

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18876-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB2/ANB2/SDA2 ^(3,4) /SDI2 ⁽¹⁾ / CWG3IN ⁽¹⁾ /IOCB2	RB2	TTL/ST	CMOS/OD	General purpose I/O.
WG3IN ^(*) /IOCB2	ANB2	AN	_	ADC Channel B2 input.
	SDA2 ^(3,4)	l ² C/ SMBus	OD	MSSP2 I ² C serial data input/output.
	SDI2 ⁽¹⁾	TTL/ST	-	MSSP2 SPI serial data input.
	CWG3IN ⁽¹⁾	TTL/ST	—	Complementary Waveform Generator 3 input.
	IOCB2	TTL/ST	—	Interrupt-on-change input.
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	—	ADC Channel B3 input.
	C1IN2-	AN	—	Comparator negative input.
	C2IN2-	AN	—	Comparator negative input.
	IOCB3	TTL/ST	—	Interrupt-on-change input.
RB4/ANB4/ADCACT ⁽¹⁾ /T5G ⁽¹⁾ / SMTWIN2 ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.
5MTWINZ ^V 7/IOCB4	ANB4	AN	—	ADC Channel B4 input.
	ADCACT ⁽¹⁾	TTL/ST	—	ADC Auto-Conversion Trigger input.
	T5G ⁽¹⁾	TTL/ST	_	Timer5 gate input.
	SMTWIN2 ⁽¹⁾	TTL/ST	_	Signal Measurement Timer 2 (SMT2) window input.
	IOCB4	TTL/ST	_	Interrupt-on-change input.
RB5/ANB5/T1G ⁽¹⁾ /SMTSIG2 ⁽¹⁾ / CCP3 ⁽¹⁾ /IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.
JCP3(*//IOCB5	ANB5	AN	_	ADC Channel B5 input.
	T1G ⁽¹⁾	TTL/ST	_	Timer1 gate input.
	SMTSIG2(1)	TTL/ST	_	Signal Measurement Timer 2 (SMT2) signal input.
	CCP3 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM3 (default input location for capture function).
	IOCB5	TTL/ST	_	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/ICSPCLK	RB6	TTL/ST	CMOS/OD	General purpose I/O.
	ANB6	AN	-	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.
	IOCB6	TTL/ST	-	Interrupt-on-change input.
	ICSPCLK	ST	_	In-Circuit Serial Programming™ and debugging clock input

TABLE 1-2: PIC16F18856 PINOUT DESCRIPTION (CONTINUED)

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

 Note
 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx

pins. Refer to Table 13-1 for details on which PORT pins may be used for this signal.
All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

5.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	х	1	1	Power-on Reset
0	0	1	1	1	0	х	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
WDT Window Violation	0000h	0 uuuu	uu00 uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx registers)

The PIR1, PIR2, PIR3 and PIR4 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	e set,
	regardless	of	the	state	of	any	other
	enable bits	-					

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

8.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-On-Interrupt bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 8-1, the interrupt occurs during the 2nd instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-On-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

8.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the IDLE mode (Section 8.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The PD bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. The CPU clock is disabled
- 5. 31 kHz LFINTOSC, HFINTOSC and SOSC are unaffected and peripherals using them may continue operation in Sleep.
- Timer1 and peripherals that use it continue to operate in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Secondary Oscillator
- 7. ADC is unaffected if the dedicated FRC oscillator is selected
- 8. I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance)
- 9. Resets other than WDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 25.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" and 16.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

