

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	ASC, CANbus, MLI, MSC, SSC
Peripherals	DMA, POR, WDT
Number of I/O	88
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.42V ~ 1.58V
Data Converters	A/D 4x10b, 32x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	PG-LQFP-176-5
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/tc1767256f80hladkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2012-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

32-Bit

TC1767 32-Bit Single-Chip Microcontroller

Data Sheet V1.4 2012-07

Microcontrollers

TC1767 Data Sheet

Revision History: V1.4 2012-07

Previous Versions: V1.3

Page	Subjects (major changes since last revision)
Page 6	Salescode for Copper-bonded device is added

Trademarks

TriCore[®] is a trademark of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

register names contain a module name prefix, separated by an underscore character "_" from the actual register name (for example, "ASC0_CON", where "ASC0" is the module name prefix, and "CON" is the kernel register name). In chapters describing the kernels of the peripheral modules, the registers are mainly referenced with their kernel register names. The peripheral module implementation sections mainly refer to the actual register names with module prefixes.

- Variables used to describe sets of processing units or registers appear in mixed upper and lower cases. For example, register name "MSGCFGn" refers to multiple "MSGCFG" registers with variable n. The bounds of the variables are always given where the register expression is first used (for example, "n = 0-31"), and are repeated as needed in the rest of the text.
- The default radix is decimal. Hexadecimal constants are suffixed with a subscript letter "H", as in 100_H. Binary constants are suffixed with a subscript letter "B", as in: 111_B.
- When the extent of register fields, groups register bits, or groups of pins are collectively named in the body of the document, they are represented as "NAME[A:B]", which defines a range for the named group from B to A. Individual bits, signals, or pins are given as "NAME[C]" where the range of the variable C is given in the text. For example: CFG[2:0] and SRPN[0].
- Units are abbreviated as follows:
 - MHz = Megahertz
 - μs = Microseconds
 - kBaud, kbit = 1000 characters/bits per second
 - MBaud, Mbit = 1,000,000 characters/bits per second
 - Kbyte, KB = 1024 bytes of memory
 - Mbyte, MB = 1048576 bytes of memory

In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by 1024. Hence, the Kbyte unit scales the expression preceding it by 1024. The kBaud unit scales the expression preceding it by 1000. The M prefix scales by 1,000,000 <u>or</u> 1048576, and μ scales by .000001. For example, 1 Kbyte is 1024 bytes, 1 Mbyte is 1024 \times 1024 bytes, 1 kBaud/kbit are 1000 characters/bits per second, 1 MBaud/Mbit are 1000000 characters/bits per second, and 1 MHz is 1,000,000 Hz.

- Data format quantities are defined as follows:
 - **Byte** = 8-bit quantity
 - Half-word = 16-bit quantity
 - **Word** = 32-bit quantity
 - Double-word = 64-bit quantity

2.1.3 Reserved, Undefined, and Unimplemented Terminology

In tables where register bit fields are defined, the following conventions are used to indicate undefined and unimplemented function. Furthermore, types of bits and bit fields are defined using the abbreviations as shown in **Table 2**.

Function of Bits	Description			
Unimplemented, Reserved	 Register bit fields named 0 indicate unimplemented functions with the following behavior. Reading these bit fields returns 0. These bit fields should be written with 0 if the bit field is defined as r or rh. These bit fields have to be written with 0 if the bit field is defined as rw. These bit fields are reserved. The detailed description of these bit fields can be found in the register descriptions. 			
rw	The bit or bit field can be read and written.			
rwh	As rw, but bit or bit field can be also set or reset by hardware.			
r	The bit or bit field can only be read (read-only).			
w	The bit or bit field can only be written (write-only). A read to th register will always give a default value back.			
rh	This bit or bit field can be modified by hardware (read-hardware, typical example: status flags). A read of this bit or bit field give the actual status of this bit or bit field back. Writing to this bit or bit field has no effect to the setting of this bit or bit field.			
S	Bits with this attribute are "sticky" in one direction. If their reset value is once overwritten by software, they can be switched again into their reset state only by a reset operation. Software cannot switch this type of bit into its reset state by writing the register. This attribute can be combined to "rws" or "rwhs".			
f	Bits with this attribute are readable only when they are accessed by an instruction fetch. Normal data read operations will return other values.			

