

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18876-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C
1
6(
Ľ
T
18
88
U I
6/
Z
δ

Q	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RC	0 15	30	34	32	ANC0	—	_	_	—	—	_		T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMTWIN1 ⁽¹⁾	_	_	_	_		IOCC0	SOSCO
RC	1 16	31	35	35	ANC1	_	_		_	_	_	_	SMTSIG1 ⁽¹⁾	CCP2 ⁽¹⁾	_	_	—		IOCC1	SOSCI
RC	2 17	32	36	36	ANC2	—	—	-	—	—	—	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	-	—	—	-	IOCC2	—
RC	3 18	33	37	37	ANC3	—	_	-	_	SCL1 ^(3,4) SCK1 ⁽¹⁾	Ι	_	T2IN ⁽¹⁾	—	-	—	-		IOCC3	—
RC	4 23	38	42	42	ANC4	—	—	_	—	SDA1 ^(3,4) SDI1 ⁽¹⁾	_	_	—	-	_	—	—	_	IOCC4	—
RC	5 24	39	43	43	ANC5	—	—		—	—	_		T4IN ⁽¹⁾	—		—	—		IOCC5	—
RC	6 25	40	44	44	ANC6		—	_	—	—	CK ⁽³⁾	_	_	_	_	—	—		IOCC6	—
RC	7 26	1	1	1	ANC7	—	—		_	—	RX ⁽¹⁾ DT ⁽³⁾		—	—		—	-		IOCC7	—
RD	0 19	34	38	38	AND0		—	_	—	—	—	_	_	_	_	—	—		_	—
RD	1 20	35	39	39	AND1	—	—		—	—	_	_	—	_	_	—	—			—
RD	2 21	36	40	40	AND2	—	—	_	_	—	_	_	—	_	_	—	-	_	_	_
RD	3 22	37	41	41	AND3	_	—	_	_	—	_	_	_	_	_	_	_	_	_	_
RD	4 27	2	2	2	AND4	—	—	_	_	—	_	_	—	_	_	—	-	_	_	—
RD	5 28	3	3	3	AND5	—	—	1	—	—	_		_	_	1	—	—			_
RD	6 29	4	4	4	AND6	—	_		—	—	_		_	_	1	—	—		-	_
RD	7 30	5	5	5	AND7	_	_	-	—	—	—	-	—	_	-	—	—			_
RE	0 8	23	25	25	ANE0	_	—			—			—	—		—	—	-	_	—
RE	19	24	26	26	ANE1	—	—		-	—			—	—		—	—	-	-	—
RE	2 10	25	27	27	ANE2	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16(L)F18876) (CONTINUED)

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

TABLE 1-3 :	PIC16F18876 PINOUT DESCRIPTION (CONTINUED)
--------------------	--

Name	Function	Input Type	Output Type	Description
Vss	Vss	Power	—	Ground reference.
OUT ⁽²⁾	ADGRDA	_	CMOS/OD	ADC Guard Ring A output.
	ADGRDB	_	CMOS/OD	ADC Guard Ring B output.
	C1OUT	_	CMOS/OD	Comparator 1 output.
	C2OUT	_	CMOS/OD	Comparator 2 output.
	SDO1	_	CMOS/OD	MSSP1 SPI serial data output.
	SCK1	_	CMOS/OD	MSSP1 SPI serial clock output.
	SDO2	_	CMOS/OD	MSSP2 SPI serial data output.
	SCK2	_	CMOS/OD	MSSP2 SPI serial clock output.
	ТХ	_	CMOS/OD	EUSART Asynchronous mode transmitter data output.
	CK(3)	-	CMOS/OD	EUSART Synchronous mode clock output.
	DT(3)	-	CMOS/OD	EUSART Synchronous mode data output.
	DSM	-	CMOS/OD	Data Signal Modulator output.
	TMR0	_	CMOS/OD	Timer0 output.
	CCP1	-	CMOS/OD	Capture/Compare/PWM1 output (compare/PWM functions).
	CCP2	_	CMOS/OD	Capture/Compare/PWM2 output (compare/PWM functions).
Legend: AN = Analog input or our	tput CMOS =	CMOS compa	tible input or out	put OD = Open-Drain

Legend: AN = Analog input or output TTL = TTL compatible input

ut or output CMOS = CMOS compatible input or output OD atible input ST = Schmitt Trigger input with CMOS levels I²C Open-Drain
 Schmitt Trigger input with I²CHV=

