

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18856-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16(L)F18876) (CONTINUED)

O/i	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RE3	1	16	18	18	—	_	_	—	_	_	-	-	—	—	_	—	—	—	IOCE3	MCLR VPP
Vdd	11, 32	7, 26	8, 28	7, 28	-	-	_	_	-	—	-	-	_	-	_	-	-	-	-	—
Vss	12, 31	6, 27	6, 31, 30	6, 29	_	-	_	_		_	-	_	—	_	_	—	—	-	_	—
OUT ⁽²⁾	_				ADGRDA ADGRDB		-	C1OUT C2OUT		SDO1 SCK1 SDO2 SCK2	TX/ CK ⁽³⁾ DT ⁽³⁾	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 CCP5 PWM60UT PWM70UT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2B CWG2C CWG2D CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR		_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

1.0 DEVICE OVERVIEW

The PIC16(L)F18856/76 are described within this data sheet. The PIC16(L)F18856 devices are available in 28-pin SPDIP, SSOP, SOIC, and UQFN packages. The PIC16(L)F18876 devices are available in 40-pin PDIP and UQFN and 44-pin TQFP and QFN packages.

Figure 1-1 shows a block diagram of the PIC16(L)F18856/76 devices. Table 1-2 and Table 1-3 show the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F18856	PIC16(L)F18856
Analog-to-Digital Converter with Compute	ation (ADC ²)	٠	٠
Cyclic Redundancy Check (CRC)		٠	٠
Digital-to-Analog Converter (DAC)		٠	٠
Fixed Voltage Reference (FVR)		٠	•
Enhanced Universal Synchronous/Asynch Transmitter (EUSART1)	ronous Receiver/	•	•
Digital Signal Modulator (DSM)		٠	٠
Numerically Controlled Oscillator (NCO1))	•	•
Temperature Indicator		٠	٠
Zero-Cross Detect (ZCD)		٠	•
Capture/Compare/PWM (CCP/ECCP) Mc	odules		
	CCP1	٠	٠
	CCP2	٠	٠
	CCP3	٠	٠
	CCP4	٠	٠
	CCP5	٠	•
Comparators			
	C1	٠	•
	C2	٠	•
Configurable Logic Cell (CLC)			
	CLC1	٠	•
	CLC2	٠	٠
	CLC3	٠	•
	CLC4	٠	•
Complementary Waveform Generator (CW	G)		
	CWG1	•	•
	CWG2	•	•
	CWG3	٠	•
Master Synchronous Serial Ports			
	MSSP1	•	•
	MSSP2	•	•
Pulse-Width Modulator (PWM)			
	PWM6	٠	•
	PWM7	٠	•
Signal Measure Timer (SMT)			
	SMT1	٠	•
	SMT2	•	•
Timers			
	Timer0	٠	٠
	Timer1	٠	٠
	Timer2	٠	٠
	Timer3	٠	٠
	Timer4	٠	٠
	Timer5	٠	٠
	Timer6	٠	•

Name	Function	Input Type	Output Type	Description
RC4/ANC4/SDA1 ^(3,4) /SDI1 ⁽¹⁾ /IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
	SDA1 ^(3,4)	l ² C/ SMBus	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	—	MSSP1 SPI serial data input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.
RC5/ANC5/T4IN ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	—	ADC Channel C5 input.
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 external input.
	IOCC5	TTL/ST	—	Interrupt-on-change input.
RC6/ANC6/CK ⁽³⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	CK ⁽³⁾	TTL/ST	CMOS/OD	EUSART synchronous mode clock input/output.
	IOCC6	TTL/ST	—	Interrupt-on-change input.
RC7/ANC7/RX ⁽¹⁾ /DT ⁽³⁾ /IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	—	ADC Channel C7 input.
	RX ⁽¹⁾	TTL/ST	—	EUSART Asynchronous mode receiver data input.
	DT ⁽³⁾	TTL/ST	CMOS/OD	EUSART Synchronous mode data input/output.
	IOCC7	TTL/ST	—	Interrupt-on-change input.
RE3/IOCE3/MCLR/Vpp	RE3	TTL/ST	-	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).
	IOCE3	TTL/ST	—	Interrupt-on-change input.
	MCLR	ST	—	Master clear input with internal weak pull up resistor.
	Vpp	HV	—	ICSP™ High-Voltage Programming mode entry input.
Vdd	Vdd	Power	—	Positive supply voltage input.