Table 2 Bit Function Terminology

2.1.4 Register Access Modes

Read and write access to registers and memory locations are sometimes restricted. In memory and register access tables, the terms as defined in **Table 3** are used.

- Trigger sources that do not depend on a clock, such as the PORST. This trigger force the device into an asynchronous reset assertion independently of any clock. The activation of an asynchronous reset is asynchronous to the system clock, whereas its de-assertion is synchronized.
- Trigger sources that need a clock in order to be asserted, such as the input signals ESR0, and ESR1, the WDT trigger, the parity trigger, or the SW trigger.

2.3.4.4 External Interface

The SCU provides interface pads for system purpose. Various functions are covered by these pins. Due to the different tasks some of the pads can not be shared with other functions but most of them can be shared with other functions. The following functions are covered by the SCU controlled pads:

- Reset request triggers
- Reset indication
- Trap request triggers
- Interrupt request triggers
- Non SCU module triggers

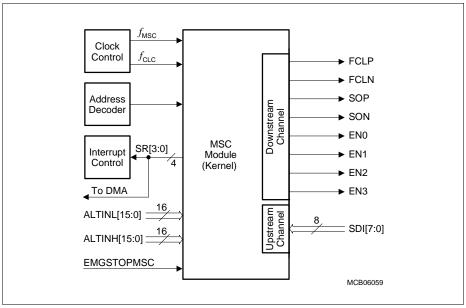
The first three points are covered by the ESR pads and the last two points by the ERU pads.

2.3.4.5 Die Temperature Measurement

The Die Temperature Sensor (DTS) generates a measurement result that indicates directly the current temperature. The result of the measurement can be read via an DTS register.

2.3.5 General Purpose I/O Ports and Peripheral I/O Lines

The TC1767 includes a flexible Ports structure with the following features:


Features

- Digital General-Purpose Input/Output (GPIO) port lines
- Input/output functionality individually programmable for each port line
- Programmable input characteristics (pull-up, pull-down, no pull device)
- Programmable output driver strength for EMI minimization (weak, medium, strong)
- Programmable output characteristics (push-pull, open drain)
- Programmable alternate output functions
- · Output lines of each port can be updated port-wise or set/reset/toggled bit-wise

2.4.3 Micro Second Channel Interface

The Micro Second Channel (MSC) interface provides serial communication links typically used to connect power switches or other peripheral devices. The serial communication link includes a fast synchronous downstream channel and a slow asynchronous upstream channel. **Figure 7** shows a global view of the interface signals of the MSC interface.

Figure 7 General Block Diagram of the MSC Interface

The downstream and upstream channels of the MSC module communicate with the external world via nine I/O lines. Eight output lines are required for the serial communication of the downstream channel (clock, data, and enable signals). One out of eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The source of the serial data to be transmitted by the downstream channel can be MSC register contents or data that is provided on the ALTINL/ALTINH input lines. These input lines are typically connected with other on-chip peripheral units (for example with a timer unit such as the GPTA). An emergency stop input signal makes it possible to set bits of the serial data stream to dedicated values in an emergency case.

Clock control, address decoding, and interrupt service request control are managed outside the MSC module kernel. Service request outputs are able to trigger an interrupt or a DMA request.

- Static allocation commands offer compatibility with MultiCAN applications that are not list-based.
- Advanced interrupt handling
 - Up to 16 interrupt output lines are available. Interrupt requests can be routed individually to one of the 16 interrupt output lines.
 - Message post-processing notifications can be combined flexibly into a dedicated register field of 256 notification bits.