High Voltage XTAL= Crystal levels
 Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	PIC16(L)F18856 PIC16(L)F18876	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 19	Bank 19											
CPU CORE REGISTERS; see Table 3-2 for specifics												
98Ch	—					U	nimplemented				—	-
98Dh	—					U	nimplemented				—	-
98Eh	—					U	nimplemented				—	-
98Fh	CMOUT		_	—	—	—	—	—	MC2OUT	MC1OUT	xx	xx
990h	CM1CON0		ON	OUT	_	POL	—	_	HYS	SYNC	0x-0 -100	0x-0 -100
991h	CM1CON1		_	—	_	_	_	_	INTP	INTN	00	00
992h	CM1NSEL		_	—	_	—	—		NCH<2:0>	•	000	000
993h	CM1PSEL		_	—	_	—	—		PCH<2:0>		000	000
994h	CM2CON0		ON	OUT	_	POL	—	—	HYS	SYNC	0x-0 -100	0x-0 -100
995h	CM2CON1		_	—	_	—	—	—	INTP	INTN	00	00
996h	CM2NSEL		_	—	_	—	—		NCH<2:0>		000	000
997h	CM2PSEL		_	—	_	—	—		PCH<2:0>		000	000
998h	-	—				U	nimplemented				-	-
999h	-	-				U	nimplemented				-	-
99Ah	—	—				U	nimplemented				_	—
99Bh	—	—				U	nimplemented				_	—
99Ch	—	—				U	nimplemented				_	—
99Dh	—	—		Unimplemented — —								
99Eh	—	—				U	nimplemented				_	_
99Fh	—	—				U	nimplemented				—	_

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Register present on PIC16F18855/75 devices only. Unimplemented, read as '1'. Note 1:

2:

4.2 Register Definitions: Configuration Words

REGISTER	4-1: CONF	IG1: CONFIG	URATION	WORD 1: OS	CILLATOR	S			
		R/P-1	U-1	R/P-1	U-1	U-1	R/P-1		
		FCMEN	—	CSWEN	—	—	CLKOUTEN		
		bit 13					bit 8		
U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1		
0-1		RSTOSC<2:0>	F/F-1	0-1	N/F-1	FEXTOSC<2:0			
 bit 7		K3103C<2.02				FEXT030~2.0	bit 0		
							bit o		
Legend:									
R = Readabl	e bit	P = Programm	nable bit	U = Unimpler	mented bit, rea	ad as '1'			
'0' = Bit is cle	eared	'1' = Bit is		n = Value wh	en blank or af	ter Bulk Erase			
		set							
bit 13	ECMEN: Eail	Safe Clock Mo	aitor Enabla	hit					
DIL 15		SCM timer enab		UIL					
	0 = OFF F \$	SCM timer disal	oled						
bit 12	Unimplemen	ted: Read as '1	,						
bit 11		ck Switch Enab							
		riting to NOSC ne NOSC and N			by user soft	ware			
bit 10-9	Unimplemen	 0 = OFF The NOSC and NDIV bits cannot be changed by user software Unimplemented: Read as '1' 							
bit 8	CLKOUTEN:	Clock Out Enal	ole bit						
		EC (high, mid			.				
		LKOUT functior							
	<u>Otherwise</u>		no chabicu,		ppcars at 00	02			
	This bit is igno	ored.							
bit 7	Unimplemen	ted: Read as '1	3						
bit 6-4		>: Power-up D					-		
	This value is t 111 = EXT1			OSC, and sele oer FEXTOSC b		tor first used by	user software		
	110 = HFIN		SC (1 MHz)		0113				
	101 = LFIN	T LFINTO							
	100 = SOSC								
	011 = Rese 010 = EXT4		C with 4x PI I	with EXTOS	Conerating of	er FEXTOSC bit	\$		
							Fosc = 32 MHz)		
	000 = HFIN	T32 HFINTO	SC with OS	CFRQ= 32 MHz	and CDIV =	1:1			
bit 3	Unimplemen	ted: Read as '1	3						
bit 2-0		0>: FEXTOSC		cillator mode Se	election bits				
		EC (External C EC (External C							
		EC (External C							
				ed. RA7 is avai	lable as a ger	neral purpose I/C	D.		
	011 = Reserved								
		HS (Crystal oso XT (Crystal oso							
		LP (Crystal osc							
			,						

5.6 **RESET Instruction**

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.7 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.4.2** "**Overflow/Underflow Reset**" for more information.