8.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 5.11 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	134
PIE0		_	TMR0IE	IOCIE	—		—	INTE	135
PIE1	OSFIE	CSWIE					ADTIE	ADIE	136
PIE2		ZCDIE	_			_	C2IE	C1IE	137
PIE3	_	_	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139
PIR0		_	TMR0IF	IOCIF		_		INTF	144
PIR1	OSFIF	CSWIF	_			_	ADTIF	ADIF	145
PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	146
PIR3	_	_	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147
PIR4		_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	262
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	262
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	262
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	264
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	263
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	263
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	263
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	264
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	264
IOCEP		_			IOCEP3			_	265
IOCEN		_			IOCEN3			_	265
IOCEF		_	_		IOCEF3	_		_	266
STATUS		_		TO	PD	Z	DC	С	38
VREGCON		_					VREGPM	Reserved	159
CPUDOZE	IDLEN	DOZEN	ROI	DOE			DOZE<2:0>		160
WDTCON0		—		V	VDTPS<4:0	>		SWDTEN	166
IOCEP	—	—	—	—	IOCEP3	—	—	—	265
IOCEN	—	—	—	—	IOCEN3	—	—	—	265
IOCEF	—	—	—	—	IOCEF3	—	—	—	266

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

EXAMPLE 10-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

-	e row erase routine as	-					
; 1.A valid address within the erase row is loaded in variables ADDRH:ADDRL							
; 2.ADDRH and	d ADDRL are located in	common RAM (locations $0x70 - 0x7F$)					
BANKSEL	NVMADRL						
MOVF	ADDRL,W						
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary					
MOVF	ADDRH,W						
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary					
BCF	NVMCON1,NVMREGS	; Choose PFM memory area					
BSF	NVMCON1, FREE	; Specify an erase operation					
BSF	NVMCON1,WREN	; Enable writes					
BCF	INTCON,GIE	; Disable interrupts during unlock sequence					
;	R	EQUIRED UNLOCK SEQUENCE:					
MOVLW	55h	; Load 55h to get ready for unlock sequence					
MOVWF	NVMCON2	; First step is to load 55h into NVMCON2					
MOVLW	AAh	; Second step is to load AAh into W					
MOVWF	NVMCON2	; Third step is to load AAh into NVMCON2					
BSF	NVMCON1,WR	; Final step is to set WR bit					
;							
BSF	INTCON,GIE	; Re-enable interrupts, erase is complete					
BCF	NVMCON1,WREN	; Disable writes					

TABLE 10-2: NVM ORGANIZATION AND ACCESS INFORMATION

M	laster Values		N	VMREG Acc	ess	FSR Access		
Memory Function	ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR <15:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	8000h		8000h		
User Memory	0001h		0	8001h		8001h		
-	0003h	PFM		8003h	Read	8003h	Read-Only	
INT Vector	0004h		0	8004h	Write	8004h	rioud only	
User Memory	0005h		0	8005h		8005h		
-	07FFh			87FFh		87FFh		
User ID	8000h	PFM	1	8000h	Read			
	8003h			8003h	Write			
Reserved	8004h	—	_	8004h	—			
Rev ID	8005h		1	8005h	Read			
Device ID	8006h		1	8006h	Write			
CONFIG1	8007h	PFM	1	8007h		No	Access	
CONFIG2	8008h		1	8008h				
CONFIG3	8009h		1	8009h	Read-Only	/		
CONFIG4	800Ah	1	1	800Ah				
CONFIG5	800Bh	1	1	800Bh				
User Memory	F000h	EEPROM	1	F000h	Read	7000h	Read-Only	
	F0FFh	1		F0FFh	Write	70FFh		

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSA7 | ANSA6 | ANSA5 | ANSA4 | ANSA3 | ANSA2 | ANSA1 | ANSA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSA<7:0>: Analog Select between Analog or Digital Function on pins RA<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-20: CCDPB: CURRENT CONTROLLED DRIVE POSITIVE PORTB REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDPB7 | CCDPB6 | CCDPB5 | CCDPB4 | CCDPB3 | CCDPB2 | CCDPB1 | CCDPB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDPB<7:0>: RB<7:0> Current Controlled Drive Positive Control bits

1 = Current-controlled source enabled⁽¹⁾

0 = Current-controlled source disabled

Note 1: If CCDPBy is set, when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-21: CCDNB: CURRENT CONTROLLED DRIVE NEGATIVE PORTB REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCDNB7 | CCDNB6 | CCDNB5 | CCDNB4 | CCDNB3 | CCDNB2 | CCDNB1 | CCDNB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

CCDNB<7:0>: RB<7:0> Current Controlled Drive Negative Control bits

1 = Current-controlled source enabled⁽¹⁾

0 = Current-controlled source disabled

Note 1: If CCDNBy is set when CCDEN = 0 (Register 12-1), operation of the pin is undefined.