TABLE 1-2: PIC16F18856 PINOUT DESCRIPTION (CONTINUED)

CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Legend: AN = Analog input or output TTL = TTL compatible input ST

= Open-Drain = Schmitt Trigger input with I²C

1²C

Note

HV = High Voltage XTAL = Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx This is a PPS remappable input signal. The input function may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IABLE	3-13: SPE		FUNCTION	REGISTE		KI BANNS (J-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	2											
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
60Ch	CWG1CLKCON		—	_	—	_	—	_	_	CS	0	0
60Dh	CWG1ISM		_	_	—	—		IS<3	3:0>		0000	0000
60Eh	CWG1DBR		_	_		l	DE	3R<5:0>			00 0000	00 0000
60Fh	CWG1DBF		—	_			DI	3F<5:0>			00 0000	00 0000
610h	CWG1CON0		EN	LD	—	_	—	MODE<2:0> 0.0			00000	00000
611h	CWG1CON1		—	_	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
612h	CWG1AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA	.C<1:0>	—	_	0001 01	0001 01
613h	CWG1AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
614h	CWG1STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
615h	—	—			•	U	nimplemented					—
616h	CWG2CLKCON		—	—		_	—	_	—	CS	0	0
617h	CWG2ISM		—	_	—	—		IS<3	3:0>		0000	0000
618h	CWG2DBR		—	_			DE	3R<5:0>			00 0000	00 0000
619h	CWG2DBF		—	_			DI	3F<5:0>			00 0000	00 0000
61Ah	CWG2CON0		EN	LD	—	—	—		MODE<2:0>		00000	00000
61Bh	CWG2CON1		—	—	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
61Ch	CWG2AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA	C<1:0>	—	—	0001 01	0001 01
61Dh	CWG2AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
61Eh	CWG2STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
61Fh	_	_		-							_	_

© 2016-2017 Microchip Technology Inc.

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

TABLE	3-13: SPE	CIAL	FUNCTION	I REGISTE	R SUMMA	RY BANKS ()-31 (CONTII	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	7											
	CPU CORE REGISTERS; see Table 3-2 for specifics											
88Ch	CPUDOZE		IDLEN	DOZEN	ROI	DOE	_	DOZE2	DOZE1	DOZE0	0000 -000	0000 -000
88Dh	OSCCON1		_		NOSC<2:0>	I		NDIV<	:3:0>	L	-ddd 0000	-ddd 0000
88Eh	OSCCON2		—		COSC<2:0>	COSC<2:0> CDIV<3:0>			-বর্বর বর্ববর	-वेवेवे वेवेवेवे		
88Fh	OSCCON3		CSWHOLD	SOSCPWR	—	ORDY	NOSCR	_	—	—	00-0 0	00-0 0
890h	OSCSTAT		EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	d0-0 dd-0	d0-0 dd-0
891h	OSCEN		EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_	00-0 00	00-0 00
892h	OSCTUNE		_	_			HF	TUN<5:0>			10 0000	10 0000
893h	OSCFRQ		_	—		_	—		HFFRQ<2:0>		ddd	ddd
894h	—	—				U	nimplemented				_	—
895h	CLKRCON		CLKREN	—		CLKRD	C<1:0>		CLKRDIV<2:0>		01 0000	01 0000
896h	CLKRCLK		_	—		_		CLKRCL	K<3:0>		0000	0000
897h	MDCON0		MDEN	—	MDOUT	MDOPOL	—	_	_	MDBIT	0-000	0-000
898h	MDCON1		—	—	MDCHPOL	MDCHSYNC	—	_	MDCLPOL	MDCLSYNC	0000	0000
899h	MDSRC		—	—	_			MDMS<4:0>			0 0000	0 0000
89Ah	MDCARL		—	—	—	_		MDCLS	S<3:0>		0000	0000
89Bh	MDCARH		_	_	_	_		MDCHS	6<3:0>		0000	0000
89Ch	-	—			Unimplemented — —						—	
89Dh	_	—				U	nimplemented				—	_
89Eh	_	—				Unimplemented — —						
89Fh	-	—				Unimplemented						

