

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18876-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "**Linear Data Memory**" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps are as shown in Table 3-3 through Table 3-13.

TABLE 3-5:PIC16F18856/76 MEMORY MAP BANK 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
40Bh	· · · ·	48Bh	· · · · · ·	50Bh	· · · · ·	58Bh	· · · · ·	60Bh	, , ,	68Bh	, , ,	70Bh	()	78Bh	· · · ·
40Ch	SCANLADRL	48Ch	SMT1TMRL	50Ch	SMT2TMRL	58Ch	NCO1ACCL	60Ch	CWG1CLKCON	68Ch	CWG3CLKCON	70Ch	PIR0	78Ch	_
40Dh	SCANLADRH	48Dh	SMT1TMRH	50Dh	SMT2TMRH	58Dh	NCO1ACCH	60Dh	CWG1ISM	68Dh	CWG3ISM	70Dh	PIR1	78Dh	_
40Eh	SCANHADRL	48Eh	SMT1TMRU	50Eh	SMT2TMRU	58Eh	NCO1ACCU	60Eh	CWG1DBR	68Eh	CWG3DBR	70Eh	PIR2	78Eh	
40Fh	SCANHADRH	48Fh	SMT1CPRL	50Fh	SMT2CPRL	58Fh	NCO1INCL	60Fh	CWG1DBF	68Fh	CWG3DBF	70Fh	PIR3	78Fh	
410h	SCANCON0	490h	SMT1CPRH	510h	SMT2CPRH	590h	NCO1INCH	610h	CWG1CON0	690h	CWG3CON0	710h	PIR4	790h	_
411h	SCANTRIG	491h	SMT1CPRU	511h	SMT2CPRU	591h	NCO1INCU	611h	CWG1CON1	691h	CWG3CON1	711h	PIR5	791h	_
412h	_	492h	SMT1CPWL	512h	SMT2CPWL	592h	NCO1CON	612h	CWG1AS0	692h	CWG3AS0	712h	PIR6	792h	_
413h	_	493h	SMT1CPWH	513h	SMT2CPWH	593h	NCO1CLK	613h	CWG1AS1	693h	CWG3AS1	713h	PIR7	793h	_
414h	_	494h	SMT1CPWU	514h	SMT2CPWU	594h	_	614h	CWG1STR	694h	CWG3STR	714h	PIR8	794h	_
415h	_	495h	SMT1PRL	515h	SMT2PRL	595h		615h	—	695h	—	715h	—	795h	—
416h	CRCDATL	496h	SMT1PRH	516h	SMT2PRH	596h	—	616h	CWG2CLKCON	696h	—	716h	PIE0	796h	PMD0
417h	CRCDATH	497h	SMT1PRU	517h	SMT2PRU	597h	—	617h	CWG2ISM	697h	—	717h	PIE1	797h	PMD1
418h	CRCACCL	498h	SMT1CON0	518h	SMT2CON0	598h	—	618h	CWG2DBR	698h	—	718h	PIE2	798h	PMD2
419h	CRCACCH	499h	SMT1CON1	519h	SMT2CON1	599h	—	619h	CWG2DBF	699h	—	719h	PIE3	799h	PMD3
41Ah	CRCSHIFTL	49Ah	SMT1STAT	51Ah	SMT2STAT	59Ah	_	61Ah	CWG2CON0	69Ah	_	71Ah	PIE4	79Ah	PMD4
41Bh	CRCSHIFTH	49Bh	SMT1CLK	51Bh	SMT2CLK	59Bh	—	61Bh	CWG2CON1	69Bh	—	71Bh	PIE5	79Bh	PMD5
41Ch	CRCXORL	49Ch	SMT1SIG	51Ch	SMT2SIG	59Ch	-	61Ch	CWG2AS0	69Ch	—	71Ch	PIE6	79Ch	_
41Dh	CRCXORH	49Dh	SMT1WIN	51Dh	SMT2WIN	59Dh	—	61Dh	CWG2AS1	69Dh	—	71Dh	PIE7	79Dh	—
41Eh	CRCCON0	49Eh	—	51Eh	—	59Eh	—	61Eh	CWG2STR	69Eh	—	71Eh	PIE8	79Eh	—
41Fh	CRCCON1	49Fh	_	51Fh	_	59Fh		61Fh	_	69Fh	—	71Fh	_	79Fh	_
420h	- ·	4A0h	- ·	520h	- ·	5A0h	- ·	620h		6A0h		720h	- ·	7A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register 80 Bytes		Register		Register		Register 80 Bytes
	ou bytes		ou bytes		ou Dytes		ou bytes		ou bytes		ou Dytes		ou bytes	7554	ou bytes
40FN 470b				570b				00FN 670b				70FN 770b			
4701	Common RAM		Common RAM	5701	Common RAM	51 011	Common RAM	07011	Common RAM	01 011	Common RAM	1101	Common RAM	71 011	Common RAM
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
47Fh	/Uh — /⊦h	4FFh	70h – 7⊦h	57Fh	/0n – /⊦n	5FFh	70n – 7⊦n	67Fh	/0h – /⊦h	6FFh	/0h – /⊦h	77Fh	/Uh – /⊦h	7FFh	/Uh – /⊦h

