

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18876-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: 40/44-PIN ALLOCATION TABLE (PIC16(L)F18876) (CONTINUED)

O/i	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Voltage Reference	DAC	Comparators	Zero-Cross Detect	MSSP (SPI/I ² C)	EUSART	WSQ	Timers/SMT	CCP and PWM	CWG	CLC	NCO	Clock Reference (CLKR)	Interrupt-on-Change	Basic
RE3	1	16	18	18	—	_	_	—	_	_	-	_	—	-	_	—	—	—	IOCE3	MCLR VPP
Vdd	11, 32	7, 26	8, 28	7, 28	-	-	_	_	-	—	-	-	_	-	_	-	_	-	-	—
Vss	12, 31	6, 27	6, 31, 30	6, 29	_	-	_	_		_	-	_	—	_	_	—	—	-	_	—
OUT ⁽²⁾	_				ADGRDA ADGRDB		-	C1OUT C2OUT		SDO1 SCK1 SDO2 SCK2	TX/ CK ⁽³⁾ DT ⁽³⁾	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 CCP5 PWM60UT PWM70UT	CWG1A CWG1B CWG1C CWG1D CWG2A CWG2B CWG2C CWG2D CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC20UT CLC30UT CLC40UT	NCO	CLKR		_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 13-1 for details on which port pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 13-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels.; The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMbus input buffer thresholds.

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2: SUPERVISORS

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1			
		DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	_			
		bit 13					bit 8			
R/P-1	R/P-1	R/P-1	U-1	U-1	U-1	R/P-1	R/P-1			
BORE	N<1:0>	LPBOREN	_	_	_	PWRTE	MCLRE			
bit 7							bit 0			
Legend:										
R = Readable bit		P = Programmable	e bit	U = Unimplement	ed bit, read as '1'					
'0' = Bit is cleared	l	'1' = Bit is set		n = Value when bl	ank or after Bulk E	rase				
bit 13	DEBUG: Debug 1 = OFF 1 0 = ON 1	gger Enable bit ⁽²⁾ Background debugger Background debugger	r disabled; ICSPCL r enabled; ICSPCL	.K and ICSPDAT ar K and ICSPDAT ar	re general purpose e dedicated to the o	I/O pins debugger				
bit 12	STVREN: Stack 1 = ON 5 0 = OFF 5	STVREN: Stack Overflow/Underflow Reset Enable bit 1 = ON Stack Overflow or Underflow will cause a Reset 0 = OFF Stack Overflow or Underflow will not cause a Reset								
bit 11	PPS1WAY: PPS 1 = ON 0 = OFF	PPS1WAY: PPSLOCKED One-Way Set Enable bit 1 = ON The PPSLOCKED bit can be cleared and set only once; PPS registers remain locked after one clear/set cycle 0 = OFF The PPSLOCKED bit can be set and cleared repeatedly (subject to the unlock sequence)								
bit 10	ZCDDIS: Zero- 1 = ON 0 = OFF	Cross Detect Disable ZCD disabled. ZCD c ZCD always enabled	bit an be enabled by s (EN bit is ignored)	setting the EN bit of	f the ZCDxCON reg	ister				
bit 9	BORV: Brown-o 1 = LOW 0 = HIGH The higher volta	out Reset Voltage Sel Brown-out Reset volta Brown-out Reset volta age setting is recomm	ection bit ⁽¹⁾ age (VBOR) set to k age (VBOR) set to h ended for operatio	ower trip point level ligher trip point leve n at or above 16 M	el Hz.					
bit 8	Unimplemente	d: Read as '1'								
bit 7-6	BOREN<1:0>: When enabled, 11 = ON 10 = SLEEP 01 = SBOREN 00 = OFF	Brown-out Reset Ena Brown-out Reset Volt Brown-out Reset is e Brown-out Reset is e Brown-out Reset is e Brown-out Reset is c	ble bits age (VBOR) is set l mabled; SBOREN mabled while runni mabled according t lisabled	by the BORV bit bit is ignored ing, disabled in Slee to SBOREN	ep; SBOREN bit is	ignored				
bit 5	LPBOREN: Lov 1 = 0 =	w-power BOR enable LPBOR disabled LPBOR enabled	bit							
bit 4-2	Unimplemente	d: Read as '1'								
bit 1	PWRTE: Power 1 = OFF 1 0 = ON 1	r-up Timer Enable bit PWRT is disabled PWRT is enabled								
bit 0	MCLRE: Master If LVP = 1: RA3 pin function If LVP = 0: 1 = ON 0 = OFF	r Clear (MCLR) Enab n is MCLR. MCLR pin is MCLR. MCLR pin function is p	le bit port-defined functio	on.						
NOLE 1. SEE	v bor paramete	i ioi specine trip politit	vollayes.							