5.8 **Programming Mode Exit**

Upon exit of In-Circuit Serial Programming (ICSP) mode, the device will behave as if a POR had just occurred (the device does not reset upon run time self-programming/erase operations).

5.9 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of the Configuration Words.

The Power-up Timer provides a nominal 64 ms time out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in the Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

5.10 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer Configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE			
bit 7	·	÷					bit			
Legend:										
R = Readal	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is s	set	'0' = Bit is cle	ared	HS = Hardwa	re set					
bit 7-6	Unimplomor	nted: Read as '	o,'							
bit 5	-	R6 to PR6 Mat		nable bit						
bit 0		s the Timer6 to								
		s the Timer6 to		•						
bit 4 TMR5IE: Timer5 Overflow Interrupt Enable bit										
		1 = Enables the Timer5 overflow interrupt								
	0 = Disables the Timer5 overflow interrupt									
bit 3		R4 to PR4 Mat								
		nables the Timer4 to PR4 match interrupt isables the Timer4 to PR4 match interrupt								
bit 2		R3 Overflow In		•						
			•							
		 1 = Enables the Timer3 overflow interrupt 0 = Enables the Timer3 overflow interrupt 								
bit 1	TMR2IE: TM	R2 to PR2 Mat	ch Interrupt Er	nable bit						
		s the Timer2 to								
		s the Timer2 to		•						
bit 0		er1 Overflow Ir								
		s the Timer1 ov								
		s the Timer1 ov	eniow interrup	π						
Note:	Bit PEIE of the IN	ITCON register	must be							
	set to enable a									
	controlled by regis	sters PIE1-PIE8								

REGISTER 7-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

18.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- Speed/Power selection
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- Interrupt on positive/negative edge enables
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 13-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.3 COMPARATOR OUTPUT POLARITY

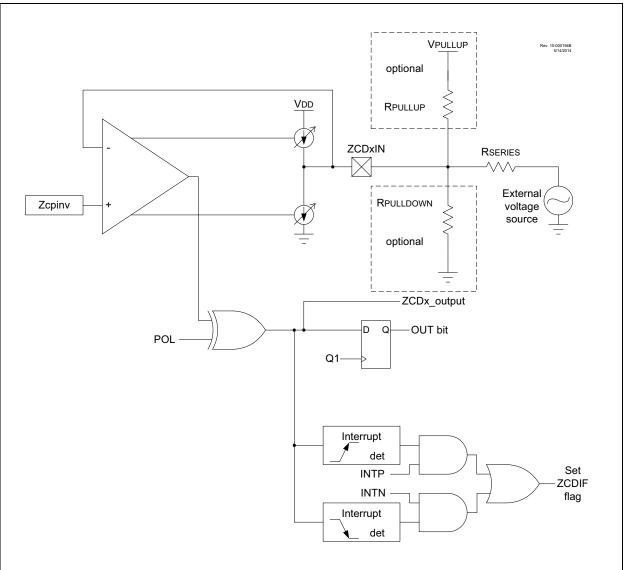
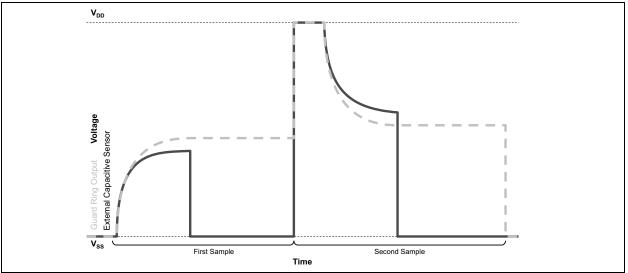

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-2 shows the output state versus input conditions, including polarity control.


