E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.5GHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572cvtavne

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- CRC generation and verification of inbound/outbound frames
- Programmable Ethernet preamble insertion and extraction of up to 7 bytes
- MAC address recognition:
 - Exact match on primary and virtual 48-bit unicast addresses
 - VRRP and HSRP support for seamless router fail-over
 - Up to 16 exact-match MAC addresses supported
 - Broadcast address (accept/reject)
 - Hash table match on up to 512 multicast addresses
 - Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- Two MII management interfaces for control and status
- Ability to force allocation of header information and buffer descriptors into L2 cache
- 10/100 Fast Ethernet controller (FEC) management interface
 - 10/100 Mbps full and half-duplex IEEE 802.3 MII for system management
 - Note: When enabled, the FEC occupies eTSEC3 and eTSEC4 parallel interface signals. In such a mode, eTSEC3 and eTSEC4 are only available through SGMII interfaces.
- OCeaN switch fabric
 - Full crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Two integrated DMA controllers
 - Four DMA channels per controller
 - All channels accessible by the local masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no snoop)
 - Ability to start and flow control up to 4 (both Channel 0 and 1 for each DMA Controller) of the 8 total DMA channels from external 3-pin interface by the remote masters
 - The Channel 2 of DMA Controller 2 is only allowed to initiate and start a DMA transfer by the remote master, because only one of the 3-external pins (DMA2_DREQ[2]) is made available

NOTE

From a system standpoint, if any of the I/O power supplies ramp prior to the VDD core supply, the I/Os associated with that I/O supply may drive a logic one or zero during power-on reset, and extra current may be drawn by the device.

3 Power Characteristics

The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices with out the L in its part ordering is shown in Table 4.

CCB Frequency	Core Frequency	Typical-65 ²	Typical-105 ³	Maximum ⁴	Unit
533	1067	12.3	17.8	18.5	W
533	1200	12.3	17.8	18.5	W
533	1333	16.3	22.8	24.5	W
600	1500	17.3	23.9	25.9	W

Table 4	MPC8572F	Power	Dissir	nation ¹
		I OWEI	Diagih	Jation

Notes:

¹ This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XV_{DD} rails.

 $^2~$ Typical-65 is based on V_DD = 1.1 V, T_j = 65 °C, running Dhrystone.

³ Typical-105 is based on V_{DD} = 1.1 V, T_i = 105 °C, running Dhrystone.

⁴ Maximum is based on V_{DD} = 1.1 V, T_j = 105 °C, running a smoke test.

The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices with the L in its port ordering is shown in Table 5.

CCB Frequency	Core Frequency	Typical-65 ²	Typical-105 ³	Maximum ⁴	Unit
533	1067	12	15	15.8	W
533	1200	12	15.5	16.3	W
533	1333	12	15.9	16.9	W
600	1500	13	18.7	20.0	W

Table 5. MPC8572EL Power Dissipation ¹

Notes:

¹ This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XV_{DD} rails.

² Typical-65 is based on V_{DD} = 1.1 V, T_j = 65 °C, running Dhrystone.

³ Typical-105 is based on V_{DD} = 1.1 V, T_i = 105 °C, running Dhrystone.

 $^4\,$ Maximum is based on V_{DD} = 1.1 V, T_i = 105 °C, running a smoke test.

PLL config input setup time with stable SYSCLK before HRESET negation	100	_	μs	
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4		SYSCLKs	1
Input hold time for all POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET	—	5	SYSCLKs	1

Table 9. RESET Initialization Timing Specifications (continued)

Notes:

2. Reset assertion timing requirements for DDR3 DRAMs may differ.

Table 10 provides the PLL lock times.

Table	10.	PLL	Lock	Times
-------	-----	-----	------	-------

Parameter/Condition	Symbol	Min	Typical	Max
PLL lock times	_	100	μs	—
Local bus PLL	_	50	μs	_

6 DDR2 and DDR3 SDRAM Controller

This section describes the DC and AC electrical specifications for the DDR2 and DDR3 SDRAM controller interface of the MPC8572E. Note that the required $GV_{DD}(typ)$ voltage is 1.8Vor 1.5 V when interfacing to DDR2 or DDR3 SDRAM, respectively.