 The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER
------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON1	—	I	NOSC<2:0>	IOSC<2:0> NDIV<3:0>						
OSCCON2	—	(COSC<2:0>	OSC<2:0> CDIV<3:0>						
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	123	
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	109	
STATUS	—	_	_	TO	PD	Z	DC	С	38	
WDTCON0	—	—			WDTPS<4:0)>		SEN	166	
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0>	•	166	
WDTPSL				PSCN	T<7:0>				166	
WDTPSH			PSCNT<15:8>							
WDTTMR			WDTTM	R<4:0>		STATE	PSCNT	<17:16>	166	

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	-	FCMEN		CSWEN	—		CLKOUTEN	00
CONFIGT	7:0	_	F	RSTOSC<2:0	>	_	F	FEXTOSC<2:0>		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

10.4.3 NVMREG WRITE TO EEPROM

Writing to the EEPROM is accomplished by the following steps:

- 1. Set the NVMREGS and WREN bits of the NVMCON1 register.
- Write the desired address (address + F000h) into the NVMADRH:NVMADRL register pair (Table 10-2).
- 3. Perform the unlock sequence as described in Section 10.4.2 "NVM Unlock Sequence".

A single EEPROM word is written with NVMDATA. The operation includes an implicit erase cycle for that word (it is not necessary to set the FREE bit), and requires many instruction cycles to finish. CPU execution continues in parallel and, when complete, WR is cleared by hardware, NVMIF is set, and an interrupt will occur if NVMIE is also set. Software must poll the WR bit to determine when writing is complete, or wait for the interrupt to occur. WREN will remain unchanged.

Once the EEPROM write operation begins, clearing the WR bit will have no effect; the operation will continue to run to completion.

10.4.4 NVMREG ERASE OF PFM

Before writing to PFM, the word(s) to be written must be erased or previously unwritten. PFM can only be erased one row at a time. No automatic erase occurs upon the initiation of the write to PFM.

To erase a PFM row:

- 1. Clear the NVMREGS bit of the NVMCON1 register to erase PFM locations, or set the NMVREGS bit to erase User ID locations.
- Write the desired address into the NVMADRH:NVMADRL register pair (Table 10-2).
- 3. Set the FREE and WREN bits of the NVMCON1 register.
- 4. Perform the unlock sequence as described in Section 10.4.2 "NVM Unlock Sequence".

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place.

While erasing PFM, CPU operation is suspended, and resumes when the operation is complete. Upon completion, the NVMIF is set, and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations, and WREN will remain unchanged.