TABLE 18-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

23.6 Register Definitions: ADC Control

REGISTER 23-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0	
ADON	ADCONT	—	ADCS		ADFRM0		ADGO	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BOF	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is c	leared by hardwa	are		
bit 7	ADON: ADC							
	1 = ADC is enabled 0 = ADC is disabled							
bit 6	ADCONT: AD	C Continuous	Operation Ena	able bit				
					ersion trigger un		set (if ADSOI is	
	,	or until ADGO cleared upon c			value of ADSOI)			
bit 5		ted: Read as '			n uggei			
bit 4	•	Clock Selection						
		plied from FR		cillator				
		plied by Fosc,			< register			
bit 3	Unimplemen	ted: Read as '	0'					
bit 2	ADFRM0: AD	C results Form	nat/alignment s	Selection				
		nd ADPREV d						
		nd ADPREV d	-	tified, zero-fille	ed			
bit 1	Unimplemen	ted: Read as '	0'					
bit 0	 1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. The cleared by hardware as determined by the ADCONT bit 						ycle. The bit is	
	0 = ADC conv	version comple	ted/not in prog	Iress				

REGISTER 24-3: NCO1ACCL: NCO1 ACCUMULATOR REGISTER – LOW BYTE

المعممط							
bit 7							bit 0
			NCO1A	CC<7:0>			
R/W-0/0							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1ACC<7:0>: NCO1 Accumulator, Low Byte

REGISTER 24-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1ACC<15:8>							
bit 7							bit 0
Legend:							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NOC1ACC<15:8>: NCO1 Accumulator, High Byte

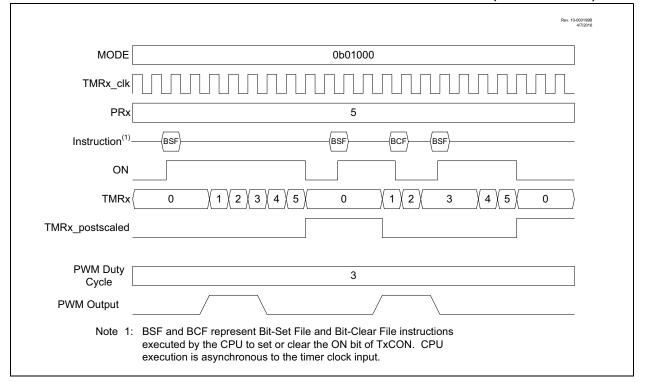
REGISTER 24-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	_		NCO1AC	C<19:16>	
bit 7						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1ACC<19:16>: NCO1 Accumulator, Upper Byte


Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real-time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

29.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 29-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 29-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
0N ⁽¹⁾		CKPS<2:0>			OUTP	S<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unchanged $x = Bit is unknown$ $-n/n = Value at POR and BOR/Value$					other Resets			
'1' = Bit is set	J	'0' = Bit is clea	ared		eared by hardw			
bit 7	ON: Timerx	On hit						
	1 = Timerx							
		is off: all counte	rs and state m	achines are res	set			
bit 6-4	CKPS<2:0>	: Timer2-type Cl	ock Prescale	Select bits				
	111 = 1:128							
	111 = 1.64 Prescaler							
	101 = 1:32 Prescaler							
	100 = 1:16 Prescaler							
	011 = 1:8 Prescaler							
		= 1:4 Prescaler						
	001 = 1:2 P							
	000 = 1:1 P	rescaler						
bit 3-0	OUTPS<3:0>: Timerx Output Postscaler Select bits							
	1111 = 1:16							
	1110 = 1:15 Postscaler							
	1101 = 1:14 Postscaler							
	1100 = 1:13							
	1011 = 1:12							
	1010 = 1:11 Postscaler 1001 = 1:10 Postscaler							
	1000 = 1:9 Postscaler 0111 = 1:8 Postscaler							
	0111 = 1.0 Postscaler $0110 = 1.7 Postscaler$							
	0101 = 1:6 F							
	0100 = 1:5 F							
	0011 = 1:4 F							
	0010 = 1:3 F							
	0001 = 1:2 F	Postscaler						
	0000 = 1:1 F	Postscaler						

REGISTER 29-2: TxCON: TIMER2/4/6 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 29.5 "Operation Examples".

30.2.1 CCPX PIN CONFIGURATION

The software must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See **Section 13.0 "Peripheral Pin Select (PPS) Module"** for more details.

The CCP output can also be used as an input for other peripherals.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

30.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 28.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

30.2.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set and a match occurs, an Auto-conversion Trigger can take place if the CCP module is selected as the conversion trigger source.

Refer to **Section 23.2.6 "Auto-Conversion Trigger"** for more information.

