

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18876-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3: WINDOWED WATCHDOG

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
			WDTCCS<2:	0>		WDTCWS<2:0	>
		bit 13			·		bit 8
U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	WD1	ΓE<1:0>			WDTCPS<4	:0>	
oit 7							bit 0
Legend:							
R = Readal	ble bit	P = Programr	nable bit	x = Bit is unkr	lown	U = Unimpleme	ented bit, read

	Ū		as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Frase

bit 13-11 WDTCCS<2:0>: WDT Input Clock Selector bits

111 = Software Control 110 = Reserved

•

010 = Reserved

001 = WDT reference clock is the MFINTOSC/16 output (31.25 kHz)

000 = WDT reference clock is the 31.0 kHz LFINTOSC (default value)

bit 10-8 WDTCWS<2:0>: WDT Window Select bits

		WDTWS at POR		Software	Kovod	
WDTCWS Value		Window delay Percent of time	Window opening Percent of time	control of WDTWS?	access required?	
111	111	n/a	100	Yes	No	
110	111	n/a	100			
101	101	25	75			
100	100	37.5	62.5			
011	011	50	50	No	Yes	
010	010	62.5	37.5			
001	001	75	25			
000	000	87.5	12.5			

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>**: WDT Operating mode:

- 11 = WDT enabled regardless of Sleep; SWDTEN is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN ignored
- 01 = WDT enabled/disabled by SWDTEN bit in WDTCON0
- 00 = WDT disabled, SWDTEN is ignored

- 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 6-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

6.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

8.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 8-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

8.2.3 LOW-POWER SLEEP MODE

The PIC16F18855/75 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

The PIC16F18855/75 allows the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. Depending on the configuration of these bits, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRD7 | SLRD6 | SLRD5 | SLRD4 | SLRD3 | SLRD2 | SLRD1 | SLRD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 12-38: SLRCOND: PORTD SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRD<7:0>:** PORTD Slew Rate Enable bits For RD<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 12-39: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLD<7:0>: PORTD Input Level Select bits

For RD<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

REGISTER 15-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBP7 | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3 | IOCBP2 | IOCBP1 | IOCBP0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 15-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 15-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

20.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers, respectively.

20.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 20-9.

20.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWGxCON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWGxA and CWGxC signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWGxB or CWGxD, depending on the direction of the change) will experience a delay dictated by the dead-band counters. This is demonstrated in Figure 20-3.

20.6 Rising Edge and Reverse Dead Band

CWGxDBR controls the rising edge dead-band time at the leading edge of CWGxA (Half-Bridge mode) or the leading edge of CWGxB (Full-Bridge mode). The CWGxDBR value is double-buffered. When EN = 0, the CWGxDBR register is loaded immediately when CWGxDBR is written. When EN = 1, then software must set the LD bit of the CWGxCON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

20.7 Falling Edge and Forward Dead Band

CWGxDBF controls the dead-band time at the leading edge of CWGxB (Half-Bridge mode) or the leading edge of CWGxD (Full-Bridge mode). The CWGxDBF value is double-buffered. When EN = 0, the CWGxDBF register is loaded immediately when CWGxDBF is written. When EN = 1 then software must set the LD bit of the CWGxCON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output. Refer to Figure 20.6 and Figure 20-7 for examples.

EQUATION 21-2: R-C CALCULATIONS

- VPEAK = External voltage source peak voltage
- f = External voltage source frequency
- C = Series capacitor
- R = Series resistor
- V_{c} = Peak capacitor voltage
- Φ = Capacitor induced zero crossing phase advance in radians
- $T_\Phi\,$ = Time ZC event occurs before actual zero crossing

$$Z = \frac{VPEAK}{3 \times 10^{-4}}$$
$$XC = \frac{1}{2\pi fC}$$
$$R = \sqrt{Z^2 - Xc^2}$$
$$VC = XC(3 \times 10^{-4})$$
$$\Phi = Tan^{-1}\left(\frac{XC}{R}\right)$$
$$T\Phi = \frac{\Phi}{2\pi f}$$