FIGURE 10-3: NVM ERASE

FLOWCHART

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
PPSLOCK	—	—	—	_	_	— — PPSLOCKED		250		
INTPPS	_	—	—	_	— INTPPS<3:0>					
TOCKIPPS	_	—	—	_		TOCH	(IPPS<3:0>		249	
T1CKIPPS	_	—	—			T1CKIPPS<	4:0>		249	
T1GPPS	—	—	_			T1GPPS<4	:0>		249	
T3CKIPPS	_	_	—			T3CKIPPS<	4:0>		249	
T3GPPS	—	—	_			T3GPPS<4	:0>		249	
T5CKIPPS	_	_	—			T5CKIPPS<	4:0>		249	
T5GPPS	_	—	—			T5GPPS<4	:0>		249	
T5GPPS	_	—	—			T5GPPS<4	:0>		249	
T2AINPPS						T2AINPPS<	4:0>		249	
T4AINPPS						T5AINPPS<	4:0>		249	
T6AINPPS						T6AINPPS<	4:0>		249	
CCP1PPS	—	—	—			CCP1PPS<	4:0>		249	
CCP2PPS	_	—	—			CCP2PPS<	4:0>		249	
CCP3PPS	—	—	—			CCP3PPS<	4:0>		249	
CCP4PPS	—	—	—			CCP4PPS<	4:0>		249	
CCP5PPS	—	—	—			CCP5PPS<	4:0>		249	
CWG1PPS	—	—	—		CWG1PPS<4:0>					
CWG2PPS	-	-	—		CWG2PPS<4:0>					
CWG3PPS	—	—	_		249					
MDCARLPPS	—	—	_		249					
MDCARHPPS	—	—	—			MDCARHPPS	S<4:0>		249	
MDSRCPPS	—	—	—			MDSRCPPS	<4:0>		249	
SSP1CLKPPS	—	—	_			SSP1CLKPPS	S<4:0>		249	
SSP1DATPPS	—	—	—			SSP1DATPPS	S<4:0>		249	
SSP1SSPPS	—	—	_			SSP1SSPPS	<4:0>		249	
SSP2CLKPPS	—	—	—			SSP2CLKPPS	8<4:0>		249	
SSP2DATPPS	—	—	—			SSP2DATPPS	S<4:0>		249	
SSP2SSPPS	—	_	_			SSP2SSPPS	<4:0>		249	
RXPPS	_	—	—			RXPPS<4	:0>		250	
TXPPS	—	—	—			TXPPS<4	:0>		249	
CLCIN0PPS	—	—	—			CLCIN0PPS	<4:0>		249	
CLCIN1PPS	—	—	—			CLCIN1PPS	<4:0>		249	
CLCIN2PPS	—	—	—			CLCIN2PPS	<4:0>		249	
CLCIN3PPS	—	_	_	CLCIN3PPS<4:0>					249	
SMT1WINPPS	—	—	—	SMT1WINPPS<4:0>						
SMT1SIGPPS	—	—	—	SMT1SIGPPS<4:0>					249	
SMT2WINPPS	—	—	—	SMT2WINPPS<4:0>					249	
SMT2SIGPPS	—	—	—	SMT2SIGPPS<4:0>					249	
ADCACTPPS	—	—	—	ADCACTPPS<4:0>						
RA0PPS	—	—		RA0PPS<5:0>						
RA1PPS	—	—		RA1PPS<5:0>						
RA2PPS	—	—			RA2	2PPS<5:0>			250	
RA3PPS	—	_			RAS	3PPS<5:0>			250	

TABLE 13-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module. Note 1: PIC16F18875 only.

REGISTER 22-3: CLCxSEL0: GENERIC CLCx DATA 0 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			LCxD	1S<5:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD1S<5:0>: CLCx Data1 Input Selection bits See Table 22-2.

REGISTER 22-4: CLCxSEL1: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			LCxD2	2S<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 LCxD2S<5:0>: CLCx Data 2 Input Selection bits See Table 22-2.

REGISTER 22-5: CLCxSEL2: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			LCxD	3S<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

```
bit 7-6 Unimplemented: Read as '0'
```

bit 5-0 LCxD3S<5:0>: CLCx Data 3 Input Selection bits

See Table 22-2. REGISTER 22-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			LCxD	4S<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ed bit, read as '0'		
u = Bit is unchanged	ł	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				

bit 7-6 Unimplemented: Read as '0'

'1' = Bit is set

bit 5-0 LCxD4S<5:0>: CLCx Data 4 Input Selection bits See Table 22-2.