REGISTER 12-25: ANSELC: PORTC ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSC7 | ANSC6 | ANSC5 | ANSC4 | ANSC3 | ANSC2 | ANSC1 | ANSC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ANSC<7:0>: Analog Select between Analog or Digital Function on Pins RC<7:0>, respectively ⁽¹⁾
	0 = Digital I/O. Pin is assigned to port or digital special function.
	1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-26: WPUC: WEAK PULL-UP PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUC7 | WPUC6 | WPUC5 | WPUC4 | WPUC3 | WPUC2 | WPUC1 | WPUC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

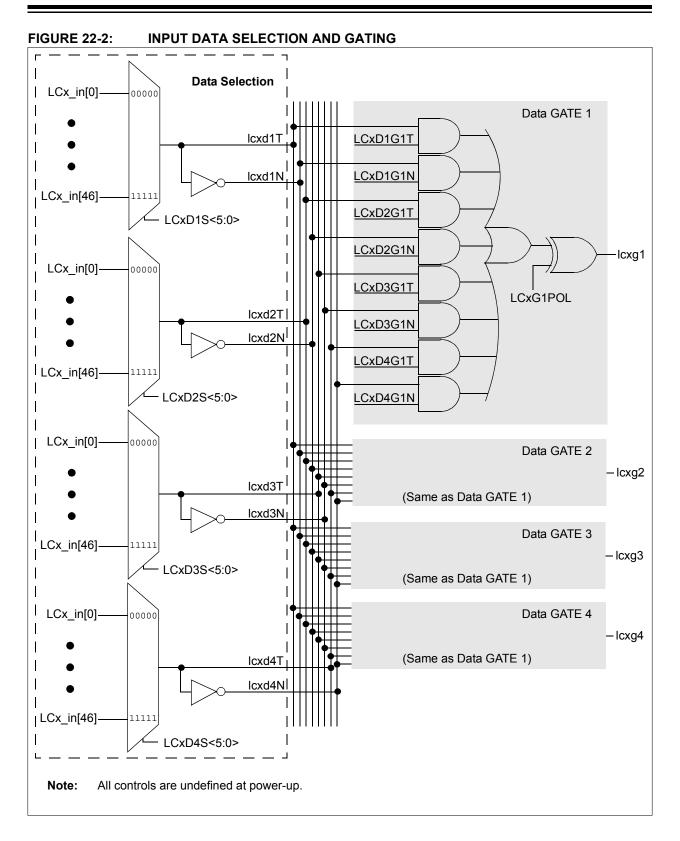
Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

12.10.8 CURRENT-CONTROLLED DRIVE MODE CONTROL

The CCDPD and CCDND registers (Register 12-40 and Register 12-41) control the Current-Controlled Drive mode for both the positive-going and negative-going drivers. When a CCDPD[y] or CCDND[y] bit is set and the CCDEN bit of the CCDCON register is set, the Current-Controlled mode is enabled for the corresponding port pin. When the CCDPD[y] or CCDND[y] bit is clear, the Current-Controlled mode for the corresponding port pin is disabled. If the CCDPD[y] or CCDND[y] bit is set and the CCDEN bit is clear, operation of the port pin is undefined (see **Section 12.1.1** "**Current-Controlled Drive**" for current-controlled use precautions).

12.10.9 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0** "**Peripheral Pin Select (PPS) Module**" for more information.


Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

19.2 Register Definitions: PWM Control

REGISTER 19-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	U-0	R-0	R/W-0/0	U-0	U-0	U-0	U-0		
PWMxEN	—	PWMxOUT	PWMxPOL	—	_	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	PWMxEN: PV	VM Module En	able bit						
	1 = PWM mo	dule is enable	b						
	0 = PWM mo	dule is disable	d						
bit 6	Unimplemen	ted: Read as '	0'						
bit 5	PWMxOUT: F	PWM Module C	output Level wh	nen Bit is Read					
bit 4	PWMxPOL: F	PWMx Output F	Polarity Select	bit					
	1 = PWM out	tput is active-lo	w						
	0 = PWM out	tput is active-hi	gh						
bit 3-0	Unimplemen	ted: Read as '	0'						

© 2016-2017 Microchip Technology Inc.

REGISTER 22-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	= Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-4	Unimplemen	ted: Read as '	0'					
bit 3	MLC4OUT: N	lirror copy of LO	C4OUT bit					
bit 2	MLC3OUT: N	lirror copy of L0	C3OUT bit					
bit 1	MLC2OUT: N	lirror copy of L(C2OUT bit					

bit 0 MLC10UT: Mirror copy of LC10UT bit

24.2 FIXED DUTY CYCLE MODE

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 24-2.

The FDC mode is selected by clearing the N1PFM bit in the NCO1CON register.

24.3 PULSE FREQUENCY MODE

In Pulse Frequency (PF) mode, every time the Accumulator overflows, the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output. The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 24-2.

The value of the active and inactive states depends on the polarity bit, N1POL in the NCO1CON register.

The PF mode is selected by setting the N1PFM bit in the NCO1CON register.

24.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the N1PWS<2:0> bits in the NCO1CLK register.

When the selected pulse width is greater than the Accumulator overflow time frame, then DDS operation is undefined.

24.4 OUTPUT POLARITY CONTROL

The last stage in the NCO module is the output polarity. The N1POL bit in the NCO1CON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCO output signal is available to the following peripherals:

- CLC
- CWG
- Timer1/3/5
- Timer2/4/6
- SMT
- DSM
- Reference Clock Output

24.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCO Interrupt Flag bit, NCO1IF, of the PIR7 register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- N1EN bit of the NCO1CON register
- · NCO1IE bit of the PIE7 register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCO1IF bit in the Interrupt Service Routine.

24.6 Effects of a Reset

All of the NCO registers are cleared to zero as the result of a Reset.

24.7 Operation in Sleep

The NCO module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO clock source, when the NCO is enabled, the CPU will go idle during Sleep, but the NCO will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

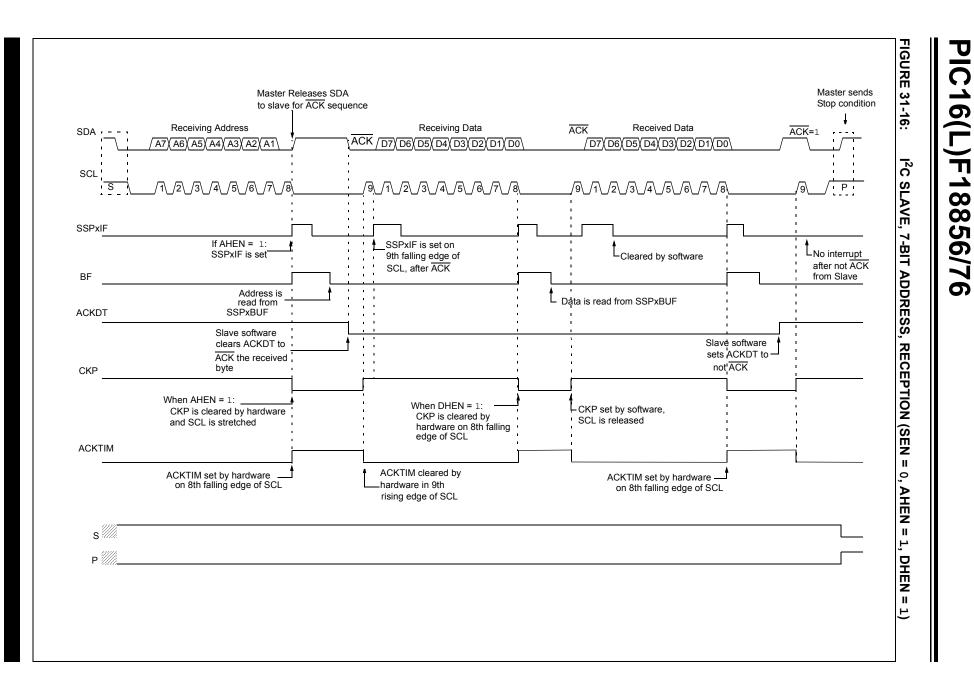
29.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in **Section 30.0 "Capture/Compare/PWM Modules"**. The signals are not a part of the Timer2 module.