6.1 DDR2 and DDR3 SDRAM Interface DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM controller of the MPC8572E when interfacing to DDR2 SDRAM.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF} n	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} <i>n</i> – 0.04	$MV_{REF}n + 0.04$	V	3
Input high voltage	V _{IH}	$MV_{REF}n + 0.125$	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} n – 0.125	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{OH}	-13.4	_	mA	—

DDDO ODDAM Late	uface DO Electula	- I O le ave et eviletie e	$f_{a,m} = O(1 - (f_{a,m})) = A = O(1)$,
DURZ SURAW INTE	rtace DU Electric	al Unaracteristics	TOT (= V = (TVD) = T A V	

^{1.} SYSCLK is the primary clock input for the MPC8572E.

DDR2 and DDR3 SDRAM Controller

Figure 6 provides the AC test load for the DDR2 and DDR3 Controller bus.

Figure 6. DDR2 and DDR3 Controller bus AC Test Load

6.2.3 DDR2 and DDR3 SDRAM Differential Timing Specifications

This section describes the DC and AC differential electrical specifications for the DDR2 and DDR3 SDRAM controller interface of the MPC8572E.

VID specifies the input differential voltage |VTR - VCP| required for switching, where VTR is the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as MCK or MDQS).

Table 19 provides the differential specifications for the MPC8572E differential signals MDQS/ \overline{MDQS} and MCK/ \overline{MCK} when in DDR2 mode.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
DC Input Signal Voltage	V _{IN}	-0.3	GV _{DD} + 0.3	V	_
DC Differential Input Voltage	V _{ID}		—	mV	
AC Differential Input Voltage	V _{IDAC}	_	—	mV	_
DC Differential Output Voltage	V _{OH}	_	—	mV	_
AC Differential Output Voltage	V _{OHAC}	JEDEC: 0.5	JEDEC: GV _{DD} + 0.6	V	_
AC Differential Cross-point Voltage	V _{IXAC}	_	—	mV	_
Input Midpoint Voltage	V _{MP}		_	mV	

Table 19. DDR2 SDRAM Differential Electrical Characteristics

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface.

Table 22. DUART AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3V ± 5%.

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB} /1,048,576	baud	1, 2
Maximum baud rate	f _{CCB} /16	baud	1, 2, 3
Oversample rate	16	_	1, 4

Notes:

1. Guaranteed by design

- 2. f_{CCB} refers to the internal platform clock frequency.
- 3. Actual attainable baud rate is limited by the latency of interrupt processing.
- 4. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet controller.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—FIFO/GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all FIFO mode, gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC), and serial gigabit media independent interface (SGMII). The RGMII, RTBI and FIFO mode interfaces are defined for 2.5 V, while the GMII, MII, RMII, and TBI interfaces can operate at both 2.5 V and 3.3V.

The GMII, MII, or TBI interface timing is compliant with IEEE 802.3. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII Specification Version 1.2 (3/20/1998).

The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

The electrical characteristics for SGMII is specified in Section 8.3, "SGMII Interface Electrical Characteristics." The SGMII interface conforms (with exceptions) to the Serial-GMII Specification Version 1.8.

Figure 12 shows the MII transmit AC timing diagram.

Figure 12. MII Transmit AC Timing Diagram

8.2.3.2 MII Receive AC Timing Specifications

Table 30 provides the MII receive AC timing specifications.

Table 30. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX} 2	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise (20%-80%)	t _{MRXR} ²	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF} ²	1.0	—	4.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference}

receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Figure 13 provides the AC test load for eTSEC.

Figure 13. eTSEC AC Test Load

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Table 39 lists the SGMII DC receiver electrical characteristics.

Parameter		Symbol	Min	Тур	Max	Unit	Notes
Supply Voltage		XV _{DD_SRDS2}	1.045	1.1	1.155	V	_
DC Input voltage range		—		N/A			1
Input differential voltage	LSTS = 0	V _{RX_DIFFp-p}	100	—	1200	mV	2, 4
	LSTS = 1		175	—			
Loss of signal threshold	LSTS = 0	VLOS	30	—	100	mV	3, 4
	LSTS = 1		65	—	175		
Input AC common mode v	oltage	V _{CM_ACp-p}		—	100	mV	5
Receiver differential input impedance		Z _{RX_DIFF}	80	100	120	Ω	
Receiver common mode input impedance		Z _{RX_CM}	20	—	35	Ω	—
Common mode input volta	ige	V _{CM}	_	V _{xcorevss}	_	V	6

Table 39. SGMII DC Receiver Electrical Characteristics

Note:

1. Input must be externally AC-coupled.

2. V_{RX DIFFp-p} is also referred to as peak to peak input differential voltage

3. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in PCI Express. Refer to PCI Express Differential Receiver (RX) Input Specifications section for further explanation.