2.4.5 Micro Link Interface

This TC1767 contains one Micro Link Interface, MLIO.

The Micro Link Interface (MLI) is a fast synchronous serial interface to exchange data between microcontrollers or other devices, such as stand-alone peripheral components. **Figure 9** shows how two microcontrollers are typically connected together via their MLI interfaces.

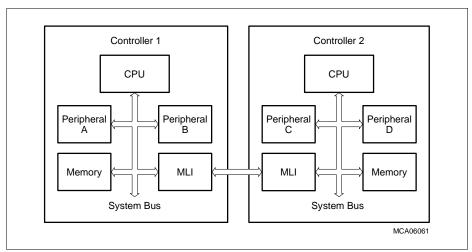


Figure 9 Typical Micro Link Interface Connection

Features

- · Synchronous serial communication between an MLI transmitter and an MLI receiver
- Different system clock speeds supported in MLI transmitter and MLI receiver due to full handshake protocol (4 lines between a transmitter and a receiver)
- Fully transparent read/write access supported (= remote programming)
- Complete address range of target device available
- Specific frame protocol to transfer commands, addresses and data
- Error detection by parity bit
- 32-bit, 16-bit, or 8-bit data transfers supported
- Programmable baud rate: $f_{MLI}/2$ (max. $f_{MLI} = f_{SYS}$)
- Address range protection scheme to block unauthorized accesses
- Multiple receiving devices supported

- $f_{\rm GPTA}/4$ maximum input signal frequency in 2-sensor Mode, $f_{\rm GPTA}/6$ maximum input signal frequency in 3-sensor Mode
- Duty Cycle Measurement (DCM)
 - Four independent units
 - 0 100% margin and time-out handling
 - $-f_{\rm GPTA}$ maximum resolution
 - $-f_{GPTA}/2$ maximum input signal frequency
 - Digital Phase Locked Loop (PLL)
 - One unit
 - Arbitrary multiplication factor between 1 and 65535
 - f_{GPTA} maximum resolution
 - $-f_{GPTA}/2$ maximum input signal frequency
 - Clock Distribution Unit (CDU)
 - One unit
 - Provides nine clock output signals:

 $f_{\rm GPTA}$, divided $f_{\rm GPTA}$ clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock

Signal Generation Unit

- Global Timers (GT)
 - Two independent units
 - Two operating modes (Free-Running Timer and Reload Timer)
 - 24-bit data width
 - f_{GPTA} maximum resolution
 - $-f_{GPTA}/2$ maximum input signal frequency
- Global Timer Cell (GTC)
 - 32 units related to the Global Timers
 - Two operating modes (Capture, Compare and Capture after Compare)
 - 24-bit data width
 - $-f_{GPTA}$ maximum resolution
 - $-f_{GPTA}/2$ maximum input signal frequency
- Local Timer Cell (LTC)
 - 64 independent units
 - Three basic operating modes (Timer, Capture and Compare) for 63 units
 - Special compare modes for one unit
 - 16-bit data width
 - $-f_{\rm GPTA}$ maximum resolution
 - $f_{\text{GPTA}}/2$ maximum input signal frequency

