

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18856-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE	3-13: SPE	CIA	LF	UNCTION	REGISTE		RY BANKS ()-31					
Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 0	•							•	•		•		
	CPU CORE REGISTERS; see Table 3-2 for specifics												
00Ch	PORTA			RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	XXXX XXXX
00Dh	PORTB			RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	xxxx xxxx
00Eh	PORTC			RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	xxxx xxxx
00Fh	PORTD	х	-				U	nimplemented			•		
		—	х	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	XXXX XXXX
010h	PORTE	Х	-	_	—	—	_	RE3	—	—	—	x	x
		—	х	_	_	_	_	RE3	RE2	RE1	RE0	xxxx	xxxx
011h	TRISA			TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
012h	TRISB			TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
013h	TRISC			TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
014h	TRISD	Х	—				U	nimplemented					
		—	Х	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
015h	TRISE	х	-				U	nimplemented					
		—	х	—	—	—	_	—	TRISE2	TRISE1	TRISE0	111	111
016h	LATA			LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX XXXX	uuuu uuuu
017h	LATB			LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX	uuuu uuuu
018h	LATC			LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX XXXX	uuuu uuuu
019h	LATD	х	—				U	nimplemented					
		—	Х	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX XXXX	uuuu uuuu
01Ah	LATE	Х	-				U	nimplemented					
		—	х	—	-	—	-	—	LATE2	LATE1	LATE0	xxx	uuu

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

IABLE	3-13: SPE		FUNCTION	REGISTE	R SUNINA	RT BANKS	J-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Reset
Bank 11												
					CPU	CORE REGISTER	RS; see Table 3-2	for specifics				
58Ch	NCO1ACCL					N	CO1ACC<7:0>				0000 0000	0000 0000
58Dh	NCO1ACCH					NC	CO1ACC<15:8>				0000 0000	0000 0000
58Eh	NCO1ACCU		—	—	—	-		NCO1ACC<19:16>				0000
58Fh	NCO1INCL			•		N	CO1INC<7:0>				0000 0001	0000 0001
590h	NCO1INCH					N	CO1INC<15:8>		0000 0000	0000 0000		
591h	NCO1INCU		—	—	—	-		NCO1INC<19:16>				0000
592h	NCO1CON		N1EN	—	N1OUT	N1POL	-	-	-	N1PFM	0-000	0-000
593h	NCO1CLK			N1PWS<2:0>		-	-		N1CKS<2:0>		000000	000000
594h	-	-				U	nimplemented				-	-
595h	—	-				U	nimplemented				—	—
596h	—	-				U	nimplemented				—	—
597h	—	-				U	nimplemented				—	—
598h	—	—				U	nimplemented				-	—
599h	—	—				U	nimplemented				—	—
59Ah	-	-		Unimplemented							-	-
59Bh	—	-				U	nimplemented				-	-
59Ch	—	-				U	nimplemented				-	—
59Dh	—	-				U	nimplemented				-	—
59Eh	—	-				U	nimplemented				-	—
59Fh	_	_				U	nimplemented				_	_

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

8.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 8-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

8.2.3 LOW-POWER SLEEP MODE

The PIC16F18855/75 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC16F18855/75 allows the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. Depending on the configuration of these bits, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

REGISTER 18-2:	CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0		
	—	—	_	_	_	INTP	INTN		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
hit 7 0	Unimalama	nted. Dood oo '	0'						

bit 7-2	Unimplemented: Read as '0'
bit 1	INTP: Comparator Interrupt on Positive-Going Edge Enable bits
	 1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit
bit 0	INTN: Comparator Interrupt on Negative-Going Edge Enable bits
	 1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

19.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

19.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

TABLE 19-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 19-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

19.1.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 19-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 19-2.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Select the Timer2 prescale value by configuring the T2CKPS<1:0> bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
 - Clear the associated TRIS bit(s) to enable the output driver.