Note:	Removing the match condition by
	changing the contents of the CCPRxH
	and CCPRxL register pair, between the
	clock edge that generates the
	Auto-conversion Trigger and the clock
	edge that generates the Timer1 Reset, will
	preclude the Reset from occurring

30.2.4 COMPARE DURING SLEEP

Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

30.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

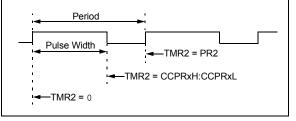
PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 30-3 shows a typical waveform of the PWM signal.

30.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for all CCP modules.


The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers

Figure 30-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

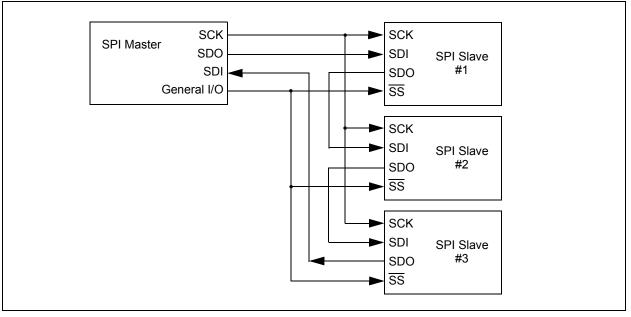
FIGURE 30-3: CCP PWM OUTPUT SIGNAL

REGISTER 30-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

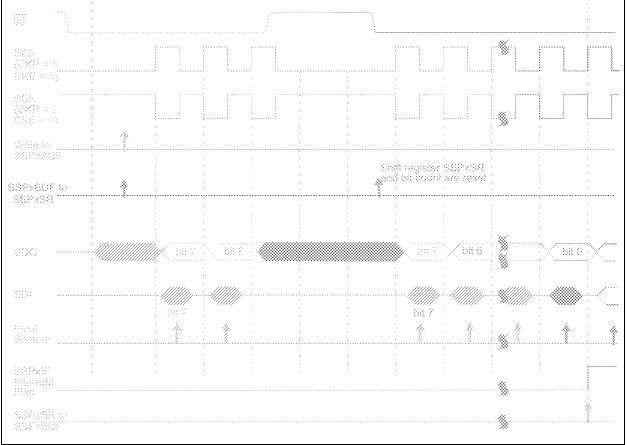
R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
CCPRx<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0
CCPxMODE = Capture mode
CCPRxH<7:0>: Captured value of TMR1H
CCPxMODE = Compare mode
CCPRxH<7:0>: MS Byte compared to TMR1H
CCPxMODE = PWM modes when CCPxFMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<1:0>: Pulse-width Most Significant two bits
CCPxMODE = PWM modes when CCPxFMT = 1:
CCPRxH<7:0>: Pulse-width Most Significant eight bits


REGISTER 30-5: CCPTMRS0: CCP TIMERS CONTROL 0 REGISTER

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
C4TSEL<1:0> C3TSEL<1:03		L<1:0>	C2TSE	EL<1:0>	C1TSEL<1:0>		
bit 7						bit 0	


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	C4TSEL<1:0>: CCP4 Timer Selection 11 = CCP4 based on TMR5 (Capture/Compare) or TMR6 (PWM) 10 = CCP4 based on TMR3 (Capture/Compare) or TMR4 (PWM) 01 = CCP4 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved
bit 5-4	C3TSEL<1:0>: CCP4 Timer Selection 11 = CCP3 based on TMR5 (Capture/Compare) or TMR6 (PWM) 10 = CCP3 based on TMR3 (Capture/Compare) or TMR4 (PWM) 01 = CCP3 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved
bit 3-2	C2TSEL<1:0>: CCP4 Timer Selection 11 = CCP2 based on TMR5 (Capture/Compare) or TMR6 (PWM) 10 = CCP2 based on TMR3 (Capture/Compare) or TMR4 (PWM) 01 = CCP2 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved
bit 1-0	C1TSEL<1:0>: CCP4 Timer Selection 11 = CCP1 based on TMR5 (Capture/Compare) or TMR6 (PWM) 10 = CCP1 based on TMR3 (Capture/Compare) or TMR4 (PWM) 01 = CCP1 based on TMR1 (Capture/Compare) or TMR2 (PWM) 00 = Reserved