Interrupt Sharing Unit

· 143 interrupt sources, generating up to 46 service requests

Pinning

Table	T			Functions (PG-LQFP-176-5 Package ¹) (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
149	P0.8	I/O0	A1/	Port 0 General Purpose I/O Line 8
	IN8	1	PU	GPTA0 Input 8
	IN8	Ι		LTCA2 Input 8
	OUT8	01		GPTA0 Output 8
	OUT64	02		GPTA0 Output 64
	OUT8	O3		LTCA2 Output 8
150	P0.9	I/O0	A1/	Port 0 General Purpose I/O Line 9
	IN9	Ι	PU	GPTA0 Input 9
	IN9	Ι		LTCA2 Input 9
	OUT9	01		GPTA0 Output 9
	OUT65	02		GPTA0 Output 65
	OUT9	O3		LTCA2 Output 9
151	P0.10	I/O0	A1/ PU	Port 0 General Purpose I/O Line 10
	IN10	I		GPTA0 Input 10
	OUT10	01		GPTA0 Output 10
	OUT66	02		GPTA0 Output 66
	OUT10	O3		LTCA2 Output 10
152	P0.11	I/O0	A1/ PU	Port 0 General Purpose I/O Line 11
	IN11	I		GPTA0 Input 11
	OUT11	01		GPTA0 Output 11
	OUT67	02		GPTA0 Output 67
	OUT11	O3	1	LTCA2 Output 11
168	P0.12	I/O0	A1/	Port 0 General Purpose I/O Line 12
	IN12	I	PU	GPTA0 Input 12
	OUT12	01	1	GPTA0 Output 12
	OUT68	02	1	GPTA0 Output 68
	OUT12	O3	1	LTCA2 Output 12

TC1767

Pinning

Table	T			Functions (PG-LQFP-176-5 Package ¹⁾) (cont'd)
Pin	Symbol	Ctrl.	Туре	
74	P2.0	I/O0	A2/ PU	Port 2 General Purpose I/O Line 0
	IN32	I	PU	GPTA0 Input 32
	OUT32	01		GPTA0 Output 32
	TCLK0	02		MLI0 Transmitter Clock Output 0
	OUT28	O3		LTCA2 Output 28
75	P2.1	I/O0	A2/	Port 2 General Purpose I/O Line 1
	IN33	I	PU	GPTA0 Input 33
	TREADY0A	I		MLI0 Transmitter Ready Input A
	OUT33	01		GPTA0 Output 33
	SLSO03	02		SSC0 Slave Select Output Line 3
	SLSO13	O3		SSC1 Slave Select Output Line 3
76	P2.2	I/O0	A2/	Port 2 General Purpose I/O Line 2
	IN34	I	PU	GPTA0 Input 34
	OUT34	01	-	GPTA0 Output 34
	TVALID0	02		MLI0 Transmitter Valid Output
	OUT29	O3		LTCA2 Output 29
77	P2.3	I/O0	A2/	Port 2 General Purpose I/O Line 3
	IN35	I	PU	GPTA0 Input 35
	OUT35	01		GPTA0 Output 35
	TDATA0	02		MLI0 Transmitter Data Output
	OUT30	O3	-	LTCA2 Output 30
78	P2.4	I/O0	A2/	Port 2 General Purpose I/O Line 4
	IN36	1	PU	GPTA0 Input 36
	RCLK0A	1	1	MLI Receiver Clock Input A
	OUT36	01	1	GPTA0 Output 36
	OUT36	02	1	GPTA0 Output 36
	OUT31	O3	1	LTCA2 Output 31

Pinning

Table 4 Pin Definitions and Functions (PG-LQFP-176-5 Package ¹) (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
111	TDI	I	A2/	JTAG Serial Data Input	
	BRKIN	I	PU	OCDS Break Input Line	
	BRKOUT	0		OCDS Break Output Line	
112	TMS	I	A2/	JTAG State Machine Control Input	
	DAP1	I/O	PD	Device Access Port Line 1	
113	TDO	I/O	A2/	JTAG Serial Data Output	
	DAP2	I/O	PU	Device Access Port Line 2	
	BRKIN	I		OCDS Break Input Line	
	BRKOUT	0		OCDS Break Output Line	
114	TRST	I	A1/ PD	JTAG Reset Input	
115	TCK	I	A1/	JTAG Clock Input	
	DAP0	I	PD	Device Access Port Line 0	
118	TESTMODE	I	PU	Test Mode Select Input	
120	ESR1	I/O	A2/ PD	External System Request Reset Input 1	
121	PORST	I	PD	Power On Reset Input (input pad with input spike-filter)	
122	ESR0	I/O	A2	External System Request Reset Input 0 Default configuration during and after reset is open-drain driver, corresponding to A2 strong driver, sharp edge. The driver drives low during power-on reset.	