- Route the signal to the desired pin by configuring the RxyPPS register.
- Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG4D4T: 0	Gate 3 Data 4 1	rue (non-inve	rted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	e 3			
h it C	0 = CLCIN3	(true) is not gai					
DILO		(invorted) is ga	tod into CLCx	Cato 3			
	0 = CLCIN3 ((inverted) is ga	t gated into CLCX	Cx Gate 3			
bit 5	LCxG4D3T: 0	Gate 3 Data 3 1	rue (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	nto CLCx Gate	e 3			
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 3			
bit 4	LCxG4D3N:	Gate 3 Data 3 Negated (inverted) bit					
	1 = CLCIN2 0 = CLCIN2	(inverted) is ga (inverted) is no	ted into CLCx t gated into CL	Gate 3 Cx Gate 3			
bit 3	LCxG4D2T:	Gate 3 Data 2 1	rue (non-inve	rted) bit			
	1 = CLCIN1 ((true) is gated i	nto CLCx Gat	e 3			
	0 = CLCIN1 ((true) is not gat	ted into CLCx	Gate 3			
bit 2	LCxG4D2N:	Gate 3 Data 2 I	Negated (inver	rted) bit			
	1 = CLCIN1	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN1((inverted) is no		Cx Gate 3			
bit 1		Jate 4 Data 1	rue (non-invei	rted) bit			
	1 = CLCINO (0 = CLCINO ((true) is gated i (true) is not gat	ted into CLCx Gat	e 3 Gate 3			
bit 0	LCxG4D1N:	Gate 3 Data 1	Negated (inver	ted) bit			
	1 = CLCIN0 ((inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN0 ((inverted) is no	t gated into Cl	Cx Gate 3			

REGISTER 22-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	—	—			ADCAP<4:0>				
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit U = Unimplemented bit, read as '0'						
u = Bit is une	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is set '0' = Bit is cleared									
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-0	ADCAP<4:0>	. ADC Addition	apacitor Selection	on bits					

REGISTER 23-11: ADCAP: ADC ADDITIONAL SAMPLE CAPACITOR SELECTION REGISTER

t 4-0	ADCAP<4:0>: ADC Additional Sample Capacitor Sele
	11111 = 31 pF
	11110 = 30 pF
	11101 = 29 pF
	•
	•
	•
	00011 = 3 pF
	$00010 = 2 \mathrm{pF}$
	00001 = 1 pF
	00000 = No additional capacitance

REGISTER 23-12: ADRPT: ADC REPEAT SETTING REGISTER

					-		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADRP	2T<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unchanged x = Bit is unknown		wn	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 ADRPT<7:0>: ADC Repeat Threshold bits

Counts the number of times that the ADC has been triggered. Used in conjunction along with ADCNT to determine when the error threshold is checked for Low-pass Filter, Burst Average, and Average modes.

28.12 Register Definitions: Timer1 Control start here with Memory chapter compare

Long bit name prefixes for the Timer1/3/5 are shown in Table 28-3. Refer to **Section 1.1 "Register and Bit naming conventions"** for more information TABLE 28-3:

PeripheralBit Name PrefixTimer1T1Timer3T3Timer5T5

REGISTER 28-1: TxCON: TIMER1/3/5 CONTROL REGISTER

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/u	R/W-0/u
—	_	CKPS<1:0>		_	SYNC	RD16	ON
bit 7							bit 0

Legend:									
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set)' = Bit is cleared							
bit 7-6	Unimplemen	ted: Read as '0'							
bit 5-4	CKPS<1:0>:	Fimer1 Input Clock Prescale Select bits							
	11 = 1:8 Pres	cale value							
	10 = 1:4 Pres	cale value							
	01 = 1:2 Pres	zale value							
	00 = 1:1 Pres	scale value							
bit 3	Unimplemen	ted: Read as '0'							
bit 2	SYNC: Timer	1 Synchronization Control bit							
	When TMR10	LK = Fosc or Fosc/4							
	This bit is igno	bred. The timer uses the internal clock and no additional synchronization is performed.							
	When TMR10	<u>S<1:0> = (any setting other than Fosc or Fosc/4)</u>							
	\perp = Do not sy	ncnronize external clock input							
L:1 4									
DICI	RD16: Timeri								
1 = All 16 bit 0 = 16-bit re:		of Timer1 can be read simultaneously (TMR1H is buffered)							
hit 0	ON . Timer1 (n hit							
	1 = Fnables	Timer1							
	0 = Stops Tin	ner1 and clears Timer1 gate flip-flop							

FIGURE 30-4: SIMPLIFIED PWM BLOCK DIAGRAM

30.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- Use the desired output pin RxyPPS control to select CCPx as the source and disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register, and the CCPRxH register with the PWM duty cycle value and configure the CCPxFMT bit of the CCPxCON register to set the proper register alignment.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer prescale value.
 - Enable the Timer by setting the TMR2ON bit of the T2CON register.

- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMR2IF bit of the PIR4 register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
- **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

30.3.3 CCP/PWM CLOCK SELECTION

The PIC16F18855/75 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2/4/6), PWM mode on the CCP and PWM modules can use any of these timers. The CCPTMRS0 and CCPTMRS1 registers is used to select which timer is used.

31.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 31.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

31.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

31.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 31-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

32.0 SIGNAL MEASUREMENT TIMER (SMT)

The SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters such as pulse width, frequency and duty cycle, and the time difference between edges on two signals.

Features of the SMT include:

- 24-bit timer/counter
 - Three 8-bit registers (SMTxL/H/U)
 - Readable and writable
 - Optional 16-bit operating mode
- Two 24-bit measurement capture registers
- One 24-bit period match register
- Multi-mode operation, including relative timing measurement
- · Interrupt on period match
- · Multiple clock, gate and signal sources
- Interrupt on acquisition complete
- · Ability to read current input values

Note: These devices implement two SMT modules. All references to SMTx apply to SMT1 and SMT2.

R/W/HC-0/0	R/W/HC-0/0	R/W/HC-0/0	U-0	U-0	R-0/0	R-0/0	R-0/0
CPRUP	CPWUP	RST	_		TS	WS	AS
bit 7							bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	et by hardware		
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condi	tion	
bit 7	CPRUP: SMT	Manual Perio	d Buffer Updat	e bit			
	0 = SMTxPR	k registers upd	ate is complete	;			
bit 6	CPWUP: SM 1 = Request 0 0 = SMTxCP	T Manual Pulse update to SMT: <i>N</i> registers upo	e Width Buffer xCPW register date is complet	Update bit s æ			
bit 5	RST: SMT Ma 1 = Request F 0 = SMTxTM	anual Timer Re Reset to SMTx R registers upc	set bit TMR registers late is complet	e			
bit 4-3	Unimplemen	ted: Read as '	0'				
bit 2	TS: SMT GO 1 = SMT time 0 = SMT time	Value Status b r is incrementii r is not increme	it ng enting				
bit 1	WS: SMTxWI 1 = SMT wind 0 = SMT wind	IN Value Status low is open low is closed	s bit				
bit 0	AS: SMT_sig 1 = SMT acqu 0 = SMT acqu	nal Value Statu uisition is in pro uisition is not ir	s bit ogress oprogress				

REGISTER 32-3: SMTxSTAT: SMT STATUS REGISTER

33.6 Register Definitions: EUSART Control

REGISTER 33-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7		bit 0					
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BOF	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	CSRC : Clock <u>Asynchronou</u> Unused in thi <u>Synchronous</u> 1 = Master r 0 = Slave m	s Source Select <u>s mode</u> : s mode – value <u>mode</u> : mode (clock ge ode (clock fron	t bit e ignored nerated interr n external sou	nally from BRG rce))		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	oit ion ion				
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ^{(*} : enabled : disabled	1)				
bit 4	SYNC: EUSA 1 = Synchron 0 = Asynchron	ART Mode Sele nous mode onous mode	ect bit				
bit 3	SENDB: Sen Asynchronou 1 = Send SY cleared t 0 = SYNCH Synchronous Unused in thi	d Break Chara <u>s mode</u> : NCH BREAK c by hardware up BREAK transm <u>mode</u> : s mode – value	cter bit on next transm oon completior nission disable e ignored	ission – start b າ d or completed	it, followed by 12	2 '0' bits, follow	ved by Stop bit;
bit 2	BRGH: High Asynchronou 1 = High spe 0 = Low spe Synchronous Unused in thi	Baud Rate Sel <u>s mode</u> : ed ed <u>mode:</u> s mode – value	ect bit e ignored				
bit 1	TRMT: Trans 1 = TSR em 0 = TSR full	mit Shift Regist pty	ter Status bit				
bit 0	TX9D: Ninth Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1:	SREN/CREN over	rides TXEN in	Sync mode.				