Legend: = Unimplemented data memory locations, read as '0'.

IABLE	3-13: SPE		FUNCTION	REGISTE		KI BANNS (J-31 (CONTI	NUED)				
Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 1	anks 12											
					CPU	CORE REGISTER	S; see Table 3-2	for specifics				
60Ch	CWG1CLKCON		_	_	—	_	_	_	_	CS	0	0
60Dh	CWG1ISM		_	_	—	—		IS<3	3:0>		0000	0000
60Eh	CWG1DBR		_	_		l	DE	3R<5:0>			00 0000	00 0000
60Fh	CWG1DBF		—	_			DI	DBF<5:0>				00 0000
610h	CWG1CON0		EN	LD	—	_	—	MODE<2:0>			00000	00000
611h	CWG1CON1		—	_	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
612h	CWG1AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA	.C<1:0>	—	_	0001 01	0001 01
613h	CWG1AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
614h	CWG1STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
615h	—	—			•	U	nimplemented					—
616h	CWG2CLKCON		—	—		_	—	_	—	CS	0	0
617h	CWG2ISM		—	_	—	—		IS<3	3:0>		0000	0000
618h	CWG2DBR		—	_			DE	3R<5:0>			00 0000	00 0000
619h	CWG2DBF		—	_			DI	3F<5:0>			00 0000	00 0000
61Ah	CWG2CON0		EN	LD	—	—	—		MODE<2:0>		00000	00000
61Bh	CWG2CON1		—	—	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
61Ch	CWG2AS0		SHUTDOWN	REN	LSBI	D<1:0>	LSA	C<1:0>	—	—	0001 01	0001 01
61Dh	CWG2AS1		—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	-000 0000	-000 0000
61Eh	CWG2STR		OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
61Fh	_	_		-		U	nimplemented	-	•	-	_	_

© 2016-2017 Microchip Technology Inc.

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

REGISTER 8-2: CPUDOZE: DOZE AND IDLE REGISTER

R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
IDLEN	DOZEN ^(1,2)	ROI	DOE	_		DOZE<2:0>	
bit 7			•				bit 0