1) TC1767 ED: PG-LQFP-176-6

2) This pin is also connected to the analog power supply for comparator of the ADC module.

For the TC1767 emulation device (ED), this pin is bonded to VDD_{SB} (ED Stand By RAM supply). In the TC1767 non ED device, this pin is bonded to a VDD pad.

Legend for Table 4

Column "Ctrl.":

I = Input (for GPIO port lines with IOCR bit field selection $PCx = 0XXX_B$)

O = Output

O0 = Output with IOCR bit field selection PCx = $1X00_{B}$

O1 = Output with IOCR bit field selection PCx = $1X01_{B}$ (ALT1)

Pinning

O2 = Output with IOCR bit field selection PCx = $1X10_B(ALT2)$ O3 = Output with IOCR bit field selection PCx = 1X11(ALT3)

Column "Type":

A1 = Pad class A1 (LVTTL) A2 = Pad class A2 (LVTTL) F = Pad class F (LVDS/CMOS) D = Pad class D (ADC)

PU = with pull-up device connected during reset ($\overline{PORST} = 0$)

PD = with pull-down device connected during reset (PORST = 0)

TR = tri-state during reset ($\overline{PORST} = 0$)

3.1.2 Reset Behavior of the Pins

Table 5 describes the pull-up/pull-down behavior of the System I/O pins during poweron reset.

Table 5 List of Pull-up/Pull-down PORST Reset Behavior of the Pins

Pins	PORST = 0	PORST = 1		
All GPIOs, TDI, TESTMODE	Pull-up	Pull-up		
PORST, TRST, TCK, TMS	Pull-down	Pull-down		
ESR0	The open-drain driver is used to drive low. ¹⁾	Pull-up ²⁾		
ESR1	Pull-down ³⁾			
тро	Pull-up	High-impedance		

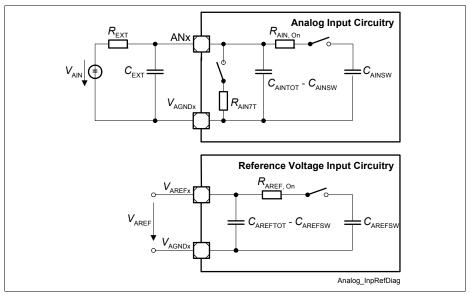
 Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.

2) See the SCU_IOCR register description.

3) see the SCU_IOCR register description.

Identification Registers

Table 6 TC1767 Identification Registers (cont'd)								
Short Name	Value	Address	Stepping					
SCU_MANID	0000 1820 _H	F000 0644 _H	-					
SCU_RTID	0000 0007 _H	F000 0648 _H	AD-step					
SSC0_ID	0000 4511 _H	F010 0108 _H	-					
SSC1_ID	0000 4511 _H	F010 0208 _H	-					
STM_ID	0000 C006 _H	F000 0208 _H	-					


Table 10 Pin Groups for Overload/Short-Circuit Current Sum Parameter

Group	Pins
5	P1.[7:4]; TDI/BRKIN/BRKOUT; TRST, TCK/DAP0; P1.[1:0]; P1.15; TESTMODE; ESR0; PORST; ESR1
6	P3.[10:0]; P3.[15:14]
7	P3.[13:11]; P0.[3:0]; P0.[11:8]
8	P6.[3:0]; P2.[13:8]; P0.[5:4]; P0.[13:12]
9	P0.[7:6]; P0.[15:14]; P5.[7:0]; P5.15

Table 13	Conversion Time (Operating Conditions apply)
----------	---

Parameter	Syı	nbol	Value	Unit	Note
Conversion time with post-calibration	t _C	CC	$2 \times T_{ADC}$ + (4 + STC + n) × T_{ADCI}	μS	n = 8, 10, 12 for n - bit conversion T_{ADC} = 1 / f_{ADC}
Conversion time without post-calibration			$2 \times T_{ADC}$ + (2 + STC + n) × T_{ADCI}	-	$T_{\text{ADCI}} = 1 / f_{\text{ADCI}}$