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN				
bit 7				•			bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	as '0'					
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value	at POR and BOF	र/Value at all o	other Resets				
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared								
							J				
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit								
	Asynchronous	<u>i mode</u> :									
	1 = Auto-bau	d timer overflov	ved								
	0 = Auto-bau	n timer ala not mode:	overnow								
	Don't care	<u>modo</u> .									
bit 6	RCIDL: Rece	ive Idle Flag bi	t								
	Asynchronous	<u>s mode</u> :									
	1 = Receiver	is Idle	ad and the ve								
	0 = Start bit n Synchronous	mode.	ed and the re	ceiver is recei	ving						
	Don't care	<u>modo</u> .									
bit 5	Unimplemen	ted: Read as '	כי								
bit 4	SCKP: Clock/	Transmit Polar	ity Select bit								
	Asynchronous	<u>s mode</u> :									
	1 = Idle state	for transmit (T	K) is a low lev	el							
	0 = Idle state	for transmit (T)	K) is a high le	vel							
	1 = Idle state	<u>moae</u> : for clock (CK)	s a high level								
	0 = Idle state	for clock (CK)	is a low level								
bit 3	BRG16: 16-b	it Baud Rate G	enerator bit								
	1 = 16-bit Ba	ud Rate Gener	ator is used								
	0 = 8-bit Bau	d Rate Genera	tor is used								
bit 2	Unimplemen	ted: Read as '	כ'								
bit 1	WUE: Wake-u	up Enable bit									
	Asynchronous	<u>s mode</u> : vill continue to c	omple the Dy	nin interrur	at apparated on fo	ulling odgo: bit	olograd in				
	⊥ = USART w hardware	on following ris	ing edge	t pin – interrup	of generated on la	illing edge; bit	cleared in				
	0 = RX pin nc	ot monitored no	r rising edge	detected							
	<u>Synchronous</u>	mode:									
	Unused in this	s mode – value	ignored								
bit 0	ABDEN: Auto	-Baud Detect I	Enable bit								
	Asynchronous	<u>s mode</u> :									
1 = Enable baud rate measurement on the next character – requires reception of a SYN(
	cleared in	n hardware upo	on completion								
	0 = Baud rate	e measuremen	t disabled or o	completed							
	Synchronous	<u>mode</u> :	ignored								
	Unused in this	s moue – value	ignored								

REGISTER 33-3: BAUD1CON: BAUD RATE CONTROL REGISTER

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
ECL Oscillator										
OS1	F _{ECL}	Clock Frequency	_	_	500	kHz				
OS2	T _{ECL_DC}	Clock Duty Cycle	40		60	%				
ECM Ose	cillator									
OS3	F _{ECM}	Clock Frequency	_	_	8	MHz				
OS4	T _{ECM_DC}	Clock Duty Cycle	40	_	60	%				
ECH Osc	cillator									
OS5	F _{ECH}	Clock Frequency	_	_	32	MHz				
OS6	T _{ECH_DC}	Clock Duty Cycle	40	_	60	%				
LP Oscil	lator									
OS7	F _{LP}	Clock Frequency	_	_	100	kHz	Note 4			
XT Oscil	lator									
OS8	F _{XT}	Clock Frequency	_	_	4	MHz	Note 4			
HS Oscil	llator									
OS9	F _{HS}	Clock Frequency	_	_	20	MHz	Note 4			
System Oscillator										
OS20	F _{OSC}	System Clock Frequency	_	_	32	MHz	(Note 2, Note 3)			
OS21	F _{CY}	Instruction Frequency	_	Fosc/4	_	MHz				
OS22	T _{CY}	Instruction Period	125	1/F _{CY}	_	ns				

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Instruction cycle period (Tcy) equals four times the input oscillator time base period. All specified values are based on Note 1: characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)".

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 37.2 "Standard **Operating Conditions**".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.

TABLE 37-25: I²C BUS DATA REQUIREMENTS

Standard	Operating C	onditions (unless othe	rwise stated)				
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	-	— μ s	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP101* TLOV	TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP102* TI	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	_	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106* THD:	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading	_	400	pF		

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

38.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2