Legend:		
HC = Bit is cleared by hardware		HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 IDLEN: Idle Enable bit 1 = A SLEEP instruction inhibits the CPU clock, but not the peripheral clock(s) 0 = A SLEEP instruction places the device into full Sleep mode
bit 6	 DOZEN: Doze Enable bit^(1,2) 1 = The CPU executes instruction cycles according to DOZE setting 0 = The CPU executes all instruction cycles (fastest, highest power operation)
bit 5	 ROI: Recover-on-Interrupt bit 1 = Entering the Interrupt Service Routine (ISR) makes DOZEN = 0 bit, bringing the CPU to full-speed operation. 0 = Interrupt entry does not change DOZEN
bit 4	 DOE: Doze on Exit bit 1 = Executing RETFIE makes DOZEN = 1, bringing the CPU to reduced speed operation. 0 = RETFIE does not change DOZEN
bit 3	Unimplemented: Read as '0'
bit 2-0	DOZE<2:0>: Ratio of CPU Instruction Cycles to Peripheral Instruction Cycles 111 = 1:256 110 = 1:128 101 = 1:64 100 = 1:32 011 = 1:16 010 = 1:8 001 = 1:4 000 = 1:2

- **Note** 1: When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.
 - 2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

REGISTER 9-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

U-0	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾		
-		WDTCS<2:0>		-		WINDOW<2:0>			
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unk	nown	-n/n = Value at POR and BOR/Value at all oth			er Resets		

q = Value depends on condition

bit 7	Unimplemented: Read as '0'

bit 6-4 WDTCS<2:0>: Watchdog Timer Clock Select bits

'0' = Bit is cleared

111 = Reserved

'1' = Bit is set

- •

•

- 010 = Reserved
- 001 = MFINTOSC/16 (31.25 kHz)

000 = LFINTOSC (31 kHz)

bit 3 Unimplemented: Read as '0'

bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

Note 1: If WDTCCS <2:0> in CONFIG3 = 111, the Reset value of WDTCS<2:0> is 000.

2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3 register.

3: If WDTCCS<2:0> in CONFIG3 \neq 111, these bits are read-only.

4: If WDTCWS<2:0> in CONFIG3 \neq 111, these bits are read-only.

In general, if INTM = 0, the scanner will take precedence over the interrupt, resulting in decreased interrupt processing speed and/or increased interrupt response latency. If INTM = 1, the interrupt will take precedence and have a better speed, delaying the memory scan.

11.10.6 WDT INTERACTION

Operation of the WDT is not affected by scanner activity. Hence, it is possible that long scans, particularly in Burst mode, may exceed the WDT timeout period and result in an undesired device Reset. This should be considered when performing memory scans with an application that also utilizes WDT.

11.10.7 IN-CIRCUIT DEBUG (ICD) INTERACTION

The scanner freezes when an ICD halt occurs, and remains frozen until user-mode operation resumes. The debugger may inspect the SCANCON0 and SCANLADR registers to determine the state of the scan.

The ICD interaction with each operating mode is summarized in Table 11-3.

		Scanner Operating Mode		
ICD Halt	Peek	Concurrent Triggered	Burst	
External Halt		If external halt is asserted during a scan cycle, the instruction (delayed by scan) may or may not execute before ICD entry, depending on external halt timing.	If external halt is asserted during the BSF (SCANCON.GO), ICD entry occurs, and the burst is delayed until ICD exit. Otherwise, the current NVM-access cycle will complete, and then the scanner will be interrupted for ICD entry.	
	If Scanner would peek an instruction that is not executed (because of ICD	If external halt is asserted during the cycle immediately prior to the scan cycle, both scan and instruction execution happen after the ICD exits.	If external halt is asserted during the burst, the burst is suspended and will resume with ICD exit.	
PC Breakpoint		Scan cycle occurs before ICD entry and instruction execution happens after the ICD exits.	If PCPB (or single step) is on	
Data Breakpoint	exit, when the instruction executes.	The instruction with the dataBP executes and ICD entry occurs immediately after. If scan is requested during that cycle, the scan cycle is postponed until the ICD exits.	BSF (SCANCON.GO), the ICD is entered before execution; execution of the burst will occur at ICD exit, and the burst will run to completion.	
Single Step		If a scan cycle is ready after the debug instruction is executed, the scan will read PFM and then the ICD is re-entered.	Note that the burst can be interrupted by an external halt.	
SWBP and ICDINST		If scan would stall a SWBP, the scan cycle occurs and the ICD is entered.	If SWBP replaces BSF(SCANCON.GO), the ICD will be entered; instruction execution will occur at ICD exit (from ICDINSTR register), and the burst will run to completion.	