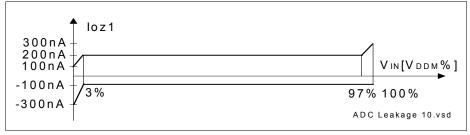


Figure 19 ADC0/ADC1Analog Inputs Leakage

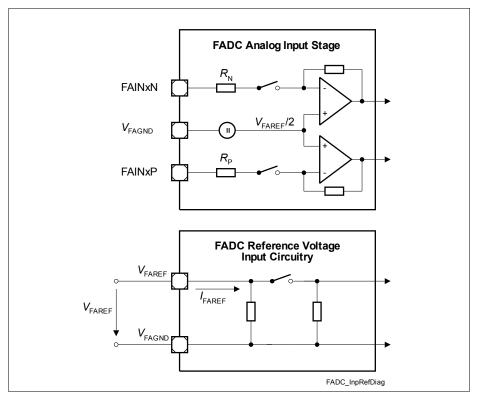
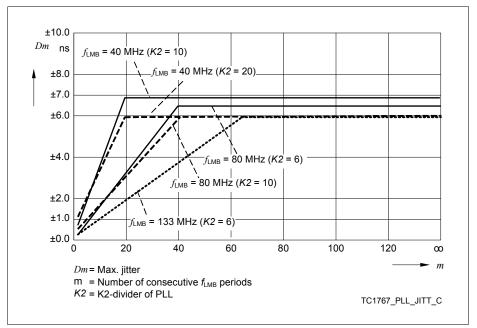



Figure 20 FADC Input Circuits

With rising number *m* of clock cycles the maximum jitter increases linearly up to a value of *m* that is defined by the K2-factor of the PLL. Beyond this value of *m* the maximum accumulated jitter remains at a constant value. Further, a lower LMB-Bus clock frequency $f_{\rm IMB}$ results in a higher absolute maximum jitter value.

Figure 26 gives the jitter curves for several K2 / f_{LMB} combinations.

Figure 26 Approximated Maximum Accumulated PLL Jitter for Typical LMB-Bus Clock Frequencies f_{IMB}

- Note: The specified PLL jitter values are valid if the capacitive load per output pin does not exceed $C_L = 20 \text{ pF}$ with the maximum driver and sharp edge. In case of applications with many pins with high loads, driver strengths and toggle rates the specified jitter values could be exceeded.
- Note: The maximum peak-to-peak noise on the pad supply voltage, measured between V_{DDOSC3} at pin 106 and V_{SSOSC} at pin 104, is limited to a peak-to-peak voltage of V_{PP} = 100 mV for noise frequencies below 300 KHz and V_{PP} = 40 mV for noise frequencies above 300 KHz.

The maximum peak-to peak noise on the pad supply votage, measured between V_{DDOSC} at pin 105 and V_{SSOSC} at pin 104, is limited to a peak-to-peak voltage of V_{PP} = 100 mV for noise frequencies below 300 KHz and V_{PP} = 40 mV for noise frequencies above 300 KHz.

5.4.2 Package Outline

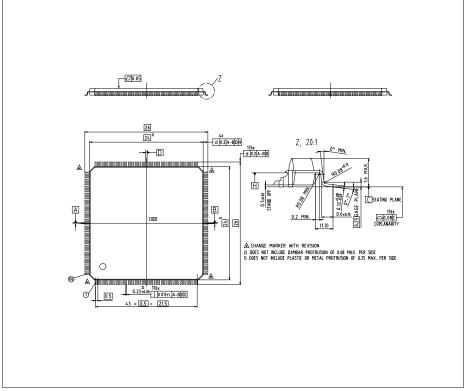


Figure 36 PG-LQFP-176-5, Plastic Green Low Profile Quad Flat Package

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": *http://www.infineon.com/products*.