

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18856-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 29	(Continued)											
EBAh	MDSRCPPS		—	—	—				0 0101	u uuuu		
EBBh	CLCIN0PPS		—	—	—			CLCIN0PPS<4:0>			0 0000	u uuuu
EBCh	CLCIN1PPS		—	—	—			CLCIN1PPS<4:0>			0 0001	u uuuu
EBDh	CLCIN2PPS		—	—	—			CLCIN2PPS<4:0>			0 1110	u uuuu
EBEh	CLCIN3PPS		—	—	—			CLCIN3PPS<4:0>			0 1111	u uuuu
EBFh	—	—				U	nimplemented				—	—
EC0h	_	_				U	nimplemented		—	—		
EC1h	_	—				U	nimplemented		—	_		
EC2h	—	—				U	nimplemented				-	_
EC3h	ADCACTPPS		—	—	—			ADCACTPPS<4:0>			0 1100	u uuuu
EC4h	—	—				U	nimplemented				-	_
EC5h	SSP1CLKPPS		—	—	—			SSP1CLKPPS<4:0>			1 0011	u uuuu
EC6h	SSP1DATPPS		—	—	—			SSP1DATPPS<4:0>			1 0100	u uuuu
EC7h	SSP1SSPPS		—	—	—			SSP1SSPPS<4:0>			0 0101	u uuuu
EC8h	SSP2CLKPPS		—	—	—			SSP2CLKPPS<4:0>			0 1001	u uuuu
EC9h	SSP2DATPPS		_	_	—			SSP2DATPPS<4:0>			0 0010	u uuuu
ECAh	SSP2SSPPS		_	—	—		SSP2SSPPS<4:0>					u uuuu
ECBh	RXPPS		_	—	—		RXPPS<4:0>					u uuuu
ECCh	TXPPS		_	_	—	TXPPS<4:0> -						u uuuu
ECDh to EEFh	_	-				U	nimplemented		_	-		

TABLE 3-13: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

IADLE	3-13: 3PE	CIA			REGISTE	R SUIVIIVIA	KI DANNO (NUED)							
Address	Name	PIC16(L)F18856	PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets			
Bank 30	(Continued)											-				
E21b		—	х		—			RE1	PPS<5:0>			00 0000	uu uuuu			
FJIII	REIFFO	х	_				U	nimplemented								
		_	Х	-	—			RE2	PPS<5:0>			00 0000	uu uuuu			
F3211	REZPPS	х	_				U									
F33h F37h	_	-	-				Unimplemented —									
F38h	ANSELA			ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111			
F39h	WPUA			WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	0000 0000	0000 0000			
F3Ah	ODCONA			ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000 0000	0000 0000			
F3Bh	SLRCONA			SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	1111 1111			
F3Ch	INLVLA			INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	1111 1111	1111 1111			
F3Dh	IOCAP			IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000 0000	0000 0000			
F3Eh	IOCAN			IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000 0000	0000 0000			
F3Fh	IOCAF			IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000 0000	0000 0000			
F40h	CCDNA			CCDNA7	CCDNA6	CCDNA5	CCDNA4	CCDNA3	CCDNA2	CCDNA1	CCDNA0	0000 0000	0000 0000			
F41h	CCDPA			CCDPA7	CCDPA6	CCDPA5	CCDPA4	CCDPA3	CCDPA2	CCDPA1	CCDPA0	0000 0000	0000 0000			
F42h	—	-	-		-		U	nimplemented		·	•	—	—			
F43h	ANSELB			ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111			
F44h	WPUB			WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	0000 0000	0000 0000			
F45h	ODCONB			ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000 0000	0000 0000			
F46h	SLRCONB			SLRB7	SLRB6	SLRB5	SLRB4	LRB5 SLRB4 SLRB3 SLRB2 SLRB1 SLRB0 1111								

x = unknown, u = unchanged, g =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Register present on PIC16F18855/75 devices only.