TABLE 11-3: ICD AND SCANNER INTERACTIONS

12.8 PORTC Registers

12.8.1 DATA REGISTER

PORTC is an 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 12-23). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12.4.9 shows how to initialize an I/O port.

Reading the PORTC register (Register 12-22) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The PORT data latch LATC (Register 12-24) holds the output port data, and contains the latest value of a LATC or PORTC write.

12.8.2 DIRECTION CONTROL

The TRISC register (Register 12-23) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.8.3 INPUT THRESHOLD CONTROL

The INLVLC register (Register 12-29) controls the input voltage threshold for each of the available PORTC input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTC register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

12.8.4 OPEN-DRAIN CONTROL

The ODCONC register (Register 12-27) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONC bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONC bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

12.8.5 SLEW RATE CONTROL

The SLRCONC register (Register 12-28) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONC bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONC bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

12.8.6 ANALOG CONTROL

The ANSELC register (Register 12-25) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELC bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

12.8.7 WEAK PULL-UP CONTROL

The WPUC register (Register 12-26) controls the individual weak pull-ups for each port pin.

REGISTER ²	14-4: PMD3	: PMD CONT	ROL REGIS	TER 3			
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	PWM7MD	PWM6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	Unimplemented: Read as '0'
bit 6	PWM7MD: Disable Pulse-Width Modulator PWM7 bit 1 = PWM7 module disabled 0 = PWM7 module enabled
bit 5	PWM6MD: Disable Pulse-Width Modulator PWM6 bit 1 = PWM6 module disabled 0 = PWM6 module enabled
bit 4	CCP5MD: Disable Pulse-Width Modulator CCP5 bit 1 = CCP5 module disabled 0 = CCP5 module enabled
bit 3	CCP4MD: Disable Pulse-Width Modulator CCP4 bit 1 = CCP4 module disabled 0 = CCP4 module enabled
bit 2	CCP3MD: Disable Pulse-Width Modulator CCP3 bit 1 = CCP3 module disabled 0 = CCP3 module enabled
bit 1	CCP2MD: Disable Pulse-Width Modulator CCP2 bit 1 = CCP2 module disabled 0 = CCP2 module enabled
bit 0	CCP1MD: Disable Pulse-Width Modulator CCP1 bit 1 = CCP1 module disabled 0 = CCP1 module enabled

18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-14 for more details.

18.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

19.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- TMR2 register
- PR2 register
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 19-2 shows a simplified block diagram of PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = '0', the output will be the default state.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin

FIGURE 19-2: SIMPLIFIED PWM BLOCK DIAGRAM

19.2 Register Definitions: PWM Control

REGISTER 19-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	U-0	R-0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	—	PWMxOUT PWMxPOL				—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: PV	VM Module En	able bit				
	1 = PWM mo	dule is enable	d				
	0 = PWM mc	dule is disable	d				
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	PWMxOUT: F	PWM Module C	output Level wh	hen Bit is Read	l		
bit 4	PWMxPOL: F	PWMx Output F	Polarity Select	bit			
	1 = PWM out	tput is active-lo	W				
	0 = PWM out	tput is active-hi	gh				
bit 3-0	Unimplemen	ted: Read as '	0'				

© 2016-2017 Microchip Technology Inc.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
			ADCN	T<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	nanged	x = Bit is unkno	own	n -n/n = Value at POR and BOR/Value at all o					
'1' = Bit is set		'0' = Bit is clea	red						

REGISTER 23-13: ADCNT: ADC CONVERSION COUNTER REGISTER

bit 7-0 ADCNT<7:0>: ADC Conversion Counter

Counts the number of times that the ADC is triggered. Determines when the threshold is checked for the Low-Pass Filter, Burst Average, and Average Computation modes. Count saturates at 0xFF and does not roll-over to 0x00.