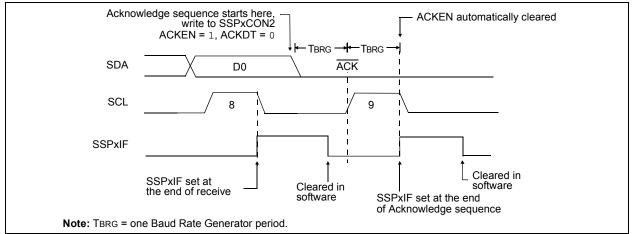
FIGURE 31-7: SPI DAISY-CHAIN CONNECTION

31.6.8 ACKNOWLEDGE SEQUENCE TIMING

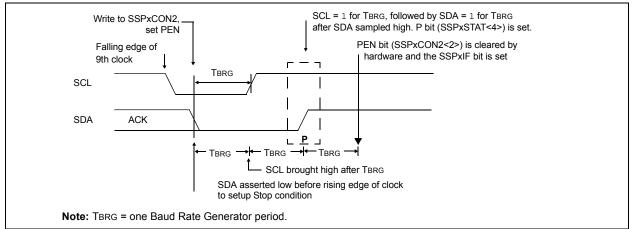
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into IDLE mode (Figure 31-30).

31.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).


31.6.9 STOP CONDITION TIMING

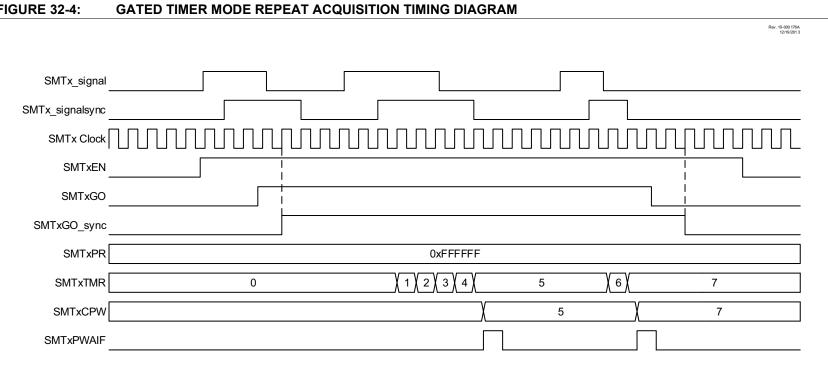
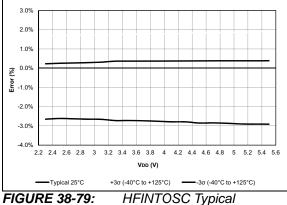
A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 31-31).

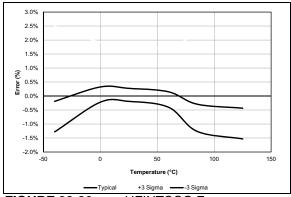

31.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 31-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 31-31: STOP CONDITION RECEIVE OR TRANSMIT MODE


FIGURE 32-4:

PIC16(L)F18856/76

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

Frequency Error, PIC16F18856/76 Only.

FIGURE 38-80: HFINTOSC Frequency Error, VDD = 3.0V.

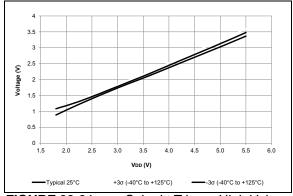


FIGURE 38-81:

Schmitt Trigger High Values.

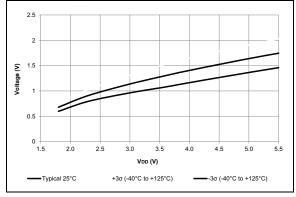
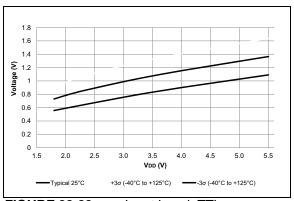
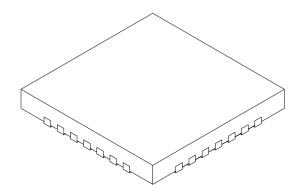


FIGURE 38-82: Schmitt Trig

Schmitt Trigger Low Values.




FIGURE 38-83: Input Level, TTL.

Control Enabled.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS			
Dimensi	MIN	NOM	MAX		
Number of Pins	N		28		
Pitch	e		0.40 BSC		
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E 4.00 BSC				
Exposed Pad Width	E2	2.55	2.65	2.75	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2