2: Unimplemented, read as '1'.

6.2.2.2 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 6-7).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

6.2.2.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory calibrated 31 kHz internal clock source.

The LFINTOSC is the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- TMR1
- TMR0
- TMR2
- SMT1
- SMT2
- CLKREF
- CLC

6.2.2.4 MFINTOSC

In addition to the two independent internal oscillators, the internal oscillator block also contains a divider block called MFINTOSC, to supply certain specific frequencies to other modules on the device. The MFINTOSC module takes the undivided HFINTOSC clock as an input and outputs two clocks, a 500 kHz clock (MFINTOSC) and a 31.25 kHz clock (MFINTOSC/16).

The MFINTOSC is enabled through one of the following methods:

• Setting the MFOEN bit of OSCEN (see Section 6.2.2.5 "Oscillator Status and Manual Enable")

• Selecting MFINTOSC or MFINTOSC/16 as an input clock for one of the peripherals that uses the clock.

Peripherals that use the MFINTOSC output (500 kHz) are:

- TMR1
- TMR3
- TMR5
- SMT1
- SMT2
- CLKREF

Peripherals that use the MFINTOSC/16 output (31.25 kHz) are:

- WDT
- TMR2
- TMR4
- TMR6
- SMT1
- SMT2
- CLKREF

Note: Enabling the MFINTOSC will also enable the HFINTOSC.

6.2.2.5 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT register (Register 6-4). The oscillators can also be manually enabled through the OSCEN register (Register 6-7). Manual enabling makes it possible to verify the operation of the EXTOSC or SOSC crystal oscillators. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_		—	—		INTEDG	134
PIE0	_	—	TMR0IE	IOCIE	—	—	—	INTE	135
PIE1	OSFIE	CSWIE		_	_	_	ADTIE	ADIE	136
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	137
PIE3	_		RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139
PIR0	_	—	TMR0IF	IOCIF	—	—	—	INTF	144
PIR1	OSFIF	CSWIF	—	_	—	—	ADTIF	ADIF	145
PIR2	—	ZCDIF	—	-	—	—	C2IF	C1IF	146
PIR3	—	—	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	262
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	262
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	262
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	264
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	263
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	263
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	263
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	264
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	264
IOCEP	_	—	—	_	IOCEP3	—	—	—	265
IOCEN	_	—	—		IOCEN3	—	—	—	265
IOCEF	_	—	—		IOCEF3	—	—	—	266
STATUS	_	—	—	TO	PD	Z	DC	С	38
VREGCON	_	—	—		—	—	VREGPM	Reserved	159
CPUDOZE	IDLEN	DOZEN	ROI	DOE	—	DOZE<2:0>			160
WDTCON0		—		V	VDTPS<4:0	> SWDTEN		SWDTEN	166
IOCEP		—			IOCEP3	—			265
IOCEN	—	—	—	_	IOCEN3	—	—	—	265
IOCEF	_	_	_		IOCEF3	_		_	266

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0					
	NVMCON2<7:0>											
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'						
S = Bit can onl	y be set	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets					
'1' = Bit is set		'0' = Bit is clea	ared									

REGISTER 10-6: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

bit 7-0 **NVMCON2<7:0>:** Flash Memory Unlock Pattern bits To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the NVMCON1 register. The value written to this register is used to unlock the writes.

TABLE 10-5: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY (NVM)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	134	
PIE7	SCANIE	CRCIE	NVMIE	NCO1IE	—	CWG3IE	CWG2IE	CWG1IE	137	
PIR7	SCANIF	CRCIF	NVMIF	NCO1IF	—	CWG3IF	CWG2IF	CWG1IF	146	
NVMCON1	_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	186	
NVMCON2				NVMCC	N2<7:0>				187	
NVMADRL				NVMAE)R<7:0>				185	
NVMADRH	(1)		NVMADR<14:8>							
NVMDATL		NVMDAT<7:0>								
NVMDATH	_	_			NVMDA	T<13:8>			185	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by NVM.