4. The LSTS shown in the table refers to the LSTSAB or LSTSEF bit field of MPC8572E's SerDes 2 Control Register.

5. $V_{\mbox{CM}_\mbox{ACp-p}}$ is also referred to as peak to peak AC common mode voltage.

6. On-chip termination to SGND_SRDS2 (xcorevss).

Local Bus Controller (eLBC)

Table 48 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 1.8 V$ DC.

Parameter	Symbol	Min	Мах	Unit
Supply voltage 1.8V	BV _{DD}	1.71	1.89	V
High-level input voltage	V _{IH}	0.65 x BV _{DD}	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.35 x BV _{DD}	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	TBD	TBD	μA
High-level output voltage $(I_{OH} = -100 \ \mu A)$	V _{OH}	BV _{DD} – 0.2	_	V
High-level output voltage $(I_{OH} = -2 \text{ mA})$	V _{OH}	BV _{DD} – 0.45	—	V
Low-level output voltage (I _{OL} = 100 μA)	V _{OL}	_	0.2	V
Low-level output voltage (I _{OL} = 2 mA)	V _{OL}	_	0.45	V

Table 48. Local Bus DC Electrical Characteristics (1.8 V DC)

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

10.2 Local Bus AC Electrical Specifications

Table 49 describes the general timing parameters of the local bus interface at $BV_{DD} = 3.3 \text{ V DC}$.

Table 49. Local Bus General Timing Parameters ($BV_{DD} = 3.3 V DC$)—PLL EnabledAt recommended operating conditions with BV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	6.67	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	—	150	ps	7,8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.8	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output negation to high impedance for LAD/LDP (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	2.3	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.4	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.3	ns	3

Table 51. Local Bus General Timing Parameters (BV_{DD} = 1.8 V DC)—PLL Enabled (continued)

At recommended operating conditions with $\mathsf{BV}_{\mathsf{DD}}$ of 1.8 V ± 5% (continued)

Parameter	Symbol ¹	Min	Max	Unit	Notes
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	_	ns	3, 4
LALE output negation to high impedance for LAD/LDP (LATCH hold time)	t _{lbotot}	1.2	_	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	3.2	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	_	3.2	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	_	3.2	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}	_	3.2	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.9	_	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.9		ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	_	2.6	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}		2.6	ns	5

Note:

- The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from BV_{DD}/2 of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 1.8-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

Figure 29 provides the AC test load for the local bus.

Figure 29. Local Bus AC Test Load

Local Bus Controller (eLBC)

Figure 30 through Figure 35 show the local bus signals.

Figure 30. Local Bus Signals, Non-Special Signals Only (PLL Enabled)

Table 52 describes the general timing parameters of the local bus interface at $BV_{DD} = 3.3 \text{ V DC}$ with PLL disabled.

Table 52. Local Bus General Timing Parameters—PLL Bypassed

At recommended operating conditions with BV_{DD} of 3.3 V ± 5%

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	12		ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	
Internal launch/capture clock to LCLK delay	t _{LBKHKT}	2.3	4.0	ns	
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	5.8		ns	4, 5
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKL2}	5.7	—	ns	4, 5
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	-1.3	_	ns	4, 5

Local Bus Controller (eLBC)

Figure 31. Local Bus Signals (PLL Bypass Mode)

Figure 49 shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Because LVDS clock driver's common mode voltage is higher than the MPC8572E SerDes reference clock input's allowed range (100 to 400mV), AC-coupled connection scheme must be used. It assumes the LVDS output driver features $50-\Omega$ termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.