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

5.13 Register Definitions: Power Control

REGISTER 5-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:								
HC = Bit is clea	ared by hardwa	are	HS = Bit is set by hardware					
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition					
bit 7	STKOVF: Sta	ck Overflow Flag bit						
	1 = A Stack C	Overflow occurred						
	0 = A Stack C	Overflow has not occurred or	r cleared by firmware					
bit 6	STKUNF: Sta	ck Underflow Flag bit						
	1 = A Stack L	Inderflow occurred						
	0 = A Stack U	Inderflow has not occurred of	or cleared by firmware					
bit 5	WDTWV: WD	T Window Violation Flag bit						
	1 = A WDT W	/indow Violation Reset has r	lot occurred or set by firmware					
	arming th	he window or outside the win	dow (cleared by hardware)					
bit 4	RWDT: Watch	ndog Timer Reset Flag bit						
	1 = A Watchd	og Timer Reset has not occ	urred or set to '1' by firmware					
	0 = A Watchd	og Timer Reset has occurre	d (cleared by hardware)					
bit 3	RMCLR: MCL	R Reset Flag bit						
	1 = A MCLR	Reset has not occurred or se	et to '1' by firmware					
	0 = A MCLR F	Reset has occurred (cleared	by hardware)					
bit 2	RI: RESET INS	struction Flag bit						
	1 = A RESET	instruction has not been exe	cuted or set to '1' by firmware					
	$0 = \mathbf{A} \text{ RESET}$	Instruction has been execute	ed (cleared by hardware)					
bit 1	POR: Power-	on Reset Status bit						
	$\perp = NO POWer$	on Reset occurred (must be	t he set in software after a Power-on Reset occurs)					
hit O		out Deast Status hit	set in soltware after a rower-on reset occurs)					
DIEU	1 = No Brown							
	0 = A Brown-c	out Reset occurred (must be	set in software after a Power-on Reset or Brown-out Reset					
	occurs)							

TABLE 5-5:	SUMMARY OF	REGISTERS	ASSOCIATED	WITH RESETS
------------	------------	-----------	------------	-------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN							BORRDY	104
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	109
STATUS	_	_	_	TO	PD	Z	DC	С	38
WDTCON0	_	—	WDTPS<4:0>					SWDTEN	166

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

10.0 NONVOLATILE MEMORY (NVM) CONTROL

NVM is separated into two types: Program Flash Memory (PFM) and Data EEPROM Memory.

NVM is accessible by using both the FSR and INDF registers, or through the NVMREG register interface.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

NVM can be protected in two ways; by either code protection or write protection.

Code protection (CP and CPD bits in Configuration Word 5) disables access, reading and writing, to both the PFM and EEPROM via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be Reset by a device programmer performing a Bulk Erase to the device, clearing all nonvolatile memory, Configuration bits, and User IDs.

Write protection prohibits self-write and erase to a portion or all of the PFM, as defined by the WRT<1:0> bits of Configuration Word 4. Write protection does not affect a device programmer's ability to read, write, or erase the device.

10.1 Program Flash Memory (PFM)

PFM consists of an array of 14-bit words as user memory, with additional words for User ID information, Configuration words, and interrupt vectors. PFM provides storage locations for:

- User program instructions
- · User defined data

PFM data can be read and/or written to through:

- CPU instruction fetch (read-only)
- FSR/INDF indirect access (read-only) (Section 10.3 "FSR and INDF Access")
- NVMREG access (Section 10.4 "NVMREG Access"
- In-Circuit Serial Programming[™] (ICSP[™])

Read operations return a single word of memory. When write and erase operations are done on a row basis, the row size is defined in Table 10-1. PFM will erase to a logic '1' and program to a logic '0'.

TABLE 10-1:FLASH MEMORYORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	Total Program Flash (words)	
PIC16(L)F18856	30	30	16394	
PIC16(L)F18876	52	52	10304	

It is important to understand the PFM memory structure for erase and programming operations. PFM is arranged in rows. A row consists of 32 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, all or a portion of this row can be programmed. Data to be written into the program memory row is written to 14-bit wide data write latches. These latches are not directly accessible, but may be loaded via sequential writes to the NVMDATH:NVMDATL register pair.