FIGURE 26-2: ON OFF KEYING (OOK) SYNCHRONIZATION

FIGURE 26-3: NO SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 26-4: CARRIER HIGH SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 0)

Carrier High (CARH)		
Carrier Low (CARL)		
Modulator (MOD)		
MDCHSYNC = 1 MDCLSYNC = 0		
Active Carrier State	CARH	/both CARL / CARH / both CARL

29.0 TIMER2/4/6 MODULE

The Timer2/4/6 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- · 8-bit period register
- · Selectable external hardware timer Resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- · Selectable synchronous/asynchronous operation
- Alternate clock sources
- Interrupt-on-period

- Three modes of operation:
 - Free Running Period
 - One-shot
 - Monostable

See Figure 29-1 for a block diagram of Timer2. See Figure 29-2 for the clock source block diagram.

Note: Three identical Timer2 modules are implemented on this device. The timers are named Timer2, Timer4, and Timer6. All references to Timer2 apply as well to Timer4 and Timer6. All references to T2PR apply as well to T4PR and T6PR.

FIGURE 29-1: TIMER2 BLOCK DIAGRAM

REGISTER 29-4: TxRS	T: TIMER2/4/6 EXTERNAL	RESET SIGNAL	SELECTION REGISTER
---------------------	------------------------	--------------	--------------------

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_			RSEL<4:0>		
bit 7	·						bit 0
Legend:							
R = Reada	ble bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	set	'0' = Bit is cle	eared				
bit 7-5	Unimplemer	nted: Read as	ʻ0'				
bit 4-0	RSEL<4:0>:	Timer2 Extern	al Reset Signa	I Source Select	tion bits		
	11111 = Res	served					
	•						
	•						
	10010 = Res	served					
	10001 = LC4	4_out					
	10000 = LC3	3_out					
	01111 = LC2	2_out					
	01110 = 201	D1 output					
	01100 = C20	OUT sync					
	01011 = C10	OUT sync					
	01010 = PW	/M7_out					
	01001 = PW	'M6_out					
	01000 = CC	P5_out					
	00111 = CC	P4_out					
	00110 = CC	P3_out					
	00101 = CC	P2_0ul P1_out					
	00100 - CCI	F1_0ui R6_nostscaler	₁ (3)				
	00011 = TM	R4 postscaled	(2)				
	00001 = TM	R2 postscaled	(1)				
	00000 = Pin	selected by T	KINPPS				
Note 1:	For Timer2, this b	it is Reserved.					

- **2:** For Timer4, this bit is Reserved.
- **3:** For Timer6, this bit is Reserved.

30.3.4 TIMER2 TIMER RESOURCE

This device has a newer version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to Section 29.5, Operation Examples for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the FOSC/4 clock source selected

30.3.5 PWM PERIOD

The PWM period is specified by the PR2/4/6 register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 30-1.

EQUATION 30-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$

Note 1: Tosc = 1/Fosc

When TMR2/4/6 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2/4/6 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is transferred from the CCPRxL/H register pair into a 10-bit buffer.

Note:	The Timer postscaler (see Section 29.4
	"Timer2 Interrupt") is not used in the
	determination of the PWM frequency.

30.3.6 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the CCPRxFMT bit of the CCPxCON register (see Figure 30-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 30-2 is used to calculate the PWM pulse width.

Equation 30-3 is used to calculate the PWM duty cycle ratio.

FIGURE 30-5: PWM 10-BIT ALIGNMENT

EQUATION 30-2: PULSE WIDTH

Pulse Width = (CCPRxH:CCPRxL register pair) •

TOSC • (TMR2 Prescale Value)

EQUATION 30-3: DUTY CYCLE RATIO

Duty Cycle Ratio =
$$\frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 30-4).