Figure 49. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

Figure 50 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. Because LVPECL driver's DC levels (both common mode voltages and output swing) are incompatible with MPC8572E SerDes reference clock input's DC requirement, AC-coupling must be used. Figure 50 assumes that the LVPECL clock driver's output impedance is 50Ω . R1 is used to DC-bias the LVPECL outputs prior to AC-coupling. Its value could be ranged from 140Ω to 240Ω depending on clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's $50-\Omega$ termination resistor to attenuate the LVPECL output's differential peak level such that it meets the MPC8572E SerDes reference clock's differential input amplitude requirement (between 200mV and 800mV differential peak). For example, if the LVPECL output's differential peak is 900mV and the desired SerDes reference clock input amplitude is selected as 600mV, the attenuation factor is 0.67, which requires R2 = 25Ω . Consult

Serial RapidIO

Figure 58. Transmitter Output Compliance Mask

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

Table 71. Transmitter Differential Output Eye Diagram Parameters

17.6 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to $(0.8) \times$ (Baud Frequency). This includes contributions from on-chip circuitry, the chip package and any off-chip components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ohm resistive for differential return loss and 25- Ω resistive for common mode.

link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100Ω resistive +/- 5% differential to 2.5 GHz.

17.8.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

17.8.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/- 5% differential to 2.5 GHz.

17.8.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 17.6, "Receiver Specifications," and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 60 and Table 75. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 17.6, "Receiver Specifications," is then added to the signal and the test load is replaced by the receiver being tested.

18 Package Description

This section describes package parameters, pin assignments, and dimensions.

Package Description

- 5. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- 6. Parallelism measurement shall exclude any effect of mark on top surface of package.

18.3 Pinout Listings

Table 76 provides the pin-out listing for the MPC8572E 1023 FC-PBGA package.

Table 76. MPC8572E Pinout Listing

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
	DDR SDRAM Memo	bry Interface 1			
D1_MDQ[0:63]	Data	D15, A14, B12, D12, A15, B15, B13, C13, C11, D11, D9, A8, A12, A11, A9, B9, F11, G12, K11, K12, E10, E9, J11, J10, G8, H10, L10, M11, F10, G9, K9, K8, AC6, AC7, AG8, AH9, AB6, AB8, AE9, AF9, AL8, AM8, AM10, AK11, AH8, AK8, AJ10, AK10, AL12, AJ12, AL14, AK14, AL11, AM11, AK13, AM14, AM15, AJ16, AL18, AM18, AJ15, AL15, AK17, AM17	I/O	GV _{DD}	
D1_MECC[0:7]	Error Correcting Code	M10, M7, R8, T11, L12, L11, P9, R10	I/O	GV _{DD}	—
D1_MAPAR_ERR	Address Parity Error	P6	I	GV _{DD}	_
D1_MAPAR_OUT	Address Parity Out	W6	0	GV_DD	
D1_MDM[0:8]	Data Mask	C14, A10, G11, H9, AD7, AJ9, AM12, AK16, N11	0	GV _{DD}	_
D1_MDQS[0:8]	Data Strobe	A13, C10, H12, J7, AE8, AM9, AM13, AL17, N9	I/O	GV _{DD}	_
D1_MDQS[0:8]	Data Strobe	D14, B10, H13, J8, AD8, AL9, AJ13, AM16, P10	I/O	GV _{DD}	_
D1_MA[0:15]	Address	Y7, W8, U6, W9, U7, V8, Y11, V10, T6, V11, AA10, U9, U10, AD11, T8, P7	0	GV _{DD}	
D1_MBA[0:2]	Bank Select	AA7, AA8, R7	0	GV_DD	
D1_MWE	Write Enable	AC12	0	GV_{DD}	_