EXAMPLE 21-1: R-C CALCULATIONS

VRMS = 120
VPEAK = VRMS *
$$\sqrt{2}$$
 = 169.7
f = 60 Hz
C = 0.1 µF

$$Z = \frac{VPEAK}{3 \times 10^{-4}} = \frac{169.7}{3 \times 10^{-4}} = 565.7 k\Omega$$
XC = $\frac{1}{2\pi fC} = \frac{1}{(2\pi \times 60 \times 1 \times 10^{-7})} = 26.53 k\Omega$
R = $\sqrt{(Z^2 \times Xc^2)} = 565.1 k\Omega$ (computed)
R = 560k Ω (used)
ZR = $\sqrt{R^2 + Xc^2} = 560.6 k\Omega$ (using actual resistor)
IPEAK = $\frac{VPEAK}{ZR} = 302.7 \times 10^{-6}$
VC = XC × Ipeak = 8.0V
 $\Phi = Tan^{-1}(\frac{XC}{R}) = 0.047$ radians
T $\Phi = \frac{\Phi}{2\pi f} = 125.6 \mu s$

21.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 21-3.

EQUATION 21-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 21-4.

EQUATION 21-4: ZCD PULL-UP/DOWN

When External Signal is relative to Vss: $RPULLUP = \frac{RSERIES(VPULLUP - Vcpinv)}{Vcpinv}$ When External Signal is relative to VDD: $RPULLDOWN = \frac{RSERIES(Vcpinv)}{(VDD - Vcpinv)}$

REGISTER 22-3: CLCxSEL0: GENERIC CLCx DATA 0 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			LCxD	1S<5:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD1S<5:0>: CLCx Data1 Input Selection bits See Table 22-2.

REGISTER 22-4: CLCxSEL1: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			LCxD2	2S<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 LCxD2S<5:0>: CLCx Data 2 Input Selection bits See Table 22-2.

REGISTER 22-5: CLCxSEL2: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			LCxD	3S<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

```
bit 7-6 Unimplemented: Read as '0'
```

bit 5-0 LCxD3S<5:0>: CLCx Data 3 Input Selection bits

See Table 22-2. REGISTER 22-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			LCxD	4S<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ed bit, read as '0'		
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					

bit 7-6 Unimplemented: Read as '0'

'1' = Bit is set

bit 5-0 LCxD4S<5:0>: CLCx Data 4 Input Selection bits See Table 22-2.

23.2.7 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - · Configure voltage reference
 - Select ADC input channel (precharge+acquisition)
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - · Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt (PEIE bit)
 - Enable global interrupt (GIE bit)⁽¹⁾
- If ADACQ=0, software must wait the required acquisition time ⁽²⁾.
- 5. Start conversion by setting the ADGO bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the ADGO bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 23.3 "ADC Acquisition Requirements".

EXAMPLE 23-1: ADC CONVERSION

;This code block configures the ADC ; for polling, VDD and Vss references, FRC ;oscillator and ANO input. ;Conversion start & polling for completion ;are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, MOVLW FRC ;oscillator MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel ANO MOVLW MOVWF ADCON0 Turn ADC On SampleTime ;Acquisiton delay CALL BSF ADCON0, ADGO ;Start conversion BTFSC ADCON0, ADGO ; Is conversion done? GOTO ;No, test again \$-1 BANKSEL ADRESH ; MOVF ADRESH,W ;Read upper 2 bits MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; MOVE ADRESL,W ;Read lower 8 bits