Note: To modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, the new data and retained data can be written into the write latches to reprogram the row of PFM. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations

10.1.1 PROGRAM MEMORY VOLTAGES

The PFM is readable and writable during normal operation over the full VDD range.

10.1.1.1 Programming Externally

The program memory cell and control logic support write and Bulk Erase operations down to the minimum device operating voltage. Special BOR operation is enabled during Bulk Erase (Section 5.2.4 "BOR is always OFF").

10.1.1.2 Self-programming

The program memory cell and control logic will support write and row erase operations across the entire VDD range. Bulk Erase is not supported when selfprogramming.

; This write routine assumes the following:

EXAMPLE 10-4: WRITING TO PROGRAM FLASH MEMORY (PFM)

; 1. 64 bytes of da	ta are loaded, startin	ng at the address in DATA_ADDR
; 2. Each word of d	lata to be written is m	ade up of two adjacent bytes in DATA_ADDR,
; stored in litt	le endian format	
; 3. A valid starti	ng address (the least	significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDR	L are located in commo	on RAM (locations 0x70 - 0x7F)
; 5. NVM interrupts	are not taken into ac	count
BANKSEL	NVMADRH	
MOVF	ADDRH,W	
MOVWF	NVMADRH	; Load initial address
MOVF	ADDRL,W	
MOVWF	NVMADRL	
MOVLW	LOW DATA_ADDR	; Load initial data address
MOVWF	FSROL	
MOVLW	HIGH DATA_ADDR	
MOVWF	FSROH	
BCF	NVMCON1,NVMREGS	; Set Program Flash Memory as write location
BSF	NVMCON1,WREN	; Enable writes
BSF	NVMCON1,LWLO	; Load only write latches
TOOD		
MOVIW	FSP0++	
MOVWE	NVMDATI.	: Load first data byte
MOVTW	FSR0++	, hoad fillst data byte
MOVWF	NVMDATH	; Load second data byte
MOVF	NVMADRL,W	-
XORLW	0x1F	; Check if lower bits of address are 00000
ANDLW	0x1F	; and if on last of 32 addresses
BTFSC	STATUS, Z	; Last of 32 words?
GOTO	START_WRITE	; If so, go write latches into memory
CALL	UNLOCK_SEQ	; If not, go load latch
INCF	NVMADRL, F	; Increment address
GOTO	LOOP	
START_WRITE		
BCF	NVMCON1,LWLO	; Latch writes complete, now write memory
CALL	UNLOCK_SEQ	; Perform required unlock sequence
BCF	NVMCON1,WREN	; Disable writes
UNLOCK_SEQ		
MOVLW	55h	
BCF	INTCON,GIE	; Disable interrupts
MOVWF	NVMCON2	; Begin unlock sequence
MOVLW	AAh	
MOVWF	NVMCON2	
BSF	NVMCON1,WR	
BSF	INTCON,GIE	; Unlock sequence complete, re-enable interrupts
return		