REGISTER 23-14: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
ADFLTR<15:8>										
bit 7	bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADFLTR<15:8>: ADC Filter Output Most Significant bits and Sign bit In Accumulate, Average, and Burst Average mode, this is equal to ADACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Lowpass Filter.

REGISTER 23-15: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADFLT	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADFLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ADACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Lowpass Filter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	205	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	221	
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	207	
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	222	
MDCON0	MDEN	_	MDOUT	MDOPOL	_	—	_	MDBIT	397	
MDCON1	—	-	MDCHPOL	MDCHSYNC	-	—	MDCLPOL	MDCLSYNC	398	
MDSRC		_			MDMS<4:0>					
MDCARH	—	-	—	—		MDC	:HS<3:0>		400	
MDCARL	—	-	—	—		MDC	CLS<3:0>		401	
MDCARLPPS	—	_	—		ME	CARLPPS<	4:0>		249	
MDCARHPPS	—	-	—		MD	CARHPPS<	:4:0>		249	
MDSRCPPS	—	_	—		M	DSRCPPS<4	4:0>		249	
RxyPPS		_				RxyPPS<4:0)>		250	
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	207	
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	222	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	204	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	220	

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

29.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 29-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

	Rev. 10.400 1988 500/2014	
MODE	0b00001	
TMRx_dk		
TMRx_ers_		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

29.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

FIGURE 29-11: LOW LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 01110)

FIGURE 31-9.	JELW						TIONE	- 0)			
SS Children											
											: : : :
- 1992 (1997) - SECX - (CXF = 2 - CXF = 2)				· ·)) ,			: ; ; ;			3
990 000 000 5589 26859 75885		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* * * * * * *	, ; ; ; , , , , , , , , , , , , , , , ,	s s s ss y y y, ∕ s, ss y		, , , , , , , , , , , , , , , , , , ,	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			· · · ·
		/~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		 e e e e e e e e e e e e e			 ; ; ;	:/~			·······
imput Securite	:	1985 V 	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · · ·	· · · ·	. //p.	, , , , , , , , , , , , , , , , , , ,	: : : : : :		(8) x	
SSPAII Internații	· · ·		e 6 9 9 9	e 6 6 9 9	> ? ? ? ?		9 9 9 9 9	, , , , ,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
- 1729 - 959258145 - 59925809	· · · · · · · · · · · · · · · · · · ·		2 2 2	; ; ;	s s s		2 2 2	s 5 7	6 5 6 5 6 5	1p.	
Verite Continue		•	, 	,	5 1940-000-000-000-000-000-000-000-000-000-		, 	,	ч. у Уластики С		
detection active											

FIGURE 31-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 31-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

32.6.8 CAPTURE MODE

This mode captures the Timer value based on a rising or falling edge on the SMTWINx input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the SMTxGO bit being set, and updates the value of the SMTxCPR register on each rising edge of SMTWINx, and updates the value of the CPW register on each falling edge of the SMTWINx. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See Figure 32-16 and Figure 32-17.

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc	: = 32.00	0 MHz	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—			—				_	_	_	_		
1200	—	_	_	—	_	—	—	_	—	—	—	—	
2400	—	—	—	—	—	—	—	—	—	—	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

BAUD RATE	SYNC = 0, BRGH = 1, BRG16 = 0											
	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	—	—			_			_	300	0.16	207
1200		—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	—	—	—	_	—	115.2k	0.00	1	_	_	—

BAUD RATE	SYNC = 0, BRGH = 0, BRG16 = 1											
	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

FIGURE 37-18: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-43: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF18856/76 Only.

FIGURE 38-44: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 5.5V, PIC16F18856/76 Only.

FIGURE 38-45: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V.

FIGURE 38-46: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.0V.

FIGURE 38-47: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.6V.

FIGURE 38-48: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V.