29.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 29-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.



Instruction ⁽¹⁾ BSF BCF BSF ON	
ON	
$PRx \begin{bmatrix} 5 \\ TMRx & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 3 & 4 & 5 & 0 & 1 & 1 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$	
$TMRx 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled	5 0 1
PWM Duty]
Cycle S PWM Output	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page				
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	134				
PIR4	—	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	148				
PIE4	—	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	139				
CCP1CON	EN	—	OUT	FMT		MODE	=<3:0>		452				
CCP1CAP	—	—	—	— — — CTS<2:0>									
CCPR1L	Capture/Con	Capture/Compare/PWM Register 1 (LSB)											
CCPR1H	Capture/Con	Capture/Compare/PWM Register 1 (MSB)											
CCP2CON	EN	—	OUT	FMT MODE<3:0>									
CCP2CAP	—		—	— — — CTS<2:0>									
CCPR2L	Capture/Compare/PWM Register 1 (LSB)												
CCPR2H	Capture/Con	npare/PWM F	Register 1 (MS	SB)					454				
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	455				
CCPTMRS1	_	_	P7TSE	L<1:0>	P6TSE	:L<1:0>	C5TSE	456					
CCP1PPS	_	_	_		C	249							
CCP2PPS	—	_	_		C	CP2PPS<4:0)>		249				
RxyPPS	—	—	_			RxyPPS<4:0>	>		250				
ADACT	—	—	_			ADACT<4:0>	•		359				
CLCxSELy	_	_	—			LCxDyS<4:0>	>		329				
CWG1ISM	_	—	—	—	— IS<3:0>				312				
MDSRC	_	—	—			399							
MDCARH	_	—	—	—		MDCH	S<3:0>		400				
MDCARL	_	_	_	_		MDCL	S<3:0>		401				

TABLE 30-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

33.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUD1CON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 33-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 33-1. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 33.3.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 33-1: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 33-6: AUTOMATIC BAUD RATE CALIBRATION 0000h XXXXh 001Ch **BRG** Value Edge #5 Edge #1 Edge #2 Edge #3 Edge #4 bit 0 bit 1 bit 2 bit 3 bit 5 bit 6 bit 7 RX pin Start bit 4 Stop bit Auto Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG SPBRGL XXh 1Ch XXh 00h SPBRGH Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.

BAUD RATE	SYNC = 0, BRGH = 0, BRG16 = 1													
	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207		
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51		
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25		
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5		
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_		
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_		
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	_	—		

TABLE 33-4:	BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)
-------------	--

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD RATE	Fosc = 32.000 MHz			Foso	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287	
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264	
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	

BAUD RATE	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
	Fosc = 8.000 MHz			Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_	

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Nataa
		Description	Cycles	MSb		LSb		Affected	Notes
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
	f, d	Increment f	1	00	1010		ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE R	EGISTER OPER	RATION	NS			•	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED S	KIP OPERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL O				r					1
	k	Add literal and W	1	11	1110	kkkk		C, DC, Z	
	k	AND literal with W	1	11		kkkk		Z	
	k	Inclusive OR literal with W	1	11		kkkk		Z	
	k	Move literal to BSR	1	00	0000	001k			
	k	Move literal to PCLATH	1	11	0001	1kkk			
	k	Move literal to W	1	11	0000	kkkk			
	k	Subtract W from literal	1	11	1100		kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 36-4: INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.