Image: NVMREGS LWLO FREE WRERR ^(1,2,3) WREN WR ^(4,6,6) RD ⁽⁷⁾ bit 7 Dit 7 Dit 7 Dit 7 Dit 7 Dit 7 Lagend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' S = Bit can only be set x = Bit is uknown -n/n = Value at POR and BOR/Value at all other Resets '' = Bit is set '' 0 = Bit is cleared HC = Bit is cleared by hardware Visition 1 tit 7 Unimplemented: Read as '0' EBit is cleared by hardware Visition 1 bit 7 Unimplemented: Read as '0' EBit is cleared by hardware Visition 2 tit 8 NUMREGS: Configuration Select bit 1 Access EEPROM, Configuration, User ID and Device ID Registers 0 0 A cocess FPM Dit Code Write Latches Only bit When REE = 0: 1 The next WR command writes data or erases Otherwise: The bit is ignored Dif 2 PErforms an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 's) to prepare for writing. 1 Performs an erase operation complete on mally bit 4 FREE: PPM Erase Enable bit Mereframe Arease Co	U-1	0 R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as '0' bit 6 NVMREGS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access FFM bit 5 LVMLO: Load Write Latches Only bit When REE = 0: 1 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFR Trass Enable bit When NVMREGS:NMANDR points to a PEM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 's) to prepare for writing. 0 = All write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program/Erase Enable bit 1 = A write operation was operation compiled normally bit 3 WREER: Program/Erase operation with the next WR command; the 32-word pseudo-row containing the indicat by Targam or erase operation compiled normally bi		- NVMREGS	LWLO	FREE	WRERR ^(1,2,3)	WREN	WR ^(4,5,6)	RD ⁽⁷⁾
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as '0' bit 6 NVMREGS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access FFM bit 5 LWLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR Points to a write-protected address. 0 = The program or erase operation completed normally bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR Points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit ^(4,56) 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG.NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG.NVMADR points to a PEPM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG.NVMADR points to a PEPM location: 1 = Initiates an erase	bit 7		·	•			·	bit 0
Legend: W = Writable bit U = Unimplemented bit, read as '0' S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1 = Bit is set 0' = Bit is cleared HC = Bit is cleared by hardware bit 6 NVWREGS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access FFM bit 5 UWLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 When NVMREGS:NVMADR points to a PEM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally WREER: Program/Erase Enable bit 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = Inhibits program/Erase cable bit 1 = A lows program/Erase Enable bit 1 = A lows program/Er								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BORValue at all other Resets '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as '0' bit 6 NVMREOS: Configuration, Select bit 1 = Access FEPROM, Configuration, User ID and Device ID Registers 0 = Access PFM bit 5 LWLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored When NVMREGS:NVMADR points to a PEM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Enable bit NUMARE Outpot on erase operation completed normally bit 2 WREN: Program/Erase chable bit 1 = Avite operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a EEPROM location: 1 = Inititates an erase/program cycle at the corres	Legend:							
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as '0' bit 6 NVMREGS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access PFM bit 5 LWLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The invest WR command updates the write latch for this word within the row; no memory operation is initiate 0 = All write operation is the a PEM location: 1 = Peforma an crase operat	R = Read	dable bit	W = Writable b	it	U = Unimplemer	nted bit, read as	; 'O'	
'1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as '0' bit 6 NVMREGS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access PFM bit 5 LWLC: Load Write Latches Only bit When FREE = 0' 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PEM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a HEPRO Increase. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = All write operation protected address. 0 = Inhibits programming/erasing of program Flash bit 1 bit 1 WREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit ^{45,61} When NVMADEG.NVMADR points to a EEPROM location: 1 = Ininitiates a read address = NVMADR1, and loads data to N	S = Bit ca	an only be set	x = Bit is unkno	own	-n/n = Value at F	OR and BOR/	/alue at all other F	Resets
bit 7 Unimplemented: Read as '0' bit 6 NVMREGS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access PFM bit 5 LWLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command wipdates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit When NVMREGS: NVMADR points to a PFM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit ^{11,4,3}) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = Inhibits programming/erase operation completed normally bit 1 Wrex NVMERGS: NVMADR points to a EEPROM location: 1 = A write operation is a prepared regrammation in the induction of the NVMREG: NVMADR points to a EEPROM location: 1 = Initiates an erases/program cycle at the corresponding EEPROM location 0 = NNM progr	'1' = Bit is	s set	'0' = Bit is clear	red	HC = Bit is clear	ed by hardware	9	
bit 7 Unimplemented: Read as '0' bit 6 NVMRECS: Configuration Select bit 1 = Access EEPROM, Configuration, User ID and Device ID Registers 0 = Access PFM bit 5 UNLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PEM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation completed normally bit 4 WREW: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 1 WREN: Program/Erase Enable bit 1 = Allows program/Erase enable bit 1 = Initiates a reade/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG.NVMADR points to a EPEM location: 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and th bit is cleared when the operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit ⁽⁷ 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
