN bit.

Note: If all receive characters in the receive
FIFO have framing errors, repeated reads
of the RCREG will not clear the FERR bit.
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TABLE 37-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT 
RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS(1,2):

Standard Operating Conditions (unless otherwise stated)

Param. 
No.

Sym. Characteristic Min. Typ† Max. Units Conditions

RST01* TMCLR MCLR Pulse Width Low to ensure Reset 2 — — s

RST02* TIOZ I/O high-impedance from Reset detection — — 2 s

RST03 TWDT Watchdog Timer Time-out Period — 16 — ms 16 ms Nominal Reset Time

RST04* TPWRT Power-up Timer Period — 65 — ms

RST05 TOST Oscillator Start-up Timer Period(1,2) — 1024 — TOSC

RST06 VBOR Brown-out Reset Voltage(4) 2.55
2.30
1.80

2.70
2.45
1.90

2.85
2.60
2.10

V
V
V

BORV = 0
BORV = 1 (PIC16F18856/76)
BORV = 1 (PIC16LF18856/76)

RST07 VBORHYS Brown-out Reset Hysteresis — 40 — mV

RST08 TBORDC Brown-out Reset Response Time — 3 — s

RST09 VLPBOR Low-Power Brown-out Reset Voltage 2.3 2.45 2.7 V

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.
Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 
0.1 F and 0.01 F values in parallel are recommended.

Operating Conditions (unless otherwise stated)
VDD = 3.0V, TA = 25°C

Param. 
No.

Sym. Characteristic Min. Typ† Max.
Unit

s
Conditions

AD01 NR Resolution — — 10 bit

AD02 EIL Integral Error — ±0.1 ±1.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD03 EDL Differential Error — ±0.1 ±1.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD04 EOFF Offset Error — 0.5 2.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD05 EGN Gain Error — ±0.2 ±1.0 LSb ADCREF+ = 3.0V, ADCREF-= 0V

AD06 VADREF ADC Reference Voltage 
(ADREF+ - ADREF-)

1.8 — VDD V

AD07 VAIN Full-Scale Range ADREF- — ADREF+ V

AD08 ZAIN Recommended Impedance of 
Analog Voltage Source

— 10 — k

AD09 RVREF ADC Voltage Reference Ladder 
Impedance

— 50 — k Note 3

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.
Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.
3: This is the impedance seen by the VREF pads when the external reference pads are selected.
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39.11 Demonstration/Development 
Boards, Evaluation Kits, and 
Starter Kits

A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully
functional systems. Most boards include prototyping
areas for adding custom circuitry and provide applica-
tion firmware and source code for examination and
modification.

The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.

The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.

In addition to the PICDEM™ and dsPICDEM™
demonstration/development board series of circuits,
Microchip has a line of evaluation kits and demonstra-
tion software for analog filter design, KEELOQ® security
ICs, CAN, IrDA®, PowerSmart battery management,
SEEVAL® evaluation system, Sigma-Delta ADC, flow
rate sensing, plus many more.

Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.

Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.

39.12 Third-Party Development Tools

Microchip also offers a great collection of tools from
third-party vendors. These tools are carefully selected
to offer good value and unique functionality.

• Device Programmers and Gang Programmers 
from companies, such as SoftLog and CCS

• Software Tools from companies, such as Gimpel 
and Trace Systems

• Protocol Analyzers from companies, such as 
Saleae and Total Phase

• Demonstration Boards from companies, such as 
MikroElektronika, Digilent® and Olimex

• Embedded Ethernet Solutions from companies, 
such as EZ Web Lynx, WIZnet and IPLogika®
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