Note 1: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	ANSA6	ANSA4	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	205
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220
INTCON	GIE	PEIE	—	—	—	—	_	INTEDG	134
PIE0	—	_	TMR0IE	IOCIE	—	—	_	INTE	135
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	262
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	262
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	262
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	263
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	263
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	263
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	264
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	264
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	264
IOCEP	—	_	—	—	IOCEP3	—	_	—	265
IOCEN	—	—	—	—	IOCEN3	—	—	—	265
IOCEF	_	_	—	—	IOCEF3	_	_	—	266

TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	269
ADREF				ADNREF			ADPREF<1:0>		
ADPCH					ADPCH	1<5:0>	363		
CM1CON1		_	—		—	—	INTP	INTN	280
CM1NSEL	_	—	—	_	—		NCH<2:0>		281
CM1PSEL	_	—	—	_	—		PCH<2:0>		281
CM2CON1	_	—	—	_	—	_	INTP	INTN	280
CM2NSEL	_	—	—	_	—		NCH<2:0>		281
CM2PSEL	_	_	_	_	_		PCH<2:0>		281
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	389

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

18.10 CWG1 Auto-shutdown Source

The output of the comparator module can be used as an auto-shutdown source for the CWG1 module. When the output of the comparator is active and the corresponding ASxE is enabled, the CWG operation will be suspended immediately (see **Section 20.10 "Auto-Shutdown"**).

18.11 Operation in Sleep Mode

The comparator module can operate during Sleep. The comparator clock source is based on the Timer1 clock source. If the Timer1 clock source is either the system clock (Fosc) or the instruction clock (Fosc/4), Timer1 will not operate during Sleep, and synchronized comparator outputs will not operate.

A comparator interrupt will wake the device from Sleep. The CxIE bits of the PIE2 register must be set to enable comparator interrupts.

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LCxPOL		—	—	LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	LCxPOL: CLO	CxOUT Output	Polarity Cont	rol bit					
	1 = The output of the logic cell is inverted								
	0 = The outp	ut of the logic o	ell is not inve	rted					
bit 6-4	Unimplemen	ted: Read as '	0'						
bit 3	LCxG4POL:	Gate 3 Output	Polarity Contr	ol bit					
	1 = The outp	ut of gate 3 is i	nverted when	n applied to the logic cell					
	0 = The output	ut of gate 3 is r	not inverted						
bit 2	LCxG3POL:	Gate 2 Output	Polarity Contr	ol bit					
	1 = The output	ut of gate 2 is i	nverted when	applied to the	logic cell				
	0 = The outp	ut of gate 2 is r	not inverted						
bit 1	LCxG2POL:	Gate 1 Output	Polarity Contr	ol bit					
	1 = The output	ut of gate 1 is i	nverted when	applied to the	logic cell				
		ut of gate 1 is r	not inverted						
bit 0	LCxG1POL:	Gate 0 Output	Polarity Contr	ol bit					
	1 = The output	ut of gate 0 is i	nverted when	applied to the	logic cell				
	v = i ne outp	ut of gate 0 is r	iot inverted						