bit 6 NVMREGS: Configuration, User ID and Device ID Registers 0 = Access FERM bit 5 LWLO: Load Write Latches Only bit When FREE = 0: 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE : PFM Erase Enable bit When NVMREGS:NVMADR points to a PEM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit(1*.3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allives programming/erase opcles 0 = Inhibits programming/erasesing of program Flash bit 1 WREG.IVMADR points to a EEPROM location: 1 = Initiates are experiorgram cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG.IVMADR points to a TEPM location: 1 = Initiates are ead at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete and inactive Otherwis	bit 7	Unimplemen	ted: Read as '0'					
 1 = Access EEPROM, Configuration, User ID and Device ID Registers a Access PFM bit 5 LWLO: Load Write Latches Only bit When FREE = 0: The next WR command updates the write latch for this word within the row; no memory operation is initiate	bit 6	NVMREGS: (Configuration Sele	ct bit				
 bit 5 LWLO: Load Write Latches Only bit When FREE = 0: The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PEM location: Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 1s) to prepare for writing.		1 = Access	EEPROM, Configu	uration, User ID	and Device ID Re	gisters		
bit 5 LWLD: Load write Latches Only bit <u>When FREE = ::</u> 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit <u>When NVMREGS:NVMADR points to a PFM location:</u> 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR : Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program/Erase Enable bit 1 = Allows program/Erase Enable bit 1 = Allows program/Erase copies 0 = Inhibits program/ingrasing of program Flash bit 1 bit 1 WR: Write Control bit ^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PEM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit ⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and								
 The next WR command updates the write latch for this word within the row; no memory operation is initiate 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PFM location: Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program/Erase Enable bit 1 = A liows program/erase cycles 0 = Inhibits program/ing/reasing of program Flash bit 1 WR: Write Control bit^(4,6,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM Program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the it is is cleared when the operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the it is cleared when the operation is complete and inactive	DIT 5	When FRFF	= 0.	ly dit				
 0 = The next WR command writes data or erases Otherwise: The bit is ignored bit 4 FREE: PFM Erase Enable bit When NVIREGS:NVMADR points to a PEM location: Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit^(1,2,3) This bit is normally set by hardware. a A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program/Erase Enable bit 1 = A Allows program/Erase Enable bit 1 = Allows program/Erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit^(4,5,6) When NVMREGN/WADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREGN/WADR points to a PEROM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive		1 = The nex	t WR command up	odates the write	latch for this word	within the row;	no memory opera	ation is initiated.
bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PFM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicat address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = A lows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit ^(4,6,6) When NVMREG:NVMADR points to a PEPM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PEM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PEM location: 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive <td></td> <td>0 = The nex</td> <td>t WR command w</td> <td>rites data or era</td> <td>ses</td> <td></td> <td></td> <td></td>		0 = The nex	t WR command w	rites data or era	ses			
bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PFM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit(^{1,2,3}) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one when NVMADR points to a write-protected address. 0 = The program/Erase Enable bit 1 = Allows program/Erase cycles 0 = Inhibits program/Irase cycles 0 = Inhibits program/erase cycles 0 = Inhibits program/erase operation is complete and inactive When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software.		Otherwise: If	he bit is ignored					
 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicate address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits program/erase cycles 0 = Inhibits program/erase cycles 0 = Inhibits program/erase operation is complete and inactive When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates a read at ddress = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive 	bit 4	FREE: PFM E	Erase Enable bit	inte to a PEM lo	cation:			
address is erased (to all 1s) to prepare for writing. 0 = All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/Erase Enable bit 1 = Allows program/Erase cycles 0 = Inhibits program/Increase operation of program Flash bit 1 WR: Write Control bit ^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit ⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence"		1 = Performs	s an erase operati	ion with the nex	t WR command; tl	he 32-word pse	udo-row containir	ng the indicated
 All write operations have completed normally bit 3 WRERR: Program/Erase Error Flag bit^(1,2,3) This bit is normally set by hardware. A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. The program or erase operation completed normally WREN: Program/Erase Enable bit Allows program/Erase exples Inhibits program/Erase goles Inhibits program/Infrase for program Flash WR: Write Control bit^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: Inhibits program/erase operation is complete and inactive		address	is erased (to all 1	s) to prepare for	writing.			0