30.3.7 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 30-4.

EQUATION 30-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

30.4 Register Definitions: CCP Control

Long bit name prefixes for the CCP peripherals are shown in Section 1.1 "Register and Bit naming conventions".

TABLE 30-4:LONG BIT NAMES PREFIXES
FOR CCP PERIPHERALS

Peripheral	Bit Name Prefix
CCP1	CCP1
CCP2	CCP2
CCP3	CCP3
CCP4	CCP4
CCP5	CCP5

REGISTER 30-1: CCPxCON: CCPx CONTROL REGISTER

R/W-0/0	U-0	R-x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	OUT	FMT		MODE	Ξ<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: CCPx Module Enable bit 1 = CCPx is enabled 0 = CCPx is disabled
bit 6	Unimplemented: Read as '0'
bit 5	OUT: CCPx Output Data bit (read-only)
bit 4	FMT: CCPW (Pulse Width) Alignment bit <u>MODE = Capture mode</u> Unused <u>MODE = Compare mode</u> Unused <u>MODE = PWM mode</u> 1 = Left-aligned format 0 = Right-aligned format

31.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

31.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

31.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

31.4.3 SDA AND SCL PINS

Selection of any l^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note 1:	Data is tied to output zero when an I^2C mode is enabled.
2:	Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

31.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 31-1: I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—	—			INTEDG	134	
PIR3	—	—	RCIF	TXIF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	147	
PIE3	—	—	RCIE	TXIE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	138	
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	574	
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	573	
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16 —		WUE	ABDEN	575	
RC1REG	RC1REG<7:0>									
TX1REG	TX1REG<7:0>									
SPB1RGL	SP1BRG<7:0>									
SPB1RGH	SP1BRG<15:8>									
RXPPS	—	—	—	RXPPS<4:0>						
CKPPS	—	—	—	CXPPS<4:0>						
RxyPPS	—	—	—	RxyPPS<4:0>						
CLCxSELy	—	—	_	LCxDyS<4:0>						
MDSRC	—	—	_	MDMS<4:0>						

SUMMARY OF REGISTERS ASSOCIATED WITH EUSART TABLE 33-2:

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART module.

* Page with register information.

XORLW	Exclusive OR literal with W						
Syntax:	[label] XORLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W) .XOR. $k \rightarrow (W)$						
Status Affected:	Z						
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.						

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

TABLE 37-8: INTERNAL OSCILLATOR PARAMETERS⁽¹⁾

Standard Operating Conditions (unless otherwise stated)

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency		4 8 12 16 32		MHz	(Note 2)
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency		1 2		MHz MHz	
OS52	FMFOSC	Internal Calibrated MFINTOSC Frequency		500	_	kHz	
OS53*	FLFOSC	Internal LFINTOSC Frequency		31	I	kHz	(Note 3)
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μs μs	VREGPM = 0 VREGPM = 1
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time		0.2		ms	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

 See Figure 37-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature, Figure 38-78 HFINTOSC Typical Frequency Error, PIC16LF18856/76 Only and Figure 38-79 HFINTOSC Typical Frequency Error, PIC16F18856/76 Only.

3: See Figure 38-7 LFINTOSC Frequency, PIC16LF18856/76 Only and Figure 38-8: LFINTOSC Frequency, PIC16F18856/76 only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 38-37: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, VREF = 3.0V.

FIGURE 38-38: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, VREF = 3.0V.

FIGURE 38-39: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, $TAD = 1 \mu S$.

FIGURE 38-40: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = $1 \mu S$.

FIGURE 38-41: Temp. Indicator Initial Offset, High Range, Temp. = 20°C, PIC16F18856/76 Only.

FIGURE 38-42: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16F18856/76 Only.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N	28				
Pitch	е	0.40 BSC				
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.55	2.55 2.65			
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.55	2.65	2.75		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2