REGISTER 22-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N	
bit 7							bit 0	
Legend:								
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R						
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	LCxG2D4T: C	Gate 1 Data 4 T	rue (non-invei	rted) bit				
	1 = CLCIN3	(true) is gated i	nto CLCx Gate	e 1 Coto 1				
bit 6		(irue) is not gat Gate 1 Data 4 I	Vegated (inver	Gale I				
DILO	1 = CLCIN3	(inverted) is da	ted into CLCx	Gate 1				
	0 = CLCIN3 ((inverted) is no	t gated into CL	_Cx Gate 1				
bit 5	LCxG2D3T: O	Gate 1 Data 3 T	rue (non-invei	rted) bit				
	1 = CLCIN2 ((true) is gated i	nto CLCx Gate	e 1				
	0 = CLCIN2 ((true) is not gat	ed into CLCx	Gate 1				
bit 4	LCxG2D3N: (Gate 1 Data 3 I	Negated (inver	rted) bit				
	1 = CLCIN2 ($0 = CLCIN2 ($	(inverted) is ga (inverted) is no	ted into CLCx t gated into CL	Gate 1 _Cx Gate 1				
bit 3	LCxG2D2T: O	Gate 1 Data 2 T	rue (non-invei	rted) bit				
	1 = CLCIN1 ((true) is gated i	nto CLCx Gate	e 1				
	0 = CLCIN1 ((true) is not gat	ed into CLCx	Gate 1				
bit 2	LCxG2D2N: (Gate 1 Data 2 I	Negated (inver	rted) bit				
	1 = CLCIN1((inverted) is ga	ted into CLCx	Gate 1				
bit 1		(Inverted) is no Pate 1 Data 1 T	rue (non-inve	tod) bit				
DICI	1 = CLCINO((true) is gated i	nto CI Cx Gate	≏ 1				
	0 = CLCINO((true) is not gat	ed into CLCx	Gate1				
bit 0	LCxG2D1N:	Gate 1 Data 1 I	Negated (inver	rted) bit				
	1 = CLCIN0 ((inverted) is ga	ted into CLCx	Gate 1				
	0 = CLCIN0 ((inverted) is no	t gated into CL	Cx Gate 1				

REGISTER 22-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER

23.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

23.2.5 EXTERNAL TRIGGER DURING SLEEP

If the external trigger is received during sleep while ADC clock source is set to the FRC, then the ADC module will perform the conversion and set the ADIF bit upon completion.

If an external trigger is received when the ADC clock source is something other than FRC, then the trigger will be recorded, but the conversion will not begin until the device exits Sleep.

23.2.6 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the ADGO bit is set by hardware.

The Auto-conversion Trigger source is selected with the ADACT<4:0> bits of the ADACT register.

23.6 Register Definitions: ADC Control

REGISTER 23-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0		
ADON	ADCONT		ADCS		ADFRM0		ADGO		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at al	I other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is o	cleared by hardw	are			
bit 7	ADON: ADC	Enable bit							
	1 = ADC is en	abled							
hit 6			Operation Eng	bla hit					
DILO		rotriggered up			orsion triggor un				
	set) (or until ADGO	is cleared (red	ardless of the	value of ADSOI))			
	0 = ADGO is	cleared upon c	ompletion of e	ach conversio	on trigger	,			
bit 5	Unimplement	ted: Read as '	0'						
bit 4	ADCS: ADC (Clock Selectior	n bit						
	1 = Clock sup	plied from FRO	C dedicated os	cillator					
	0 = Clock sup	plied by Fosc,	divided accore	ding to ADCL	K register				
bit 3	Unimplement	ted: Read as '	0'						
bit 2	ADFRM0: AD	C results Form	nat/alignment S	Selection					
	1 = ADRES a	nd ADPREV d	ata are right-ju	stified tified zero fill	od				
hit 1	U - ADRES a		ala ale lell-jus o'	uneu, zero-mi	eu				
bit 0									
DILU	1 = ADC con	version cvcle	in progress. S	etting this bit	starts an ADC	conversion c	vcle. The bit is		
	cleared b	y hardware as	determined by	the ADCON	T bit		,		
	0 = ADC conv	version comple	ted/not in prog	ress					

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	—	—			ADCAP<4:0>						
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is une	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is se	et	'0' = Bit is clea	ared								
bit 7-5	Unimplemen	ted: Read as '	0'								
bit 4-0	ADCAP<4:0>	. ADC Addition	nal Sample Ca	apacitor Selection	on bits						