bit 3 WRERR: Program/Erase Error Flag bit ^(1,2,3) This bit is normally set by hardware. 1 = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit ^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit ⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive 0 = NVM read operation i		0 = All write	operations have o	completed norm	ally			
 I = A write operation was interrupted by a Reset, interrupted unlock sequence, or WR was written to one wh NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive WVM read operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive WVM read operation is complete and inactive WVM read operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive WVM read operation is complete and inactive 	bit 3	WRERR: Pro	gram/Erase Error	Flag bit ^(1,2,3)				
NVMADR points to a write-protected address. 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit ^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit ⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit may be written to '1' by software; in order to implement test sequences. 4: This bit can only be s		1 = A write c	pperation was inte	vare. rrupted bv a Re	set, interrupted ur	nlock sequence	or WR was writt	en to one while
 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit Allows program/erase cycles Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: Initiates an erase/program cycle at the corresponding EEPROM location NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: I = Initiates the operation indicated by Table 10-4		NVMAD	R points to a write	-protected addr	ess.		,	
 bit 2 WREN: Program/Erase Enable bit = Allows program/erase cycles Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: I = Initiates an erase/program cycle at the corresponding EEPROM location NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: I = Initiates an erase/program cycle at the corresponding EEPROM location NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: I = Initiates the operation indicated by Table 10-4 NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ I = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		0 = The prog	gram or erase ope	ration complete	d normally			
 Allows program/erase cycles a Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 	bit 2	WREN: Prog	ram/Erase Enable	bit				
 bit 1 WR: Write Control bit^(4,5,6) When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence"		$\perp = $ Allows p 0 = Inhibits r	orogram/erase cycl programming/eras	ies ing of program l	Flash			
When NVMREG:NVMADR points to a EEPROM location: 1 = Initiates an erase/program cycle at the corresponding EEPROM location 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive When NVMREG:NVMADR points to a PFM location: 1 = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored Bit 0 RD: Read Control bit ⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence"	hit 1	WR· Write Co	ontrol hit(4,5,6)	ing of program				
 1 = Initiates an erase/program cycle at the corresponding EEPROM location NVM program/erase operation is complete and inactive <u>When NVMREG:NVMADR points to a PFM location: Initiates the operation indicated by Table 10-4 NVM program/erase operation is complete and inactive </u>	bit i	When NVMR	EG:NVMADR poir	nts to a EEPRO	M location:			
 NVM program/erase operation is complete and inactive <u>When NVMREG:NVMADR points to a PFM location</u>: Initiates the operation indicated by Table 10-4 NVM program/erase operation is complete and inactive Otherwise: This bit is ignored Bit Read Control bit⁽⁷⁾ Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). Bit must be cleared by software; hardware will not clear this bit. Bit may be written to '1' by software in order to implement test sequences. This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		1 = Initiates	an erase/program	cycle at the co	rresponding EEPR	OM location		
 I = Initiates the operation indicated by Table 10-4 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		0 = NVM pro	ogram/erase opera	ation is complete	e and inactive			
 0 = NVM program/erase operation is complete and inactive Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		1 = Initiates	the operation indi	cated by Table 1	0-4			
 Otherwise: This bit is ignored bit 0 RD: Read Control bit⁽⁷⁾ I = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		0 = NVM pro	ogram/erase opera	ation is complete	e and inactive			
 bit 0 RD: Read Control bit⁽¹⁾ I = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		Otherwise: Th	his bit is ignored					
 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle and the bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 	bit 0	RD: Read Co	ntrol bit ⁽⁷⁾					
 Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence". 		⊥ = Initiates bit is cle	a read at address ared when the one	= NVMADR1, a	nd loads data to N ete. The bit can or	VMDAT Read ta	lkes one instruction	on cycle and the
 Note 1: Bit is undefined while WR = 1 (during the EEPROM write operation it may be '0' or '1'). 2: Bit must be cleared by software; hardware will not clear this bit. 3: Bit may be written to '1' by software in order to implement test sequences. 4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 		0 = NVM rea	ad operation is cor	mplete and inact	tive			0.
 Bit must be cleared by software; hardware will not clear this bit. Bit may be written to '1' by software in order to implement test sequences. This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 	Note 1	Rit is undefined wh	ile WR = 1 (during		write operation it n	nav he '0' or '1')	
 Bit may be written to '1' by software in order to implement test sequences. This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence" 	2:	Bit must be cleared	by software; hard	ware will not cle	ear this bit.		1-	
4: This bit can only be set by following the unlock sequence of Section 10.4.2 "NVM Unlock Sequence"	3:	Bit may be written t	to '1' by software i	n order to imple	ment test sequend	ces.		
E. Operations are self timed, and the WP bit is cleared by bardware when complete	4:	This bit can only be	e set by following t	he unlock seque	ence of Section 1	0.4.2 "NVM Un	lock Sequence".	
 Operations are sen-uned, and the WR bit is cleared by hardware when complete. Once a write operation is initiated, setting this bit to zero will have no effect. 	5:	Operations are set	tion is initiated se	tting this bit to 7	by naroware when	ffect		