R-0/0	R-0/0	R-0/0	R/C/HS-0/0	U-0	R-0/0	R-0/0	R-0/0
ADAOV	ADUTHR	ADLTHR	ADMATH	_	1.0,0	ADSTAT<2:0>	11 0/0
bit 7					I		bit 0
<u> </u>							
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, re	ad as '0'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and B	OR/Value at all ot	her Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7 ADAOV: ADC Computation Overflow bit 1 = ADC accumulator or ADERR calculation have overflowed 0 = ADC accumulator and ADERR calculation have not overflowed							
bit 6	 ADUTHR: ADC Module Greater-than Upper Threshold Flag bit 1 = ADERR > ADUTH 0 = ADERR<aduth< li=""> </aduth<>						
bit 5	ADLTHR: AD 1 = ADERR<, 0 = ADERR≥,	C Module Les ADLTH ADLTH	s-than Lower T	hreshold Flag	bit		
bit 4	ADMATH: AL 1 = Registers updated 0 = Associate	ADMATH: ADC Module Computation Status bit 1 = Registers ADACC, ADFLTR, ADUTH, ADLTH and the ADAOV bit are updating or have already updated 0 = Associated registers/bits have not changed since this bit was last cleared					
bit 3	Unimplemen	ted: Read as	0'				
bit 2-0 ADSTAT<0:2>: ADC Module Cycle Multistage Status bits ⁽¹⁾ 111 = ADC module is in 2 nd conversion stage 110 = ADC module is in 2 nd acquisition stage 101 = ADC module is in 2 nd precharge stage 100 = Not used 011 = ADC module is in 1 st conversion stage 010 = ADC module is in 1 st acquisition stage 010 = ADC module is in 1 st precharge stage 001 = ADC module is in 1 st precharge stage 000 = ADC module is not converting							
Note 1:	If ADOSC=1, and	Fosc <frc, th="" the<=""><th>ese bits may be</th><th>e invalid.</th><th></th><th></th><th></th></frc,>	ese bits may be	e invalid.			

REGISTER 23-5: ADSTAT: ADC THRESHOLD REGISTER

26.11 Register Definitions: Modulation Control

REGISTER 26-1: MDCON0: MODULATION CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
MDEN		MDOUT	MDOPOL		—	_	MDBIT ⁽²⁾
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7 bit 6 bit 5	MDEN: Modu 1 = Modulato 0 = Modulato Unimplemen MDOUT: Mod	lator Module E or module is en or module is dis ted: Read as ' lulator Output b	nable bit abled and mix abled and has o' it	king input signa s no output	als		
bit 4 Displays the current output value of the modulator module. ⁽¹⁾ MDOPOL: Modulator Output Polarity Select bit 1 = Modulator output signal is inverted; idle high output 0 = Modulator output signal is not inverted; idle low output							
bit 3-1	bit 3-1 Unimplemented: Read as '0'						
bit 0	bit 0 MDBIT: Allows software to manually set modulation source input to module ⁽²⁾						
Note 1: The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.							

2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.

31.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 31-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section 31.5.6.2 "10-bit Addressing Mode"** for more detail.

31.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 31-14 and Figure 31-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

31.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 31-16 displays a module using both address and data holding. Figure 31-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to determine if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.

10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSPxSTAT register.

36.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW AND literal with W			
Syntax:	[<i>label</i>] ANDLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .AND. (k) \rightarrow (W)		
Status Affected:	Z		
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.		

ADDLW	Add literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.			

wrap-around.

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

ADDWF	Add W and f				
Syntax:	[<i>label</i>] ADDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

ASRF	Arithmetic Right Shift				
Syntax:	[label]ASRF f{,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,				
Status Affected:	C, Z				
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in				

register 'f'.

ADDWFC	ADD W and CARRY bit to f	

Syntax:	[label] ADDWFC f {,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(W) + (f) + (C) \rightarrow dest$				
Status Affected:	C, DC, Z				
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.				

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-67: BOR Response Time, PIC16F18856/76 Only.

FIGURE 38-68: Comparator Response Time, Falling Edge, PIC16LF18856/76 Only.

FIGURE 38-69: Comparator Response Time, Falling Edge, PIC16F18856/76 Only.

FIGURE 38-70: Comparator Response Time, Rising Edge, PIC16LF18856/76 Only.

FIGURE 38-71: Comparator Response Time, Rising Edge, PIC16F18856/76 Only.

FIGURE 38-72: FVR Stabilization Period, PIC16LF18856/76 Only.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	44		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.25 6.45 6.60		
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2