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SD2_RX[3:0]	Receive Data (negative)	AK31, AJ29, AF29, AE31	I	XV _{DD_SR} DS2	—
SD2_TX[3]	SGMII Tx Data eTSEC4	AH26	0	XV _{DD_SR} DS2	—
SD2_TX[2]	SGMII Tx Data eTSEC3	AG24	0	XV _{DD_SR} DS2	—
SD2_TX[1]	SGMII Tx Data eTSEC2	AE24	0	XV _{DD_SR} DS2	_
SD2_TX[0]	SGMII Tx Data eTSEC1	AD26	0	XV _{DD_SR} DS2	_
SD2_TX[3:0]	Transmit Data (negative)	AH27, AG25, AE25, AD27	0	XV _{DD_SR} DS2	—
SD2_PLL_TPD	PLL Test Point Digital	AH32	0	XV _{DD_SR} DS2	17
SD2_REF_CLK	PLL Reference Clock	AG32	I	XV _{DD_SR} DS2	—
SD2_REF_CLK	PLL Reference Clock Complement	AG31	I	XV _{DD_SR} DS2	—
Reserved	—	AF26, AF27	—	—	28
	General-Purpose	Input/Output			
GPINOUT[0:7]	General Purpose Input / Output	B27, A28, B31, A32, B30, A31, B28, B29	I/O	BV _{DD}	_
	System Co	ontrol			
HRESET	Hard Reset	AC31	I	OV _{DD}	_
HRESET_REQ	Hard Reset Request	L23	0	OV _{DD}	21
SRESET	Soft Reset	P24	I	OV _{DD}	
CKSTP_IN0	Checkstop In Processor 0	N26	I	OV _{DD}	
CKSTP_IN1	Checkstop In Processor 1	N25	I	OV _{DD}	_
CKSTP_OUT0	Checkstop Out Processor 0	U29	0	OV _{DD}	2, 4
CKSTP_OUT1	Checkstop Out Processor 1	T25	0	OV _{DD}	2, 4
	Debug	9			
TRIG_IN	Trigger In	P26	I	OV _{DD}	_
TRIG_OUT/READY_P0/QUIES	Trigger Out / Ready Processor 0/ Quiesce	P25	0	OV _{DD}	21
READY_P1	Ready Processor 1	N28	0	OV _{DD}	5, 9

Table 76. MPC8572E Pinout Listing (continued)

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
	Power and Grou	Ind Signals			
GND	Ground	A18, A25, A29, C3, C6, C9, C12, C15, C20, C22, E5, E8, E11, E14, F3, G7, G10, G13, G16, H5, H21, J3, J9, J12, J18, K7, L5, L13, L15, L16, L21, M3, M9, M12, M14, M16, M18, N7, N13, N15, N17, N19, N21, N23, P5, P12, P14, P16, P20, P22, R3, R9, R11, R13, R15, R17, R19, R21, R23, R26, T7, T12, T14, T16, T18, T20, T22, T30, U5, U11, U13, U15, U16, U17, U19, U21, U23, U25, V3, V9, V12, V14, V16, V18, V20, V22, W7, W11, W13, W15, W17, W19, W21, W27, W32, Y5, Y12, Y14, Y16, Y18, Y20, AA3, AA9, AA13, AA15, AA17, AA19, AA21, AA30, AB7, AB26, AC5, AC11, AC13, AD3, AD9, AD14, AD17, AD22, AE7, AE13, AF5, AF11, AG3, AG9, AG15, AG19, AH7, AH13, AH22, AJ5, AJ11, AJ17, AK3, AK9, AK15, AK24, AL7, AL13, AL19, AL26			
XGND_SRDS1	SerDes Transceiver Pad GND (xpadvss)	C23, C27, D23, D25, E23, E26, F23, F24, G23, G27, H23, H25, J23, J26, K23, K24, L27, M25	_		
XGND_SRDS2	SerDes Transceiver Pad GND (xpadvss)	AD23, AD25, AE23, AE27, AF23, AF24, AG23, AG26, AH23, AH25, AJ27	_	_	

Table 76. MPC8572E Pinout Listing (continued)

System Design Information

21.6 Pull-Up and Pull-Down Resistor Requirements

The MPC8572E requires weak pull-up resistors (2–10 k Ω is recommended) on open drain type pins including I²C pins and MPIC interrupt pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 66. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion gives unpredictable results.

The following pins must NOT be pulled down during power-on reset: DMA_DACK[0:1], EC5_MDC, HRESET_REQ, TRIG_OUT/READY_P0/QUIESCE, MSRCID[2:4], MDVAL, and ASLEEP. The TEST_SEL pin must be set to a proper state during POR configuration. For more details, refer to the pinlist table of the individual device.

21.7 Output Buffer DC Impedance

The MPC8572E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 64). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 64. Driver Impedance Measurement

System Design Information

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch should be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed to position B.
- 6. Asserting SRESET causes a machine check interrupt to the e500 cores.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ,ÅúTypical,Åù parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including ,Åútypicals,,Åù must be validated for each customer application by customer,Åôs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. . Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2011, 2014, 2016 NXP B.V.

Document Number: MPC8572EEC Rev. 7 03/2016