REGISTER 10-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

7: Reading from EEPROM loads only NVMDATL<7:0> (Register 10-1).

22.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

22.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

22.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

22.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

22.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 22-2).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADPRE	V<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ADPREV<7:0>: Previous ADC Results Least Significant Byte
	If ADPSIS = 1:
	Least Significant Byte of ADFLTR at the start of current ADC conversion
	If ADPSIS = 0:
	Least Significant bits of ADRES at the start of current ADC conversion ⁽¹⁾

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the ADFRM bit.

REGISTER 23-22: ADACCH: ADC ACCUMULATOR REGISTER HIGH

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
	ADACC<15:8>								
bit 7 k									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADACC<15:8>: ADC Accumulator MSB. Most Significant seven bits of accumulator value and sign bit.

REGISTER 23-23: ADACCL: ADC ACCUMULATOR REGISTER LOW

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADACC<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADACC<7:0>: ADC Accumulator LSB. Least Significant eight bits of accumulator value.

© 2016-2017 Microchip Technology Inc.

DS40001824B-page 377

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 28-3: TIMER1 GATE ENABLE MODE

TABLE 29-1:	TIMER2 OPERATING MODES
-------------	------------------------

Mada	MODE	<4:0>	Output	Oneration	Timer Control			
WOUE	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 29-4)	ON = 1	_	ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 29-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
Free Running Period		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0		ON = 0 or TMRx_ers = 1	
	0.0	011		Rising or falling edge Reset		TMRx_ers		
	00	100	Period	Rising edge Reset (Figure 29-6)		TMRx_ers ↑	ON = 0	
		101	Pulse	Falling edge Reset		TMRx_ers ↓		
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111	Reset	High level Reset (Figure 29-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 29-8)	ON = 1	_		
		001	Edge	Rising edge start (Figure 29-9)	ON = 1 and TMRx_ers ↑	—		
	01	010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or	
One-shot		100	Edge	Rising edge start and Rising edge Reset (Figure 29-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx	
		101	triggered start	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)	
		110	hardware Reset	Rising edge start and Low level Reset (Figure 29-11)ON = 1 and TMRx_ers ↑TMRx_ers		TMRx_ers = 0		
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1		
		000		Rese	ved			
		001 Edge	Rising edge start (Figure 29-12)	ON = 1 and TMRx_ers ↑	-	ON = 0 or		
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	-	Next clock after	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers ↓		TMRx = PRx (Note 3)	
Reserved	10	100		Reserved				
Reserved	Reserved 101		Rese	rved				
		110	Level triggered	High level start and Low level Reset (Figure 29-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
One-shot		111 start and hardware Reset	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)	
Reserved	11	xxx	Reserved					

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

29.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

FIGURE 29-11: LOW LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 01110)

31.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 31-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 31-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 31-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

FIGURE 32-4:

PIC16(L)F18856/76

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-85: Fall Time, Slew Rate Control Enabled.

FIGURE 38-86: Rise Time, Slew Rate Control Disabled.

Disabled.

FIGURE 38-88: OSCTUNE Center Frequency, PIC16LF18856/76 Only.

FIGURE 38-89: Weak Pull-up Current, PIC16F18856/76 Only.

FIGURE 38-90: Weak Pull-up Current, PIC16LF18856/76 Only.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units							
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	N		28					
Pitch	е		0.40 BSC					
Overall Height	A	0.45	0.50	0.55				
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3	0.127 REF						
Overall Width	E	4.00 BSC						
Exposed Pad Width	E2	2.55	2.65	2.75				
Overall Length	D		4.00 BSC					
Exposed Pad Length	D2	2.55	2.65	2.75				
Contact Width	b	0.15	0.20	0.25				
Contact Length	L	0.30	0.40	0.50				
Contact-to-Exposed Pad	K	0.20	-	-				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2