REGISTER 23-11: ADCAP: ADC ADDITIONAL SAMPLE CAPACITOR SELECTION REGISTER

t 4-0	ADCAP<4:0>: ADC Additional Sample Capacitor Sele
	11111 = 31 pF
	11110 = 30 pF
	11101 = 29 pF
	•
	•
	•
	00011 = 3 pF
	00010 = 2 pF
	00001 = 1 pF
	00000 = No additional capacitance

REGISTER 23-12: ADRPT: ADC REPEAT SETTING REGISTER

					-		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADRP	2T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unchanged x = Bit is unkr		x = Bit is unknow	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 ADRPT<7:0>: ADC Repeat Threshold bits

Counts the number of times that the ADC has been triggered. Used in conjunction along with ADCNT to determine when the error threshold is checked for Low-pass Filter, Burst Average, and Average modes.

FIGURE 31-9.	JEL						TIONE	- 0)			
SSE Christiani											
											: : : :
- 1992 (1997) - 580% - (0887 = 1 - 6865 = 0)					, , ,			: ; ; ;			:
999988-80 9389938949 Massa			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	: : : :	· · · · · · · · · · · · · · · · · · · ·		* * * *	* * * * * * *			· · ·
- 882X3 		1/2 <u>, 198</u>	2. 011.0 	, X., 58.5 , , , , ,	,; , , ,		7	, /			· · ······ · · · · ·
lingsif Szerepis	: ; ;	- 1985 7 - 1985 7 	s	: 44 : : : 44 : 44 : .	· · · · · · · · · · · · · · · · · · ·	. /19.	s 47777 s s s typ t	· · · · · · · · · · · · · · · · · · ·		20 2	:
SSECTION		; ; ; ;	e 6 9 9 9	4 6 6 9 9	> 		e 6 9 9 9	* * * \$ \$	> , > , > , < , & , & , & ,		
- 1728 - 939238143 - 899238128	· · · · · · · · · · · · · · · · · · ·		2 2 2	; ; ;	s s s		2 2 2	s 5 7	6 5 6 5 6 5	<i>ц</i> р.	
Verite Continue	,	-	, 	, 	******		, 		5		~~~~
stetection active		e									0

FIGURE 31-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 31-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

32.6.6 GATED WINDOW MEASURE MODE

This mode measures the duty cycle of the SMTx_signal input over a known input window. It does so by incrementing the timer on each pulse of the clock signal while the SMTx_signal input is high, updating the SMTxCPR register and resetting the timer on every rising edge of the SMTWINx input after the first. See Figure 32-12 and Figure 32-13.

FIGURE 32-16: CAPTURE MODE REPEAT ACQUISITION TIMING DIAGRAM

PIC16(L)F18856/76

37.0 ELECTRICAL SPECIFICATIONS

37.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on Vod pin	
PIC16F18856/76	-0.3V to +6.5V
PIC16LF18856/76	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C	350 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	120 mA
on VDD pin for 28-Pin devices ⁽¹⁾	
-40°C \leq Ta \leq +85°C	250 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	85 mA
on VDD pin for 40-Pin devices ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	350 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	120 mA
on any standard I/O pin	±50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 37-6 to calculate device specifications.

2: Power dissipation is calculated as follows:

PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

Standard Operating Conditions (unless otherwise stated) VDD $\geq 2.5 V$									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
PLL01	FPLLIN	PLL Input Frequency Range	4	_	8	MHz			
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1		
PLL03	TPLLST	PLL Lock Time from Start-up	_	200	_	μS			
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	_	0.25	%			
* These parameters are characterized but not tested									

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-55: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values from -40°C to 125°C, PIC16F18856/76 Only.

FIGURE 38-56: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF18856/76 Only.

FIGURE 38-57: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F18856/76 Only.

FIGURE 38-58: Typical DAC DNL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 38-59: Typical DAC INL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 38-60: Typical DAC DNL Error, VDD = 5.0V, VREF = External 5V, PIC16F18856/76 Only.